+ All Categories
Home > Documents > NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet...

NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet...

Date post: 13-Jun-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
71
NLO predictions for W W + jets Giulia Zanderighi Oxford Theoretical Physics & STFC Edinburgh, 4 th May 2011
Transcript
Page 1: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

NLO predictions for W W + jets

Giulia Zanderighi

Oxford Theoretical Physics & STFC

Edinburgh, 4th May 2011

Page 2: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Present status of QCD

✓Thanks to LEP, Hera, and Tevatron QCD today firmly established

✓Despite temporary discrepancies, theory successful in describing experimental data, currently no major area of discrepancy spanning energies from few MeV to few TeV

✗ However, the LHC brings a new frontier in energy and luminosity. Both at Tevatron and LHC we are seeing now a number of “excesses”

✗ Premier goals of the LHC☛ discovery of the Higgs and New Physics☛ identification of New Physics (requires precision measurements)

Solid understanding of backgrounds and relevant QCD

corrections mandatory for interpretation of possible excesses

Page 3: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Multiparticle final states

‣ typical SM process is accompanied by radiation multi-jet events

‣ most signals involve pair-production and subsequent chain decays

More important than ever to describe high-multiplicity final states

LHC’s new regime in energy and luminosity implies that we will have a

very large number of high-multiplicity events

~

UED:SUSY: q

g

q

g

qq

b

N2

N1

~

~

b~

b_

q

g

qq(1)

b(1)

b_

b

A3

q

B(1)

g(1)~ (1)

Page 4: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Leading order

Status: fully automated, edge around outgoing 8 particles

Alpgen, CompHEP, CalcHEP, Helac, Madgraph, Helas, Sherpa, Whizard, ...

⇒ amazing progress in the last years [before only parton shower]

Page 5: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Leading order

Drawbacks of LO: large scale dependences, sensitivity to cuts, poor modeling of jets, ...

Example: W+4 jet cross-section ∝ αs(Q)4

Vary αs(Q) by ±10% via change of Q ⇒ cross-section varies by ±40%

Status: fully automated, edge around outgoing 8 particles

Alpgen, CompHEP, CalcHEP, Helac, Madgraph, Helas, Sherpa, Whizard, ...

⇒ amazing progress in the last years [before only parton shower]

Page 6: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Leading order

Drawbacks of LO: large scale dependences, sensitivity to cuts, poor modeling of jets, ...

Example: W+4 jet cross-section ∝ αs(Q)4

Vary αs(Q) by ±10% via change of Q ⇒ cross-section varies by ±40%

Status: fully automated, edge around outgoing 8 particles

Alpgen, CompHEP, CalcHEP, Helac, Madgraph, Helas, Sherpa, Whizard, ...

always the fastest option, often the only one

test quickly new ideas with fully exclusive description

many working, well-tested approaches

highly automated, crucial to explore new ground, but no precision

When and why LO:

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

! all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure theirproperties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

! all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure theirproperties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

! all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure theirproperties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

! all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure theirproperties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

⇒ amazing progress in the last years [before only parton shower]

Page 7: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Next-to-leading order

• reduce dependence on unphysical scales

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible

!" dijet

(rad)1/#

dije

t d#

dije

t / d!" d

ijet

pT max > 180 GeV ($8000)

130 < pT max < 180 GeV ($400)

100 < pT max < 130 GeV ($20)

75 < pT max < 100 GeV

LO

NLO

NLOJET++ (CTEQ6.1M)

µr = µf = 0.5 pT max

10-3

10-2

10-1

1

10

102

103

104

105

0.5 0.625 0.75 0.875 1

%/2 3%/4 %

D0 ’04

What is needed for an NLO calculation?

Status of NLO calculations - June 2006 – p.5/28

Benefits of next-to-leading order (NLO)

Page 8: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Next-to-leading order

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible

!" dijet

(rad)

1/#

dije

t d#

dije

t / d!" d

ijet

pT max > 180 GeV ($8000)

130 < pT max < 180 GeV ($400)

100 < pT max < 130 GeV ($20)

75 < pT max < 100 GeV

LO

NLO

NLOJET++ (CTEQ6.1M)

µr = µf = 0.5 pT max

10-3

10-2

10-1

1

10

102

103

104

105

0.5 0.625 0.75 0.875 1

%/2 3%/4 %

D0 ’04

What is needed for an NLO calculation?

Status of NLO calculations - June 2006 – p.5/28

establish normalization and shape of cross-sections

• reduce dependence on unphysical scales

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible

!" dijet

(rad)1/#

dije

t d#

dije

t / d!" d

ijet

pT max > 180 GeV ($8000)

130 < pT max < 180 GeV ($400)

100 < pT max < 130 GeV ($20)

75 < pT max < 100 GeV

LO

NLO

NLOJET++ (CTEQ6.1M)

µr = µf = 0.5 pT max

10-3

10-2

10-1

1

10

102

103

104

105

0.5 0.625 0.75 0.875 1

%/2 3%/4 %

D0 ’04

What is needed for an NLO calculation?

Status of NLO calculations - June 2006 – p.5/28

Benefits of next-to-leading order (NLO)

Page 9: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Next-to-leading order

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible

!" dijet

(rad)

1/#

dije

t d#

dije

t / d!" d

ijet

pT max > 180 GeV ($8000)

130 < pT max < 180 GeV ($400)

100 < pT max < 130 GeV ($20)

75 < pT max < 100 GeV

LO

NLO

NLOJET++ (CTEQ6.1M)

µr = µf = 0.5 pT max

10-3

10-2

10-1

1

10

102

103

104

105

0.5 0.625 0.75 0.875 1

%/2 3%/4 %

D0 ’04

What is needed for an NLO calculation?

