+ All Categories
Home > Documents > Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc,...

Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc,...

Date post: 27-Feb-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
32
Modelling of successive default events Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, Universit´ e d’ ´ Evry, France Ying Jiao, Ecole Sup´ erieure d’Ing´ enieur L´ eonard de Vinci Princeton, Credit Risk, May 2008 Financial support from Fondation du Risque and F´ ed´ eration des Banques Fran¸caises 1
Transcript
Page 1: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Modelling of successive default events

Nicole El Karoui, CMAP, Ecole PolytechniqueMonique Jeanblanc, Universite d’Evry, FranceYing Jiao, Ecole Superieure d’Ingenieur Leonard de Vinci

Princeton, Credit Risk, May 2008

Financial support from Fondation du Risque and Federation des Banques Francaises 1

Page 2: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

The aim of this talk is

• to give a general framework for multi-defaults modelling

• to obtain the dynamics of derivative products in a multinamesetting.

2

Page 3: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

The basic tool is the conditional law of the default(s) with respect to areference filtration

3

Page 4: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Single Name

Single Name

4

Page 5: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Single Name

Notation

• G is the global market filtration,• τ is a default time,• Ht = 11τ≤t is the default processes,• H is the natural filtration of H, with H ⊂ G,• F is a reference filtration, with F ⊂ G .

5

Page 6: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Single Name

On the set {τ > t}: ”before-default”

(F, G, τ) satisfy the minimal assumption (MA) if∀ t ≥ 0 and ZG ∈ Gt, ∃ ZF ∈ Ft such that

ZG ∩ {τ > t} = ZF ∩ {τ > t}.

• If Gτ := F ∨ H, then (F, Gτ , τ) enjoys MA.

• Under MA, for any G∞-measurable (integrable) r.v. Y G,

11{τ>t}E[Y G|Gt] = 11{τ>t}E[Y G11{τ>t}|Ft]

P(τ > t|Ft)a.s.

on the set A := {ω : P(τ > t|Ft)(ω) > 0}.

6

Page 7: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Single Name

On the set {τ ≤ t}: ”after-default”

1. We assume that G = Gτ = F ∨ H

2. J-Hypothesis (Jacod for enlargement of filtration purpose):

We assume that there exists a family of Ft ⊗ B(R+) r.vsαt(θ) such that

P(τ ∈ dθ|Ft) = αt(θ)dθ dθ ⊗ dP − a.s.

and for any θ the process αt(θ), t ≥ 0 is a right-continuousmartingale

Under the above hypotheses, we can compute Gt-conditionalexpectations on the set {τ ≤ t}A ”weak version” of J-hypothesis consists of the existence of thedensity only for 0 ≤ t ≤ θ. This is useful for before-default studies, butnot sufficient for the after-default ones.

7

Page 8: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Single Name

Density and F-martingales

We assume J-hypothesis and introduce the cadlag (super) martingales

• Conditional survival process (St = P(τ > t|Ft), t ≥ 0) (Azemasuper-martingale)

• Conditional probability process (St(θ) = P(τ > θ|Ft), t ≥ 0).Note that, for t ≤ θ, one has St(θ) = E[Sθ|Ft],

• Family of martingales (for θ ∈ R): the densities (αt(θ), t ≥ 0) ofSt(θ)

8

Page 9: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Single Name

Decompositions of Survival process S (super-martingale)

• The Doob-Meyer decomposition of S is St = MFt − AF

t with

– the F-martingale

MFt = −

∫ t

0

(αt(u) − αu(u))du = St − S0 +∫ t

0

αu(u)du

– the increasing process AFt =

∫ t

0αu(u) du

• The multiplicative decomposition isSt = LF

t DFt

where

– The F-martingale LF is given as dLFt = e

∫ t0 λF

sdsdMFt

– The decreasing process DF is DFt = exp

(− ∫ t

0λF

sds)

where

λFt = αt(t)

Ston {St > 0}.

9

Page 10: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Single Name

Links with the classical intensity approach

• The G-intensity is the G-adapted process λG such that(11{τ≤t} −

∫ t

0λG

s ds, t ≥ 0) is a G-martingale.

• Under the weak version of J-Hypothesis,

λGt = 11{τ>t}λF

t = 11{τ>t}αt(t)St−

a.s..

• For any θ ≥ t,αt(θ) = E[λG

θ |Ft] a.s..

Note that the intensity approach does not contain enough informationto study the after-default case (i.e. for θ < t).

10

Page 11: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Single Name

A characterization of G-martingales

Any Gt-measurable r.v. X can be written as

X = Xt11{τ>t} + Xt(τ)11{τ≤t}where Xt and Xt(θ) are Ft-measurable.

