+ All Categories
Home > Documents > Nir Friedman (opening)

Nir Friedman (opening)

Date post: 04-Jan-2016
Category:
Upload: ella-paul
View: 23 times
Download: 0 times
Share this document with a friend
Description:
Decision-Principles to Justify Carnap's Updating Method and to Suggest Corrections of Probability Judgments Peter P. Wakker Economics Dept. Maastricht University. Nir Friedman (opening). Good words. Bad words. dimension map density labels player ancestral generative dynamics bound - PowerPoint PPT Presentation
40
Decision-Principles to Justify Carnap's Updating Method and to Suggest Corrections of Probability Judgments Peter P. Wakker Economics Dept. Maastricht University Nir Friedman (opening)
Transcript
Page 1: Nir Friedman (opening)

Decision-Principles to Justify Carnap's Updating Method and to Suggest Corrections

of Probability JudgmentsPeter P. WakkerEconomics Dept.

Maastricht University

Nir Friedman (opening)

Page 2: Nir Friedman (opening)

2

+

dimensionmap

densitylabelsplayer

ancestralgenerativedynamics

boundfiltering

iterationancestral

graph

Good words

agentBayesiannetworklearning

elicitationdiagramcausality

utilityreasoning

Bad words

Page 3: Nir Friedman (opening)

3

“Decision theory =probability theory + utility theory.”

Bayesian networkers care about prob. th.However,why care about utility theory?

(1) Important for decisions.(2) Helps in studying probabilities: If you are interested in the processing of probabilities, then still the tools of utility theory can be useful.

Page 4: Nir Friedman (opening)

4

1. Decision Theory: Empirical Work (on Utty);2. A New Foundation of (Static) Bayesianism;3. Carnap’s Updating Method;4. Corrections of Probability Judgments Based on Empirical Findings.

Outline

Page 5: Nir Friedman (opening)

5

(Hypothetical) measurement of popularity of internet sites. For simplicity, Assumption.We compare internet sites that differ only regarding (randomness in) waiting time.

Question: How does random waiting time affect popularity of internet sites?

Through average?

1. Decision Theory; Empirical Work

Page 6: Nir Friedman (opening)

6

More refined procedure:Not average of waiting time, but average ofhow people feel about waiting time,(subjectively perceived) cost of waiting time.

Problem: Users’ subjectively perceived costof waiting time may be nonlinear.

Page 7: Nir Friedman (opening)

Subj.perc.of costs

waiting time (seconds)

1

00 3 20

1/6

5/6

14

4/6

9

3/6

7

2/6

5

7

Graph

Page 8: Nir Friedman (opening)

8

For simplicity,Assumption.Internet can be in two states only:fast or slow.P(fast) = 2/3;P(slow) = 1/3.

How measure subjectively perceived cost of waiting time?

Page 9: Nir Friedman (opening)

C(25) + C(t1) = C(35) + C(t0)

_ (C(35) C(25))

Tradeoff (TO) method

t2

25 35

t1

~

t6

25 35

t5

~

25 35

0

slowfast (= t0)

EC

=C(t2) C(t1) ==

.

.

.

=

C(t6) C(t5) =

C(t1) C(t0) =

.

.

.

9

_ (C(35) C(25))

_ (C(35) C(25))

slowfast

t

t1 ~

Page 10: Nir Friedman (opening)

1

0

Subj.cost

waiting time

Normalize: C(t0) = 0; C(t6) = 1.

0=t0

t1 t6

1/6

5/6

t5

4/6

t4

3/6

t3

2/6

t2

Consequently: C(tj) = j/6.10

Page 11: Nir Friedman (opening)

_ (C(35) C(25))

t2

25 35

t1

~

t6

25 35

t5

~

~ 25

t1

35

0

(= t0)

=C(t2) C(t1) ==

.

.

.

=

C(t6) C(t5) =

C(t1) C(t0) =

.

.

.