Status of NLO calculations - June 2006 – p.5/28

establish normalization and shape of cross-sections

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible

!" dijet

(rad)

1/#

dije

t d#

dije

t / d!" d

ijet

pT max > 180 GeV ($8000)

130 < pT max < 180 GeV ($400)

100 < pT max < 130 GeV ($20)

75 < pT max < 100 GeV

LO

NLO

NLOJET++ (CTEQ6.1M)

µr = µf = 0.5 pT max

10-3

10-2

10-1

1

10

102

103

104

105

0.5 0.625 0.75 0.875 1

%/2 3%/4 %

D0 ’04

What is needed for an NLO calculation?

Status of NLO calculations - June 2006 – p.5/28

small scale dependence at LO can be very misleading, small dependence at NLO robust sign that PT is under control

• reduce dependence on unphysical scales

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible

!" dijet

(rad)1/#

dije

t d#

dije

t / d!" d

ijet

pT max > 180 GeV ($8000)

130 < pT max < 180 GeV ($400)

100 < pT max < 130 GeV ($20)

75 < pT max < 100 GeV

LO

NLO

NLOJET++ (CTEQ6.1M)

µr = µf = 0.5 pT max

10-3

10-2

10-1

1

10

102

103

104

105

0.5 0.625 0.75 0.875 1

%/2 3%/4 %

D0 ’04

What is needed for an NLO calculation?

Status of NLO calculations - June 2006 – p.5/28

Benefits of next-to-leading order (NLO)

Page 10: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Next-to-leading order

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible

!" dijet

(rad)

1/#

dije

t d#

dije

t / d!" d

ijet

pT max > 180 GeV ($8000)

130 < pT max < 180 GeV ($400)

100 < pT max < 130 GeV ($20)

75 < pT max < 100 GeV

LO

NLO

NLOJET++ (CTEQ6.1M)

µr = µf = 0.5 pT max

10-3

10-2

10-1

1

10

102

103

104

105

0.5 0.625 0.75 0.875 1

%/2 3%/4 %

D0 ’04

What is needed for an NLO calculation?

Status of NLO calculations - June 2006 – p.5/28

establish normalization and shape of cross-sections

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible

!" dijet

(rad)

1/#

dije

t d#

dije

t / d!" d

ijet

pT max > 180 GeV ($8000)

130 < pT max < 180 GeV ($400)

100 < pT max < 130 GeV ($20)

75 < pT max < 100 GeV

LO

NLO

NLOJET++ (CTEQ6.1M)

µr = µf = 0.5 pT max

10-3

10-2

10-1

1

10

102

103

104

105

0.5 0.625 0.75 0.875 1

%/2 3%/4 %

D0 ’04

What is needed for an NLO calculation?

Status of NLO calculations - June 2006 – p.5/28

small scale dependence at LO can be very misleading, small dependence at NLO robust sign that PT is under control

• reduce dependence on unphysical scales

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible

!" dijet

(rad)1/#

dije

t d#

dije

t / d!" d

ijet

pT max > 180 GeV ($8000)

130 < pT max < 180 GeV ($400)

100 < pT max < 130 GeV ($20)

75 < pT max < 100 GeV

LO

NLO

NLOJET++ (CTEQ6.1M)

µr = µf = 0.5 pT max

10-3

10-2

10-1

1

10

102

103

104

105

0.5 0.625 0.75 0.875 1

%/2 3%/4 %

D0 ’04

What is needed for an NLO calculation?

Status of NLO calculations - June 2006 – p.5/28

Benefits of next-to-leading order (NLO)

large NLO correction or large dependence at NLO robust sign that neglected other higher order are important

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible

!" dijet

(rad)

1/#

dije

t d#

dije

t / d!" d

ijet

pT max > 180 GeV ($8000)

130 < pT max < 180 GeV ($400)

100 < pT max < 130 GeV ($20)

75 < pT max < 100 GeV

LO

NLO

NLOJET++ (CTEQ6.1M)

µr = µf = 0.5 pT max

10-3

10-2

10-1

1

10

102

103

104

105

0.5 0.625 0.75 0.875 1

%/2 3%/4 %

D0 ’04

What is needed for an NLO calculation?

Status of NLO calculations - June 2006 – p.5/28

Page 11: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Next-to-leading order

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible

!" dijet

(rad)

1/#

dije

t d#

dije

t / d!" d

ijet

pT max > 180 GeV ($8000)

130 < pT max < 180 GeV ($400)

100 < pT max < 130 GeV ($20)

75 < pT max < 100 GeV

LO

NLO

NLOJET++ (CTEQ6.1M)

µr = µf = 0.5 pT max

10-3

10-2

10-1

1

10

102

103

104

105

0.5 0.625 0.75 0.875 1

%/2 3%/4 %

D0 ’04

What is needed for an NLO calculation?

Status of NLO calculations - June 2006 – p.5/28

establish normalization and shape of cross-sections

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible

!" dijet

(rad)

1/#

dije

t d#

dije

t / d!" d

ijet

pT max > 180 GeV ($8000)

130 < pT max < 180 GeV ($400)

100 < pT max < 130 GeV ($20)

75 < pT max < 100 GeV

LO

NLO

NLOJET++ (CTEQ6.1M)

µr = µf = 0.5 pT max

10-3

10-2

10-1

1

10

102

103

104

105

0.5 0.625 0.75 0.875 1

%/2 3%/4 %

D0 ’04

What is needed for an NLO calculation?

