+ All Categories
Home > Documents > Next: 193nm Lithography - University of Texas at...

Next: 193nm Lithography - University of Texas at...

Date post: 08-Dec-2018
Category:
Upload: hadat
View: 227 times
Download: 0 times
Share this document with a friend
34
ChE 384T / 323 Lecture 16 Chemical Engineering for Micro/Nano Fabrication Next: 193nm Lithography
Transcript

ChE 384T / 323

Lecture 16Chemical Engineering for Micro/Nano Fabrication

Next: 193nm Lithography

ChE 384T / 323

Meta-cresol novolak

Poly-(4-hydroxystyrene)

Polyacrylates

(aliphatic)

200 225 250 275 300 325 375350 400175

0.4

0.8

1.2

1.6

2.0

2.4

2.8

0.0

Wavelength [nm]

Ab

so

rptio

n c

oe

ffic

ien

t [1

/µm

]

ArF

193 nmKrF

248 nm

i-line

365 nm

Source: R.D. Allen et al., IBM J. Res. Develop. 41 (1/2), 95-104 (1997)

Absorption of Photoresist Polymers

ChE 384T / 323

Exposure

Step

Final

Profile

Impact of Photoresist Absorbance

on Developed Image Profile

Moderate

absorbance

High

absorbance

ChE 384T / 323

Relative Etch Rate of Polymers

Relative Etch R

ate Aliphatic

Aromatic

Carbon

ChE 384T / 323

The Ohnishi Number

Watanabe, F. and Ohnishi, Y., J. Vac. Soc. Technol. B,422 (1986)

ChE 384T / 323

• 248 and 365 nm resists are unsuitable for 193 nm

imaging because they are opaque at this wavelenth

• Etch resistance requires high carbon/hydrogen

ratio but aromatics are precluded because of their

absorption

• How do you achieve both 193nm optical

transparency and etch resistance?

193 nm Resist Materials

Challenge:

ChE 384T / 323

High C:H Ratio of Alicyclic Hydrocarbons

Structure:

Formula:

Unsaturation

Number:

C6H6 C12H16 C7H10 CnH2n+2

CH3(CH2)nCH3

4 5 3 0

The key!

ChE 384T / 323

APEX 248nm Resist Design

Tethering Function Acid Lability Base Solubility

O tBOC

CH CH2 CH

OH

CH2

Etch Resistance

ChE 384T / 323

UTexas193nm Design

Tethering Function

Etch Resistance

Acid Lability Base Solubility

C O

O

C O

C(CH3)3OH

[[ ] ]

ChE 384T / 323

Early Lithography

•Excellent image quality

•Adhesion failure

C O

O

C(CH3)3

C O

OH

0.80 0.20

Resist

+ Ø3SSbF

6

poly(NBCA-co-CBN)

•Synthesis requires metal catalyst!

ChE 384T / 323

x

O

O

OOOTHF

+

O

O

OO O

V601

70C

Trading Etch Resistance for Adhesion:

Alternating Systems: COMA

Yield :Mn :Mw :Pd :

60%

4,660

6,860

1.472

N N

COOCH3

H3C

COOCH3

CH3

CH3CH3

Waco Chemical

No Metal!

V601

Shelf Life issues?

ChE 384T / 323

Images in UT 193nm COMA Resist

Alternating co-polymer

Uzo Okoroanyanwu, Jeff Byers

ChE 384T / 323

Improving Etch Resistance

Dioxane

O

O

x

OOO

O

O

+

OO O

V601

70C

UV Absorbance0.44 mm-1

@ 193 nm

Yield :Mn :Mw :Pd :

55 %

3,400

4,340

1.276

DNBC

With JSR

ChE 384T / 323

Resist and Process Development

I-line

248nm

193nm Issues!

Basic

Chemistry

Formulation

and Process

Development

Optimization

Per

form

ance

Time

ChE 384T / 323

Fujitsu’s Acrylic Platform

CH2 C

H

C O

O

nCH2 C

H

C O

O

OO

m oCH2 C

H

C O

O

O O

pCH2 C

H

C O

OH

Acrylate Copolymers …

Free radical polymerizations

No metal

ChE 384T / 323

Acrylic Polymer Platform

HOO

OO

OO

HOCF3

CF3

OO

OO

OO

O

O

OO

F3C

CF3

OH

OO

F3C

CF3

O

O

O

Fujitsu IBM,JSR, etc.

ChE 384T / 323

Types of PAGs Used For 193 nm Lithography

AsF6-

PF6-

Rf SO3-

F3C SO3-

SO3-

S+

O

CH3

N

O

O

O S

O

O

Ar

N

O

O

O S

O

O

CF3

F3C

CF2

CF2

CF2

SO3-

NEALS

I+

S+ DPI

TPS

R

R

R

R

IONICVOLATILE

NON-VOLATILE

: too weak

for 193 nm

NON-IONIC

O OH O S

O

O

N

O

O

O S

O

O

CF3

MBT

NIT

MDT

SIT

“nonaflate”

O

SO3-

ALS

NAT.OTf

S+

O CH3

O

S+

ChE 384T / 323

193nm Resist Challenges

Pattern Collapse

Line Edge Roughness (LER)

Etch Resistance

Heisenberg Principle issue

New Defect Types

Pattern Collapse

LERm Bridging

ChE 384T / 323

Line edge Roughness

193 248

ChE 384T / 323

Simulation of a PE Bake

Blocked sites

Unreacted polymer

Latent Image Edge

Gerard Schmid

ChE 384T / 323

Influence of Base on LER

x

I(x)

Base

Acid

No base With base

J. E. Meiring, T. B. Michaelson, G. M. Schmid and C. G. Willson, Proc. SPIE, 5753(2005), to be published

Base quencher can decrease the acid sphere of influence in low contrast

regions, thereby reducing LER.