_ (C(35) C(25))

_ (C(35) C(25))

Tradeoff (TO) method revisited11

misperceived probs

1

2

1

2

1

2

?

?

?

!

!

!

ECunknown probs

Page 12: Nir Friedman (opening)

12Measure subjective/unknown probs from elicited choices:

then

p(C(35) – C(25)) = (1p)(C(t1) – C(t0)),

sop =

C(35) – C(25) + C(t1) – C(t0)C(t1) – C(t0)

~25

t1

35

0

pslowfast1-p (= t0)

pslowfast1-p

If

P(slow) =

Abdellaoui (2000), Bleichrodt & Pinto (2000),Management Science.

Page 13: Nir Friedman (opening)

13

Say, some observations show:C(t2) C(t1) = C(t1) C(t0).

Other observations show:C(t2’) C(t1) = C(t1) C(t0),

for t2’ > t2.

Then you have empirically falsified EC model!

Definition. Tradeoff consistency holds if this never happens.

What if inconsistent data?

Page 14: Nir Friedman (opening)

Theorem. EC model holds

14

Descriptive application:EC model falsified ifftradeoff consistency violated.

tradeoff consistency holds.

Page 15: Nir Friedman (opening)

15

Normative application: Can convince client to use ECiffcan convince client that tradeoff consistency is reasonable.

2. A New Foundation of (Static) Bayesianism

Page 16: Nir Friedman (opening)

16

We examine:Rudolf Carnap’s (1952, 1980) ideas aboutthe Dirichlet family of probty distributions.

3. Carnap’s Updating Method

Page 17: Nir Friedman (opening)

17

Example. Doctor, say YOU, has to choose the treatment of a patient standing before you.

Patient has exactly one (“true”) disease from set D = {d1,...,ds} of possible diseases.

You are uncertain aboutwhich the true disease is.

Page 18: Nir Friedman (opening)

For simplicity:Assumption. Results of treatment can be expressed in monetary terms.

18

Definition. Treatment (di:1) : if true disease is di, it saves $1, compared to common treatment; otherwise, it is equally expensive.

Page 19: Nir Friedman (opening)

19

treatment (di:1)d1 . . . di . . . ds

0 . . . 1 . . . 0

Uncertain which disease dj is true uncertain what the outcome (money saved) of the treatment will be.

Page 20: Nir Friedman (opening)

20

When deciding on your patient, you have observed t similar patientsin the past, and found out their true disease.

Notation.E = (E1,...,Et), Ei describes disease of ith patient.

Assumption.

Page 21: Nir Friedman (opening)

21

You are Bayesian.

So, expected uility.

Assumption.

Page 22: Nir Friedman (opening)

22

Given info E, probs are to be taken as follows:

Imagine someone, say me, gives you advice:

Page 23: Nir Friedman (opening)

23

pEi =ip0 +

ni

tt

+ t

(as are the ‘s)ip0

Appealing! Natural way to integrate- subject-matter info

ip0( )- statistical informationni

t( )

: obsvd relative frequency of di in E1,…,Etni

t > 0: subjective parameter

Subjective parameters disappear as t .

Alternative interpretation: combining evidence.

Page 24: Nir Friedman (opening)

24

Why not weight t2 iso t?Why not take geometric mean?Why not have depend on t and ni, and on other nj’s?

Decision theory can make things less ad hoc.

An aside. The main mathematical problem: to formulate everything in terms of the“naïve space,” as Grünwald & Halpern (2002) call it.

Appealing advice, but, a hoc!

Page 25: Nir Friedman (opening)

25

Let us change subject.

Forget about advice, for the time being.

Page 26: Nir Friedman (opening)

E

26

Positive relatedness of the observations.(di:1) ~E $x

(1) Wouldn’t you want to satisfy:

(di:1) $x . ( ,di)

Page 27: Nir Friedman (opening)

27

Past-exchangeability:(di:1) ~E $x (di:1) ~E' $x

whenever:E = (E1,...,Em1,dj,dk,E

m+2,...,Et)

andE' = (E1,...,Em1, , ,Em+2,...,Et)

(2) Wouldn’t you want to satisfy:

dk dj

for some m < t, j,k.