Status of NLO calculations - June 2006 – p.5/28

small scale dependence at LO can be very misleading, small dependence at NLO robust sign that PT is under control

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible

!" dijet

(rad)

1/#

dije

t d#

dije

t / d!" d

ijet

pT max > 180 GeV ($8000)

130 < pT max < 180 GeV ($400)

100 < pT max < 130 GeV ($20)

75 < pT max < 100 GeV

LO

NLO

NLOJET++ (CTEQ6.1M)

µr = µf = 0.5 pT max

10-3

10-2

10-1

1

10

102

103

104

105

0.5 0.625 0.75 0.875 1

%/2 3%/4 %

D0 ’04

What is needed for an NLO calculation?

Status of NLO calculations - June 2006 – p.5/28

through loop effects get indirect information about sectors not directly accessible

• reduce dependence on unphysical scales

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible

!" dijet

(rad)1/#

dije

t d#

dije

t / d!" d

ijet

pT max > 180 GeV ($8000)

130 < pT max < 180 GeV ($400)

100 < pT max < 130 GeV ($20)

75 < pT max < 100 GeV

LO

NLO

NLOJET++ (CTEQ6.1M)

µr = µf = 0.5 pT max

10-3

10-2

10-1

1

10

102

103

104

105

0.5 0.625 0.75 0.875 1

%/2 3%/4 %

D0 ’04

What is needed for an NLO calculation?

Status of NLO calculations - June 2006 – p.5/28

Benefits of next-to-leading order (NLO)

large NLO correction or large dependence at NLO robust sign that neglected other higher order are important

Benefits of next-to-leading order

establish normalization and shape of

cross-sections

reduce unphysical scale dependences

new physics searches require good

knowledge of signals and backgrounds

get indirect information about sectors

not directly accessible

!" dijet

(rad)

1/#

dije

t d#

dije

t / d!" d

ijet

pT max > 180 GeV ($8000)

130 < pT max < 180 GeV ($400)

100 < pT max < 130 GeV ($20)

75 < pT max < 100 GeV

LO

NLO

NLOJET++ (CTEQ6.1M)

µr = µf = 0.5 pT max

10-3

10-2

10-1

1

10

102

103

104

105

0.5 0.625 0.75 0.875 1

%/2 3%/4 %

D0 ’04

What is needed for an NLO calculation?

Status of NLO calculations - June 2006 – p.5/28

Page 12: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

NLO: current status

2 → 2: all known (or easy) in SM and beyond

2 → 3: essentially all known today in the SM

2 → 4: the frontier

NLO cross sections available for a number of processes at LHC ✓tt + bb [Bredenstein et al. ’08; Bevilacqua et al. ’09]

✓W/Z + 3 jets [Berger et al. ’09; (W) Ellis et al. ’09]

✓tt + 2 jets [Bevilacqua et al. ’10]

✓WW + bb [Denner et al. ’08; Bevilacqua et al. ’09]

✓W+W+ + 2jets [Melia et al. ’10]

✓W+W- + 2jets [Melia et al. ’10]

2 → 5: the next frontier

✓ dominant corrections to W + 4 jets [Berger et al. ’09]

Page 13: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

NLO: traditional approach

Numerical approaches:

‣ draw all possible Feynman diagrams (use automated tools)

‣ automated reduction of tensor integrals to scalar (known) ones

‣ write one-loop amplitudes as ∑ (coefficients × tensor integrals)

Problem solved in principle, but brute force approaches plagued by worse than factorial growth ⇒ difficult to push methods beyond N=6 because of too high demand on computer power [+ issue of numerical instabilities]

Anastasiou, Andersen, Binoth, Ciccolini, Denner, Dittmaier, Ellis, Giele, Glover, Guffanti, Guillet, Heinrich, Karg, Kauer, Lazopoulos, Melnikov, Nagy, Pilon, Reiter, Roth, Passarino, Petriello, Sanguinetti, Schubert, Smillie, Soper, Uwer, Wieders, GZ ....

Page 14: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

NLO without integration

[Bern, Dixon, Dunbar, Kosower ’94]

Framework applied to amplitudes in N = 1 and N = 4 SUSY Yang-Mills theories (no rational part) and to 5- and V+4- parton amplitudes

Clever tricks, but no full computational method, so impact limited

Unitarity in it’s original form: use four-dimensional double cuts of amplitudes to classify the coefficients of discontinuities associated with physical invariants

[Landau ’50s]

T † − T = −2iT †T

Im T 1−loop =�

j

cj Im Ij

Page 15: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Breakthrough ideas

[Britto, Cachazo, Feng ’04]

NB: non-zero because cut gives complex momenta

Enlightening idea that by considering quadruple cuts, one completely freeze the integration and one can extract coefficients of box integrals

Page 16: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Breakthrough ideas

Pure algebraic method to extract integral coefficients by making specific choices for the loop momentum and solving a system of equations. At the beginning method applied to each individual Feynman diagram.

[Ossola, Pittau, Papadopolous (OPP) ’06]

Contents

!gµ! + kµk!

k2 ! m2"

!!!(k)!µ(k)"(k2 ! m2) (1)

AN = +!

[i1|i4]

"di1i2i3i4 I(D)

i1i2i3i4

#

+!

[i1|i3]

"ci1i2i3 I(D)

i1i2i3

#+

!

[i1|i2]

"bi1i2 I(D)

i1i2

#+ R (2)

AN =!

[i1|i4]

"di1i2i3i4 I(D)

i1i2i3i4

#+

!

[i1|i3]

"ci1i2i3 I(D)

i1i2i3

#+

!

[i1|i2]

"bi1i2 I(D)

i1i2

#+ R (3)

R =!

[i1|i4]

!d(4,0)

i1i2i3i4

6+

!