The process MX is a G-martingale if its decomposition as

MXt := Xt11{τ>t} + Xt(τ)11{τ≤t}

satisfies

• (XtSt +∫ t

0Xs(s)αs(s) ds, t ≥ 0) is an F-martingale

• For any θ, (Xt(θ)αt(θ), t ≥ θ) is an F-martingale

Remark: The first condition is equivalent to :XtL

Ft − ∫ t

0(Xs − Xs(s))LF

sλFs ds is an F-martingale

11

Page 12: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Single Name

Immersion hypothesis

Immersion holds if (and only if) any F-martingale is aG-martingale.

Under immersion hypothesis,

• αt(θ) = αt∧θ(θ)

• S is a non-increasing process

• LF is a constant

• the processMX

t := Xt11{τ>t} + Xt(τ)11{τ≤t}is a G-martingale if

(a) Xt(θ) is a F-martingale on [θ,∞).

(b) Xt −∫ t

0(Xs − Xs(s))λF

s ds is an F-martingale

12

Page 13: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Single Name

Toy Exemple: Cox process model

Let τ = inf{t : Λt :=∫ t

0λF

sds ≥ Θ} whereΛ is an F-adapted increasing process, Λ0 = 0, limt→∞ Λt = +∞Θ is a G-measurable r.v. independent of F∞, Θi ∼ exp(1).F is immersed in G = F ∨ H.The conditional distribution of τ is⎧⎨⎩ P(τ > θ| Ft) = E[e−Λθ | Ft], for θ > t

P(τ > θ| Ft) = e−Λθ , for θ ≤ t

and the density is⎧⎨⎩ αt(θ) = E[λθe−Λθ | Ft], for θ > t

= λθe−Λθ , for θ ≤ t

13

Page 14: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Single Name

Modelling the density process

Two possible solutions:

• Model St(θ) := P(τ > θ|Ft) and then take derivatives w.r.t. θ

• Model the density αt(θ) as a family of strictly positive martingalessuch that

∫∞0

αs(θ)dθ = 1

Remarks :

• for fixed θ, both processes are positive F martingales

• reference to the interest models

• distinction between θ ≥ t (classical part) and θ < t (non-classicalpart)

14

Page 15: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Single Name

F-martingale representation and HJM framework

Model the family of F-martingales St(θ) in the HJM framework

SupposedSt(θ)St(θ)

= Φt(θ)dMt, t, θ ≥ 0

where M is a continuous multi-dimensional F-martingale, thenSt(θ) = St(t) exp

(− ∫ θ

tλt(u)du

)where λt(θ) is the forward intensity

and

* St(θ) = S0(θ) exp(∫ t

0Φs(θ)dMs − 1

2

∫ t

0|Φs(θ)|2d〈M〉s

);

* St = exp(− ∫ t

0λF

sds +∫ t

0Φs(s)dMs − 1

2

∫ t

0|Φs(s)|2d〈M〉s

).

* λt(θ) = λ0(θ) −∫ t

0ϕs(θ)dMs +

∫ t

0ϕs(θ)Φs(θ)d〈M〉s.

15

Page 16: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Single Name

For any θ ≥ 0, assume that λ0(θ) is a family of positive probabilitydensities.

Let b(θ) be a given family of non-negative F-adapted processes. Define

ϕt(θ) = −bt(θ)λ0(θ) exp(∫ t

0

bs(θ)dWs − 12

∫ t

0

bs(θ)2ds

)and let

αt(θ) = λt(θ) exp(−∫ t

0

λt(v)dv

)where λt(θ) = λ0(θ) −

∫ θ

0ϕs(θ)dWs +

∫ t

0ϕs(θ)Φs(θ)ds.

Then the family (αt(θ), t ≥ 0) is a density process.

16

Page 17: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Single Name

Examples of martingale density process

• Compatibility between martingale and probability properties

– the r.v. St(θ) is [0, 1]-valued

– for any t, the map θ → St(θ) is non-increasing

• A Generalized exponential model: ∀ t, θ ≥ 0, let

St(θ) = exp(− θMt − 1

2θ2 〈M〉t

)where M is an F-martingale.

• Exponential law S0(θ) = P(τ > θ) = exp(−θM0).

• Probability condition : Mt + 12θ 〈M〉t ≥ 0

17

Page 18: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Single Name

Comparison with interest rate modelling

• Zero-coupon B(t, T ) = E[e−∫ T

trsds|Ft].

Short rate rt = −∂T |T=t log B(t, T ).

• Defaultable zero-coupon without actualization

E[11{τ>T}|Gt] = 11{τ>t}E[ST /St|Ft] := 11{τ>t}Bτ (t, T ).

Intensity λFt = −∂T |T=t log Bτ (t, T ).