ChE 384T / 323

Exploring Base Effects

I(x)

x x x

J. E. Meiring, T. B. Michaelson, G. M. Schmid and C. G. Willson, Proc. SPIE, 5753(2005), to be published

To add base quencher seems to make the contrast higher, thereby LER

reducing.

0% base 15% base 30% base

6.61 nm RMS 5.47 nm RMS 3.89 nm RMS

ChE 384T / 323

Typical KrF system always shows moderate variation of DR……

0.01

0.1

1

10

100

1000

10000

100000

1.0 10.0 100.0

DOSE(mJ/cm2)

dis

so

lutio

n r

ate

(A/s

ec)

total

surface

middle

bottom

0< DR @ Unexposed area

Gradually increasing DR

Low contrast value

Moderate Rmax

Uniform DR inside film

0.01

0.1

1

10

100

1000

10000

100000

1.0 10.0 100.0

DOSE(mJ/cm2)

dis

solu

tion r

ate

(A/s

ec)

total

surface

middle

bottom

Typical ArF system always shows dramatic variation of DR……

No DR @ Unexposed area

No DR changes until this point

Suddenly the dissolution begins

The contrast is very high

Quite high Rmax

Different DR inside film

Comparison of ArF and KrF

ChE 384T / 323

Dissolution behavior

OO

OO

O

OD

R

KrF System

ArF System

OH

OO

This difference in the

contrast amplifies small

variations in the blend

region. “Digital” On/Off

switching phenomenon

makes the line edge rough.

ChE 384T / 323

The ArF system changes from insoluble to

soluble over a very narrow dose range

Small fluctuations are amplified and cause

huge changes in dissolution rate.

Stochastic process noise becomes line edge

roughness

The KrF system has lower contrast

Small fluctiuations cause small changes in

dissolution rate..

Is there such a thing astoo much contrast?

DR

ChE 384T / 323

Can “it” be done again at 157nm???

Perhaps….but

This time it would have been really hard!!

Could have been

ChE 384T / 323

Wavelength (nm)

157.6 193 248

248 resist 6.84 0.37

193 resist 6.86 0.47

Polystyrene* 6.20

Polynorbornene* 6.10

PMMA* 5.69

Fluorocarbon* 0.70

Absorption (mm-1) of Common Polymers

* R.R.Kunz,et al., Proc. SPIE 3678, 13 (1999).

Transmission

0.00001%!!!

• Vacuum UV

• O2, H2O absorbs at this wavelength

• Even hydrocarbons like butane and

polyethylene absorb strongly

ChE 384T / 323

n nF

FF

F

Opaque Transparent

Fluorination of Norbornane Skeleton

F

248 nm 193 nm 157 nm

?

?

How many fluorines and where to fluorinate?

ChE 384T / 323

150 155 160 165 170 175 180

Wavelength (nm)

Ab

sorb

ance

(m

To

rr-1

cm-1

)

Selective Fluorination of Norbornane

Geminal substitution at the two carbon bridge is the most

effective fluorination pattern -CF3 acrylates

F F

F

F

F

F

ChE 384T / 323

Surprising Serendipitous Discovery

A157 = 2.57 mm-1

NBHFABOC and NBHFA are surprisingly transparent

Ni (II)

n

CF3

F3C O

O

O

CF3

CF3

O

O

O CF3

F3C OH

n

H+

A157 = 1.15 mm-1

T. Chiba, et. al., J. Photopolym. Sci. Technol , 13 (2000) 657-664

ChE 384T / 323

0

1

2

3

4

5

6

7

150 160 170 180 190 200

Wavelength (nm)

Abso

rbance (m

m-1

)

(2.68 mm-1)

(2.44 mm-1)

(1.15 mm-1)

Absorbance of Fluorinated Polymers

Hexafluoroisopropyl and -trifluoromethylcarboxylic acid

are groups surprisingly transparent!

O

O

CH2 C

CF3

COOMe

CF3

CF3

O

O

O

CF3

CF3

OH

CH2 C

CH3

COOMe

(6.02 mm-1)

(5.42 mm-1)

ChE 384T / 323

Some Imaging Results

40nm

80nm90nm100nm

60nm

ChE 384T / 323

Resist and Process Development

I-line

248nm

193nm

Basic

Chemistry

Formulation

and Process

Development

Optimization

Per

form

ance

Time

We are well off the base line

60nm

157 nm

ChE 384T / 32334

Images in UT 157nm Resists

70nm

85nm

60nm

Issues include: Pace, Resist, Pellicles,

CaF2, Birefringence, Cost, etc.

Intel Announcement


Recommended