[i1|i3]

+c(2,0)i1i2i3

2+

!

[i1|i2]

!b(2,0)i1i2

6q2i1,i2 (4)

1. Introduction

The current TEVATRON collider and the upcoming Large Hadron Collider need a goodunderstanding of the standard model signals to carry out a successful search for the Higgsparticle and physics beyond the standard model. At these hadron colliders QCD plays anessential role. From the lessons learned at the TEVATRON we need fixed order calculationsmatched with parton shower Monte Carlo’s and hadronization models for a successfulunderstanding of the observed collisions.

For successful implementation of numerical algorithms for evaluating the fixed orderamplitudes one needs to take into account the so-called complexity of the algorithm. Thatis, how does the evaluation time grows with the number of external particles. An algo-rithm of polynomial complexity is highly desirable. Furthermore algebraic methods can besuccessfully implemented in e!cient and reliable numerical procedures. This can lead torather di"erent methods from what one would develop and use in analytic calculation.

The leading order parton level generators are well understood. Generators have beenconstructed using algebraic manipulation programs to calculate the tree amplitudes directlyfrom Feynman diagrams. However, such a direct approach leads to an algorithm of doublefactorial complexity. Techniques such as helicity amplitudes, color ordering and recursion

– 1 –

NB: master integrals all known

‘t Hooft, Veltman ‘79; Bern, Dixon, Kosower ’93, Duplancic, Nizic ’02; Ellis, GZ ’08 with public code QCDLoop [http://www.qcdloop.fnal.gov]

Page 17: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Generalized unitarity

References:- Ellis, Giele, Kunszt ’07 - Giele, Kunszt, Melnikov ’08 - Giele & GZ ’08 - Ellis, Giele, Melnikov, Kunszt ’08 - Ellis, Giele, Melnikov, Kunszt, GZ ’08 - Melia, Melnikov, Rontsch & GZ ’10-’11- Melia, Nason, Rontsch & GZ ’11

These papers heavily rely on previous work - Bern, Dixon, Kosower ’94

- Ossola, Pittau, Papadopoulos ’06 - Britto, Cachazo, Feng ’04 - [....]

I will briefly explain the method and remind of the main ideas behind it. Second part of the seminar will concentrate on applications & recent results

[Unitarity in D=4] [Unitarity in D≠4] [All one-loop N-gluon amplitudes] [Massive fermions, ttggg amplitudes] [W+5p one-loop amplitudes] [W+W+ +2 jets, W+W- + 2jets] [W+W+ +2 jets + Parton Shower]

[Unitarity, oneloop from trees][OPP][Generalized cuts]

Page 18: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Decomposition of the one-loop amplitude

!C = log10

|Av,unitN ! Av,anly

N ||Av,anly

N |(1)

"tree =

!N

3

"

E3 +

!N

4

"

E4 " N4 (2)

"one!loop,N # ntree · "tree,N " N9 (3)

AD({pi}, {Ji}) =# dD l

i(#)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(4)

di = di(l) = (l + qi)2 ! m2

i =

$

%l ! q0 +i&

j=1

pi

'

(2

! m2i (5)

ADN =

&

[i1|i4]dD

i1i2i3i4I(D)i1i2i3i4 +

&

[i1|i3]

cDi1i2i3I

(D)i1i2i3 +

&

[i1|i2]bDi1i2I

(D)i1i2 (6)

AD =&

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+&

[i1|i3]ci1i2i3I

(D)i1i2i3 +

&

[i1|i2]

bi1i2I(D)i1i2 +

&

[i1|i1]ai1I

(D)i1 (7)

AD =&

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

&

[i1|i3]ci1i2i3I

(D)i1i2i3+

&

[i1|i2]bi1i2I

(D)i1i2 +

&

[i1|i1]

ai1I(D)i1

(8)

IDi1···iM =

# dDl

i(#)D/2

1

di1 · · · diM

(9)

l2 = l2 ! )l2 = l21 ! l22 ! l23 ! l24 !

D&

i=5

l2i (10)

1

* if non-vanishing masses: tadpole term; notation:

*

Suppose you did do a brute-force calculation, your result would read

!C = log10

|Av,unitN ! Av,anly

N ||Av,anly

N |(1)

"tree =

!N

3

"

E3 +

!N

4

"

E4 " N4 (2)

"one!loop,N # ntree · "tree,N " N9 (3)

AD({pi}, {Ji}) =# dD l

i(#)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(4)

di = di(l) = (l + qi)2 ! m2

i =

$

%l ! q0 +i&

j=1

pi

'

(2

! m2i (5)

ADN =

&

[i1|i4]dD

i1i2i3i4I(D)i1i2i3i4 +

&

[i1|i3]

cDi1i2i3I

(D)i1i2i3 +

&

[i1|i2]bDi1i2I

(D)i1i2 (6)

AcutN =

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4 +

&

[i1|i3]ci1i2i3I

(D)i1i2i3 +

&

[i1|i2]bi1i2I

(D)i1i2 =

# dDl

i(#)D/2A(l)(7)

IDi1···iM =

# dDl

i(#)D/2

1

di1 · · · diM

(8)

AcutN (l) =

&

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

&

[i1|i3]

c̄i1i2i3

di1di2di3

&

[i1|i1]

b̄i1i2

di1di2

(9)

[i1|im] = 1 $ i1 < i2 . . . < im $ N

1

Page 19: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Decomposition of the one-loop amplitude

!C = log10

|Av,unitN ! Av,anly

N ||Av,anly

N |(1)

"tree =

!N

3

"

E3 +

!N

4

"

E4 " N4 (2)

"one!loop,N # ntree · "tree,N " N9 (3)