18

Page 19: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Single Name

A general construction of density process. I.

1. Start with P0 with immersion hypothesis, and τ with densityprocess (α0

t (θ), t ≥ 0) constant in time after θ

2. Let ZGt = Zt11{τ>t} + Zt(τ)11{τ≤t} a positive (G, P0)-martingale

with expectation 1

3. Define dP = ZGT dP0 on GT . The RN density of P w.r.t. P0 on Ft is

ZFt = ZtSt +

∫ t

0Zs(s)α0

s(s)ds.

4. Then the density process of τ under P is

αPt (θ) = α0

θ(θ)Zt(θ)ZF

t

for θ < t

αPt (θ) =

E[Zθ(θ)α0θ(θ)|Ft]

ZFt

for θ ≥ t.

19

Page 20: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Single Name

A general construction of density process. II.

1. Start with P0 with τ independent of F∞ with density f

2. Let q∞(u) a family of F∞-measurable r.v. such that∫∞0

q∞(u)f(u)du = 1

3. Define dP = q∞(τ)dP0 on G∞.

4. Then, setting qt(u) = E0(q∞(u)|Ft), the RN density of P w.r.t. P0

on Ft is ZFt =

∫∞0

qt(u)f(u)du and the density process of τ

under P is

αPt (θ) = qt(θ)f(θ)(ZF

t )−1

20

Page 21: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Two ordered default times

Two ordered default times

21

Page 22: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Two ordered default times

Notation

Two G-stopping times:

τ = τ (1) := min(τ1, τ2) and σ = τ (2) := max(τ1, τ2).

Before-default and after-default analysis extended naturally to theordered defaults

• Filtrations: H(1) for τ and H

(2) for σ respectively. Let

G(1) = F ∨ H

(1) and G(2) = F ∨ H

(1) ∨ H(2)= G

(1) ∨ H(2).

• On the set {t < τ}, it suffices to apply directly the previous studies

• On the sets {τ ≤ t < σ} and {σ ≤ t} a recursive procedure usingG

(1) as the reference filtration and G(2) as the global filtration

22

Page 23: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Two ordered default times

G(1) -conditional survival probability of σ

• The G(1)-conditional survival probability of σ is

Sσ|G(1)

t (θ) = P(σ > θ|G(1)t )

= 11{τ>t}P(τ > t, σ > θ|Ft)

P(τ > t|Ft)+ 11{τ≤t}

∂sP(σ > θ, τ > s|Ft)∂sP(τ > s|Ft)

∣∣∣∣s=τ

• We assume that there exists ατ,σ such that

P(τ > θ1, σ > θ2|Ft) =∫ ∞

θ1

du1

∫ ∞

θ2

du2 ατ,σt (u1, u2)

• Note that ατ,σt (u1, u2) = 0, ∀u1 ≥ u2.

23

Page 24: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Two ordered default times

Computation of G(2)-conditional expectations

Explicit formulas on the three sets:

• on {t < τ},

E[11{τ>t}YT (τ, σ) | Gt

]=

E[ ∫∞

tdu1

∫∞u1

du2 YT (u1, u2) ατ,σT (u1, u2)|Ft

]∫∞t

du1

∫∞u1

du2 ατ,σt (u1, u2)

• on {τ ≤ t < σ},

E[11{τ>t}YT (τ, σ) | Gt

]=

E[ ∫∞

tdu2 YT (u1, u2)α

τ,σT (u1, u2)|Ft

]∫∞t

du2 ατ,σt (u1, u2)

∣∣∣u1=τ

• on {σ ≤ t},

E[11{τ>t}YT (τ, σ) | Gt

]=

E[YT (u1, u2) ατ,σ

T (u1, u2) | Ft

]ατ,σ

t (u1, u2)

∣∣∣u1=τ u2=σ

24

Page 25: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Two ordered default times

A standard example (Schonbucher-Schubert)

• Cox process model for τ1 and τ2 :

τi = inf{t : Λit ≥ Θi}

C is the survival copule of Θ1, Θ2

• Marginal survival process Sit = P(τi > t|F∞) = e−Λi

t , immersionhypothesis satisfied for F and G

i.

• The joint survival probability is obtained from

P(τ1 > θ1, τ2 > θ2|F∞) = C(S1θ1

, S2θ2

).

ThereforeS1,2

t (θ1, θ2) = E[C(S1

θ1, S2

θ2)|Ft

].

25

Page 26: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Two ordered default times

A copula diffusion example

• Joint survival probability

S0(θ1, θ2) = P(τ1 > θ1, τ2 > θ2) = exp(− (θ2

1 + θ22)

12)

a survival c.d.f of two exponential r.v. with unit parameter linkedby a Clayton copula.