Page 28: Nir Friedman (opening)

28

Ej. . . . . . Et

¬ni

di attime t+1

E1

ni ns. . . . . .n1

past-exchange-bility

disjoint causality

next, 29

31

31

Page 29: Nir Friedman (opening)

29

Future-exchangeabilityAssume $x ~E (dj:y) and $y ~(E,dj) (dk:z).

Interpretation: $x ~E (dj and then dk: z).

Assume $x‘~E (dk:y’) and $y' ~(E,dk) (dj:z’).

Interpretation: $x’ ~E (dk and then dj: z’).

Now: x = x‘ z = z’.Interpretation: [dj then dk] is as likely as [dk then dj], given E.

(3) Wouldn’t you want to satisfy:

Page 30: Nir Friedman (opening)

(di:1) $x ( ,dj)

30

Disjoint causality: for all E & distinct i,j,k,

(4) Wouldn’t you want to satisfy:

E~

E(di:1) $x ~( ,dk)

Badnutrition

Othercause

d2d1 d3

A violation:

Fig, 28

Fig, 28

Page 31: Nir Friedman (opening)

31

Theorem. Assume s3. Equivalent are: (i) (a) Tradeoff consistency;

Decision-theoretic surprise:

pEi =ip0 +

ni

tt

+ t

(b) Positive relatedness of obsns; (c) Exchangeability (past and future); (d) Disjoint causality.(ii) EU holds for each E with fixed U, and Carnap’s inductive method:

Page 32: Nir Friedman (opening)

32

Abdellaoui (2000), Bleichrodt & Pinto (2000) (and many others): Subj.Probs nonadditive.

Assume simple model: (A:x) W(A)U(x) U(0) = 0; W nonadditive;may be Dempster-Shafer belief function. Only nonnegative outcomes.

4. Corrections of Probability Judgments Based on Empirical Findings

Page 33: Nir Friedman (opening)

33

two-stage model, W = w ;: direct psychological judgment of probabilityw: turns judgments of probability into decision weights. w can be measured from case where obj. probs are known.

Tversky & Fox (1995):

Page 34: Nir Friedman (opening)

34

W(AB) W(A) + W(B) if disjoint (superadditivity). (e.g., Dempster-Shafer belief functions).

Economists/AI: w is convex. Enhances:

Page 35: Nir Friedman (opening)

p

w

1

1

0

35

Psychologists:

Page 36: Nir Friedman (opening)

36

p, q moderate:w(p + q) w(p) + w(q) (subadditivity) .The w component of W enhances subadditivity of W,

W(A B) W(A) + W(B) for disjoint events A,B, contrary to the common assumptions about belief functions as above.

Page 37: Nir Friedman (opening)

37

= winvW: behavioral derivation of judgment of expert. Tversky & Fox 1995: more nonlinearity in than in w's and W's deviations from linearity are of the same nature as Figure 3. Tversky & Wakker (1995): formal definitions 

Page 38: Nir Friedman (opening)

38

Non-Bayesians:Alternatives to the Dempster-Shafer belief functions. No degeneracy after multiple updating.Figure 3 for and W: lack of sensitivity towards varying degrees of uncertainty  Fig. 3 better reflects absence of information than convexity

Page 39: Nir Friedman (opening)

39

Fig. 3: from dataSuggests new concepts. e.g., info-sensitivity iso conservativeness/pessimism.Bayesians: Fig. 3 suggests how to correct expert judgments.

Page 40: Nir Friedman (opening)

40

Support theory (Tversky & Koehler 1994). Typical finding:For disjoint Aj,

(A1) + ... + (An) – (A1 ... An)

increases as n increases.


Recommended