AD({pi}, {Ji}) =# dD l

i(#)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(4)

di = di(l) = (l + qi)2 ! m2

i =

$

%l ! q0 +i&

j=1

pi

'

(2

! m2i (5)

ADN =

&

[i1|i4]dD

i1i2i3i4I(D)i1i2i3i4 +

&

[i1|i3]

cDi1i2i3I

(D)i1i2i3 +

&

[i1|i2]bDi1i2I

(D)i1i2 (6)

AD =&

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+&

[i1|i3]ci1i2i3I

(D)i1i2i3 +

&

[i1|i2]

bi1i2I(D)i1i2 +

&

[i1|i1]ai1I

(D)i1 (7)

AD =&

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

&

[i1|i3]ci1i2i3I

(D)i1i2i3+

&

[i1|i2]bi1i2I

(D)i1i2 +

&

[i1|i1]

ai1I(D)i1

(8)

IDi1···iM =

# dDl

i(#)D/2

1

di1 · · · diM

(9)

l2 = l2 ! )l2 = l21 ! l22 ! l23 ! l24 !

D&

i=5

l2i (10)

1

* if non-vanishing masses: tadpole term; notation:

*

Suppose you did do a brute-force calculation, your result would read

‣ coefficients depend in general on D (i.e. on ε)‣ higher point function can be reduced to boxes + vanishing terms

Remarks:

‣ box, triangles and bubble integrals all known analytically[‘t Hooft & Veltman ‘79; Bern, Dixon Kosower ’93, Duplancic & Nizic ’02;

Ellis & GZ ’08 ⇒ http://www.qcdloop.fnal.gov]

‣ the above decomposition exists no matter how you compute

!C = log10

|Av,unitN ! Av,anly

N ||Av,anly

N |(1)

"tree =

!N

3

"

E3 +

!N

4

"

E4 " N4 (2)

"one!loop,N # ntree · "tree,N " N9 (3)

AD({pi}, {Ji}) =# dD l

i(#)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(4)

di = di(l) = (l + qi)2 ! m2

i =

$

%l ! q0 +i&

j=1

pi

'

(2

! m2i (5)

ADN =

&

[i1|i4]dD

i1i2i3i4I(D)i1i2i3i4 +

&

[i1|i3]

cDi1i2i3I

(D)i1i2i3 +

&

[i1|i2]bDi1i2I

(D)i1i2 (6)

A

AD =&

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+&

[i1|i3]ci1i2i3I

(D)i1i2i3 +

&

[i1|i2]

bi1i2I(D)i1i2 +

&

[i1|i1]ai1I

(D)i1 (7)

AD =&

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

&

[i1|i3]ci1i2i3I

(D)i1i2i3+

&

[i1|i2]bi1i2I

(D)i1i2 +

&

[i1|i1]

ai1I(D)i1

(8)

IDi1···iM =

# dDl

i(#)D/2

1

di1 · · · diM

(9)

1

!C = log10

|Av,unitN ! Av,anly

N ||Av,anly

N |(1)

"tree =

!N

3

"

E3 +

!N

4

"

E4 " N4 (2)

"one!loop,N # ntree · "tree,N " N9 (3)

AD({pi}, {Ji}) =# dD l

i(#)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(4)

di = di(l) = (l + qi)2 ! m2

i =

$

%l ! q0 +i&

j=1

pi

'

(2

! m2i (5)

ADN =

&

[i1|i4]dD

i1i2i3i4I(D)i1i2i3i4 +

&

[i1|i3]

cDi1i2i3I

(D)i1i2i3 +

&

[i1|i2]bDi1i2I

(D)i1i2 (6)

AcutN =

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4 +

&

[i1|i3]ci1i2i3I

(D)i1i2i3 +

&

[i1|i2]bi1i2I

(D)i1i2 =

# dDl

i(#)D/2A(l)(7)

IDi1···iM =

# dDl

i(#)D/2

1

di1 · · · diM

(8)

AcutN (l) =

&

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

&

[i1|i3]

c̄i1i2i3

di1di2di3

&

[i1|i1]

b̄i1i2

di1di2

(9)

[i1|im] = 1 $ i1 < i2 . . . < im $ N

1

Page 20: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Cut-constructible and the rational part

When the coefficients are evaluated in D=4 one obtains the so-called cut-contructible part of the amplitude

(O(ε) contributions of the coefficients) × (poles of the integrals) give rise to the so called rational part of the amplitude

Focus on cut-constructible part for the moment

☛ the amplitude is known if the coefficients are known

Page 21: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Cut-constructible and the rational part

Get cut numerators by taking residues: i.e. set inverse propagator = 0In D=4 up to 4 constraints on the loop momentum (4 onshell propagators) ⇒ get up to box integrals coefficients

!C = log10

|Av,unitN ! Av,anly

N ||Av,anly

N |(1)

"tree =

!N

3

"

E3 +

!N

4

"

E4 " N4 (2)

"one!loop,N # ntree · "tree,N " N9 (3)

AD({pi}, {Ji}) =# dD l

i(#)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(4)

di = di(l) = (l + qi)2 ! m2

i =

$

%l ! q0 +i&

j=1

pi

'

(2

! m2i (5)

ADN =

&

[i1|i4]dD

i1i2i3i4I(D)i1i2i3i4 +

&

[i1|i3]

cDi1i2i3I

(D)i1i2i3 +

&

[i1|i2]bDi1i2I

(D)i1i2 (6)

AcutN =

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4 +

&

[i1|i3]ci1i2i3I

(D)i1i2i3 +

&

[i1|i2]bi1i2I

(D)i1i2 =

# dDl

i(#)D/2Acut(l)