• Diffuse the copula function as a martingale : ∀t, θ1, θ2 ≥ 0, let

St(θ1, θ2) = exp(− (θ2

1M1t + θ2

2M2t

) 12 − At

)where

At =18

∫ t

0

1 + X12s

X23s

d〈X〉s and Xs = θ21M

1s + θ2

2M2s

where M1, M2 positive F-martingales s.t. 〈M1, M2〉t > 0.

26

Page 27: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Two ordered default times

Exponential diffusion model

• A two-dimensional exponential example:

exp(− θ1M

1t − θ2M

2t − 1

2θ21〈M1〉t − 1

2θ22〈M2〉t − θ1θ2

(〈M1, M2〉t + a

))M1, M2 positive F martingales s.t. 〈M1, M2〉t ≥ 0

• At t = 0, S0(θ1, θ2) = exp(−θ1M10 − θ2M

20 − a θ1θ2).

• Dependence at t > 0 characterized by 〈M1, M2〉t• Probability condition

M1t M2

t − 〈M1, M2〉t > a > 0

27

Page 28: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Several Defaults, Applications to pricing

Several Defaults, Applications to pricing

• Generalization to n successive defaults σ1 ≤ · · · ≤ σn by a recursivemethod

• Representation of conditional expectation with respect toG(1,···,n)

t = Ft ∨Hσ1t ∨ · · · ∨ Hσn

t

Let Yt(u1, · · · , un) be a family of r.v. Ft ⊗ B(Rn)-measurable wheret, u1, · · · , un ≥ 0. Then

E[YT (σ1, · · · , σn)|G(1,···,n)

t

]=

n∑i=0

11{σi≤t<σi+1} qit(T, σ1, · · · , σi, YT )

where qit(T, s1, · · · , si, YT ) is a ratio of Ft conditional expectations,

σ0 = 0 and σn+1 = ∞.

28

Page 29: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Several Defaults, Applications to pricing

Pricing of the portfolio credit derivatives

• kth-to-default swap depends on the kth default time of theunderlying portfolio :

E[11{σk>T}YT |G(1,···,n)

t

]=

k−1∑i=0

11{σi≤t<σi+1}qit,Q(T, σ1, · · · , σi, YT S

(k)T )

where S(k)T = P(σk > T |Ft).

• For a CDO tranche, total loss lT =∑n

i=1 11{τi≤t} and key term tocalculate :

E[(K − lT )+|G(1,···,n)

t

]=

∫ K

−∞du E

[11{σ�u�+1>T}|G(1,···,n)

t

]=

∫ K

−∞du

�u�∑i=0

11{σi≤t<σi+1}qit,Q

(T, σ1, · · · , σi, S

�u�T

).

29

Page 30: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Several Defaults, Applications to pricing

Dynamics of CDSs prices

Let X(κ) be the price of a CDS written on the default τ1, with recoveryδ and premium κ and Xt(κ) = 11t≤τ2∧τ1Xt(κ) + 11τ2<t≤τ1Xt(κ) its price.Let

St(u, v) = P(τ1 > u, τ2 > v|Ft) = S0(u, v) +∫ t

0

gs(u, v)dWs

Then:

dXt(κ) =1

St(t, t)

[(δ(t)∂1St(t, t) + κSt(t, t) −

(∂1St(t, t) + ∂2St(t, t)

)Xt(κ)

)dt

−(∫ T

t

(δ(u)αt(u, t) + κ ∂2St(u, t)

)du

)dt + σt(T ) dWt

]with

σt(T ) = − 1St(t, t)

(∫ T

t

(δ(u) ∂1gt(u, t) + κ1gt(u, t)

)du + gt(t, t)Xt(κ)

).

30

Page 31: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Several Defaults, Applications to pricing

dXt(κ) =(− δ(t)λ1|2(t, τ2) + κ + Xt(κ)λ1|2(t, τ2)

)dt + σ

1|2t (T ) dWt

where

λ1|2(t, s) = − αt(t, s)∂2St(t, s)

σ1|2t (T ) =

1∂2St(t, τ2)

(At(τ2) − Xt(κ)∂2gt(t, τ2)),

At(s) = −∫ T

t

δ(u)∂12gt(u, s)du − κ

∫ T

t

∂2gt(u, s) du.

31

Page 32: Nicole El Karoui, CMAP, Ecole Polytechnique Monique Jeanblanc, …orfe.princeton.edu/creditrisk/SLIDES/jeanblanc-slides.pdf · 2008. 5. 23. · Monique Jeanblanc, Universit´ed’Evry,

Several Defaults, Applications to pricing

Perspectives

A general framework for portfolio of defaultable names :

• explicit model studies for the joint density process

• application to the pricing

• calibration of parameters

• dynamic hedging

32


Recommended