IDi1···iM =

# dDl

i(#)D/2

1

di1 · · · diM

(7)

AcutN (l) =

&

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

+&

[i1|i3]

c̄i1i2i3

di1di2di3

+&

[i1|i1]

b̄i1i2

di1di2

[i1|im] = 1 $ i1 < i2 . . . < im $ N

A

1

Focus on the integrand

!C = log10

|Av,unitN ! Av,anly

N ||Av,anly

N |(1)

"tree =

!N

3

"

E3 +

!N

4

"

E4 " N4 (2)

"one!loop,N # ntree · "tree,N " N9 (3)

AD({pi}, {Ji}) =# dD l

i(#)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(4)

di = di(l) = (l + qi)2 ! m2

i =

$

%l ! q0 +i&

j=1

pi

'

(2

! m2i (5)

ADN =

&

[i1|i4]dD

i1i2i3i4I(D)i1i2i3i4 +

&

[i1|i3]

cDi1i2i3I

(D)i1i2i3 +

&

[i1|i2]bDi1i2I

(D)i1i2 (6)

AcutN =

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4 +

&

[i1|i3]ci1i2i3I

(D)i1i2i3 +

&

[i1|i2]bi1i2I

(D)i1i2 =

# dDl

i(#)D/2Acut(l)

IDi1···iM =

# dDl

i(#)D/2

1

di1 · · · diM

(7)

AcutN (l) =

&

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

+&

[i1|i3]

c̄i1i2i3

di1di2di3

+&

[i1|i1]

b̄i1i2

di1di2

[i1|im] = 1 $ i1 < i2 . . . < im $ N

A

1

with

!C = log10

|Av,unitN ! Av,anly

N ||Av,anly

N |(1)

"tree =

!N

3

"

E3 +

!N

4

"

E4 " N4 (2)

"one!loop,N # ntree · "tree,N " N9 (3)

AD({pi}, {Ji}) =# dD l

i(#)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(4)

di = di(l) = (l + qi)2 ! m2

i =

$

%l ! q0 +i&

j=1

pi

'

(2

! m2i (5)

ADN =

&

[i1|i4]dD

i1i2i3i4I(D)i1i2i3i4 +

&

[i1|i3]

cDi1i2i3I

(D)i1i2i3 +

&

[i1|i2]bDi1i2I

(D)i1i2 (6)

AcutN =

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4 +

&

[i1|i3]ci1i2i3I

(D)i1i2i3 +

&

[i1|i2]bi1i2I

(D)i1i2 =

# dDl

i(#)D/2Acut

N (l)

IDi1···iM =

# dDl

i(#)D/2

1

di1 · · · diM

(7)

AcutN (l) =

&

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

+&

[i1|i3]

c̄i1i2i3

di1di2di3

+&

[i1|i1]

b̄i1i2

di1di2

[i1|im] = 1 $ i1 < i2 . . . < im $ N

A

1

Start from

Page 22: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Integral coefficients

!C = log10

|Av,unitN ! Av,anly

N ||Av,anly

N |(1)

"tree =

!N

3

"

E3 +

!N

4

"

E4 " N4 (2)

"one!loop,N # ntree · "tree,N " N9 (3)

AD({pi}, {Ji}) =# dD l

i(#)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(4)

di = di(l) = (l + qi)2 ! m2

i =

$

%l ! q0 +i&

j=1

pi

'

(2

! m2i (5)

ADN =

&

[i1|i4]dD

i1i2i3i4I(D)i1i2i3i4 +

&

[i1|i3]

cDi1i2i3I

(D)i1i2i3 +

&

[i1|i2]bDi1i2I

(D)i1i2 (6)

AcutN =

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4 +

&

[i1|i3]ci1i2i3I

(D)i1i2i3 +

&

[i1|i2]bi1i2I

(D)i1i2 =

# dDl

i(#)D/2Acut

N (l)

di(lijkl) = dj(lijkl) = dk(lijkl) = dl(lijkl)

IDi1···iM =

# dDl

i(#)D/2

1

di1 · · · diM

(7)

AcutN (l) =

&

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

+&

[i1|i3]

c̄i1i2i3

di1di2di3

+&

[i1|i1]

b̄i1i2

di1di2

[i1|im] = 1 $ i1 < i2 . . . < im $ N

1

!C = log10

|Av,unitN ! Av,anly

N ||Av,anly

N |(1)

"tree =

!N

3

"

E3 +

!N

4

"

E4 " N4 (2)

"one!loop,N # ntree · "tree,N " N9 (3)

AD({pi}, {Ji}) =# dD l

i(#)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(4)

di = di(l) = (l + qi)2 ! m2

i =

$

%l ! q0 +i&

j=1

pi

'

(2

! m2i (5)

ADN =

&

[i1|i4]dD

i1i2i3i4I(D)i1i2i3i4 +

&

[i1|i3]

cDi1i2i3I

(D)i1i2i3 +

&

[i1|i2]bDi1i2I

(D)i1i2 (6)

AcutN =

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4 +

&

[i1|i3]ci1i2i3I

(D)i1i2i3 +

&

[i1|i2]bi1i2I

(D)i1i2 =

# dDl

i(#)D/2Acut

N (l)

di(lijkl) = dj(lijkl) = dk(lijkl) = dl(lijkl)

di(lijkl) = dj(lijkl) = dk(lijkl) = dl(lijkl)

d̄ijkl(lijkl) = Res (AN(l)) = (di(lijkl)dj(lijkl)dk(lijkl)dl(lijkl)AN(l)) |l=lijkl

1

E.g. for a box coefficient, find the solution to

then

d̄ijkl(lijkl) = Res (AN(l)) = (di(lijkl)dj(lijkl)dk(lijkl)dl(lijkl)AN(l)) |l=lijkl

cijk(l) = Resijk

!

"AN(l) !#

l !=i,j,k

dijkl(l)

didjdkdl

$

%

bij(l) = Resij

!

"AN(l) !#

k !=i,j

cijk(l)

didjdk! 1

2!

#

k,l !=i,j

dijkl(l)

didjdkdl

$

%

ai(l) = Resi

!

"AN(l) !#

j !=i

bij(l)

didj! 1

2!

#

j,k !=i

cijk(l)

didjdk! 1

3!

#

j,k,l !=i

dijkl(l)

didjdkdl

$

%

IDi1···iM =

& dDl

i(!)D/2

1

di1 · · · diM

(7)

AcutN (l) =

#

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

+#

[i1|i3]

c̄i1i2i3

di1di2di3

+#

[i1|i1]

b̄i1i2

di1di2

[i1|im] = 1 " i1 < i2 . . . < im " N

A

AD =#

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

#

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+#

[i1|i3]ci1i2i3I

(D)i1i2i3 +

#

[i1|i2]

bi1i2I(D)i1i2 +

#

[i1|i1]ai1I

(D)i1 (8)

AD =#

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

#

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

#

[i1|i3]ci1i2i3I

(D)i1i2i3+

#

[i1|i2]bi1i2I

(D)i1i2 +

#

[i1|i1]

ai1I(D)i1

(9)

2

For lower point coefficients same procedure, but need to subtract higher-point contributions

Page 23: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Construction of the box residue

d̄ijkl(lijkl) = Res (AN(l)) = (di(lijkl)dj(lijkl)dk(lijkl)dl(lijkl)AN(l)) |l=lijkl

cijk(l) = Resijk

!

"AN(l) !#

l !=i,j,k

dijkl(l)

didjdkdl

$

%

bij(l) = Resij

!

"AN(l) !#

k !=i,j

cijk(l)

didjdk! 1

2!

#

k,l !=i,j

dijkl(l)

didjdkdl

$

%

ai(l) = Resi

!

"AN(l) !#

j !=i

bij(l)

didj! 1

2!

#

j,k !=i

cijk(l)

didjdk! 1

3!

#

j,k,l !=i

dijkl(l)

didjdkdl

$

%

lµ = V µ4 + !1 nµ

1

V4: constructed using three independent external vectors n1: orthogonalspace !1: determined so as to fulfill the unitarity conditions

IDi1···iM =

& dDl

i(")D/2

1

di1 · · · diM

(7)

AcutN (l) =

#

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

+#

[i1|i3]

c̄i1i2i3

di1di2di3

+#

[i1|i1]

b̄i1i2

di1di2

[i1|im] = 1 " i1 < i2 . . . < im " N

A

AD =#

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

#

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+#

[i1|i3]ci1i2i3I

(D)i1i2i3 +

#

[i1|i2]

bi1i2I(D)i1i2 +

#

[i1|i1]ai1I

(D)i1 (8)

2

Decompose loop momentum as

V4: constructed using 3 external vectors ⇒ physical space

n1: spans orthogonal space ⇒ trivial space

α1: determined so as to fulfill the unitarity conditions

Explicitly: find two complex solutions

d̄ijkl(lijkl) = Res (AN(l)) = (di(lijkl)dj(lijkl)dk(lijkl)dl(lijkl)AN(l)) |l=lijkl

cijk(l) = Resijk

!

"AN(l) !#

l !=i,j,k

dijkl(l)

didjdkdl

$

%

bij(l) = Resij

!

"AN(l) !#

k !=i,j

cijk(l)

didjdk! 1

2!

#

k,l !=i,j

dijkl(l)

didjdkdl

$

%

ai(l) = Resi

!

"AN(l) !#

j !=i

bij(l)

didj! 1

2!

#

j,k !=i

cijk(l)

didjdk! 1

3!

#

j,k,l !=i

dijkl(l)

didjdkdl

$

%

lµ = V µ4 + !1 nµ

1

V4: constructed using three independent external vectors n1: orthogonalspace !1: determined so as to fulfill the unitarity conditions

lµ± = V µ4 ± i

&V 2

4 ! m2l " nµ

1

IDi1···iM =

' dDl

i(")D/2

1

di1 · · · diM

(7)

AcutN (l) =

#

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

+#

[i1|i3]

c̄i1i2i3

di1di2di3

+#

[i1|i1]

b̄i1i2

di1di2

[i1|im] = 1 # i1 < i2 . . . < im # N

A

2

Definition of V4: Ellis, Giele, Kunszt 0708.2398

Page 24: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Construction of the box residue

d̄ijkl(lijkl) = Res (AN(l)) = (di(lijkl)dj(lijkl)dk(lijkl)dl(lijkl)AN(l)) |l=lijkl

cijk(l) = Resijk

!

"AN(l) !#

l !=i,j,k

dijkl(l)

didjdkdl

$

%

bij(l) = Resij

!

"AN(l) !#

k !=i,j

cijk(l)

didjdk! 1

2!

#

k,l !=i,j

dijkl(l)

didjdkdl

$

%

ai(l) = Resi

!

"AN(l) !#

j !=i

bij(l)

didj! 1

2!

#

j,k !=i

cijk(l)

didjdk! 1

3!

#

j,k,l !=i

dijkl(l)

didjdkdl

$

%

lµ = V µ4 + !1 nµ

1

V4: constructed using three independent external vectors n1: orthogonalspace !1: determined so as to fulfill the unitarity conditions

lµ± = V µ4 ± i

&V 2

4 ! m2l " nµ

1

Resijkl

'AN(l±)

(= M(0)(l±i ; pi+1, . . . , pj;!l±j ) "M(0)(l±j ; pj+1, . . . , pk;!l±k )

" M(0)(l±k ; pk+1, . . . , pl;!l±l ) "M(0)(l±l ; pl+1, . . . , pi;!l±i )

IDi1···iM =

) dDl

i(")D/2

1

di1 · · · diM

(7)

AcutN (l) =

#

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

+#

[i1|i3]

c̄i1i2i3

di1di2di3

+#

[i1|i1]

b̄i1i2

di1di2

[i1|im] = 1 # i1 < i2 . . . < im # N

2

Four cut propagators are onshell ⇒ the amplitude factorizes into 4 tree-level amplitudes

FIG. 2: The factorization of the 6-gluon amplitude for the calculation of the d2346(l) residue with

the loop momentum parametrization choice q0 = 0.

With the above prescription it is now easy to determine the spurious term for any value

of the loop momentum. Finally we note that the integration over the term

![d l]

dijkl(l)

didjdkdl=

![d l]

dijkl + d̃ijkl n1 · ldidjdkdl

= dijkl

![d l]

1

didjdkdl= dijklIijkl , (39)

is now trivially done, giving us the coe!cient of the box times the box master integral.

D. Construction of the triangle residue

To calculate the triangle coe!cients we need to put three propagators on-shell. Care

has to be taken to remove the box contributions by explicit subtraction. Thus, the triangle

coe!cient is given by

cijk(l) = Resijk

"AN(l) !

#

l !=i,j,k

dijkl(l)

didjdl

$. (40)

Decomposing the loop momentum in the NV-basis of the three inflow momenta of the triangle

with di = dj = dk = 0 (choosing qk = 0) gives us according to Eq. (18)

lµ = V µ3 + !1n

µ1 + !2n

µ2 , (41)

14

Page 25: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Construction of the box residue

d̄ijkl(lijkl) = Res (AN(l)) = (di(lijkl)dj(lijkl)dk(lijkl)dl(lijkl)AN(l)) |l=lijkl

cijk(l) = Resijk

!

"AN(l) !#

l !=i,j,k

dijkl(l)

didjdkdl

$

%

bij(l) = Resij

!

"AN(l) !#

k !=i,j

cijk(l)

didjdk! 1

2!

#

k,l !=i,j

dijkl(l)

didjdkdl

$

%

ai(l) = Resi

!

"AN(l) !#

j !=i

bij(l)

didj! 1

2!

#

j,k !=i

cijk(l)

didjdk! 1

3!

#

j,k,l !=i

dijkl(l)

didjdkdl

$

%

lµ = V µ4 + !1 nµ

1

V4: constructed using three independent external vectors n1: orthogonalspace !1: determined so as to fulfill the unitarity conditions

lµ± = V µ4 ± i

&V 2

4 ! m2l " nµ

1

Resijkl

'AN(l±)

(= M(0)(l±i ; pi+1, . . . , pj;!l±j ) "M(0)(l±j ; pj+1, . . . , pk;!l±k )

" M(0)(l±k ; pk+1, . . . , pl;!l±l ) "M(0)(l±l ; pl+1, . . . , pi;!l±i )

IDi1···iM =

) dDl

i(")D/2

1

di1 · · · diM

(7)

AcutN (l) =

#

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

+#

[i1|i3]

c̄i1i2i3

di1di2di3

+#

[i1|i1]

b̄i1i2

di1di2

[i1|im] = 1 # i1 < i2 . . . < im # N

2

Four cut propagators are onshell ⇒ the amplitude factorizes into 4 tree-level amplitudes

Remarks:

‣ implicit sum over two helicity states of the four cut gluons

‣ tree-level three-gluon amplitudes are non-zero because the cut gluons have complex momenta

FIG. 2: The factorization of the 6-gluon amplitude for the calculation of the d2346(l) residue with

the loop momentum parametrization choice q0 = 0.

With the above prescription it is now easy to determine the spurious term for any value

of the loop momentum. Finally we note that the integration over the term

![d l]

dijkl(l)

didjdkdl=

![d l]

dijkl + d̃ijkl n1 · ldidjdkdl

= dijkl

![d l]

1

didjdkdl= dijklIijkl , (39)

is now trivially done, giving us the coe!cient of the box times the box master integral.

D. Construction of the triangle residue

To calculate the triangle coe!cients we need to put three propagators on-shell. Care

has to be taken to remove the box contributions by explicit subtraction. Thus, the triangle

coe!cient is given by

cijk(l) = Resijk

"AN(l) !

#

l !=i,j,k

dijkl(l)

didjdl

$. (40)

Decomposing the loop momentum in the NV-basis of the three inflow momenta of the triangle

with di = dj = dk = 0 (choosing qk = 0) gives us according to Eq. (18)

lµ = V µ3 + !1n

µ1 + !2n

µ2 , (41)

14

Page 26: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Construction of the box residue

Residual dependence on loop momentum enters only through component in the trivial space

d̄ijkl(lijkl) = Res (AN(l)) = (di(lijkl)dj(lijkl)dk(lijkl)dl(lijkl)AN(l)) |l=lijkl

cijk(l) = Resijk

!

"AN(l) !#

l !=i,j,k

dijkl(l)

didjdkdl

$

%

bij(l) = Resij

!

"AN(l) !#

k !=i,j

cijk(l)

didjdk! 1

2!

#

k,l !=i,j

dijkl(l)

didjdkdl

$

%

ai(l) = Resi

!

"AN(l) !#

j !=i

bij(l)

didj! 1

2!

#

j,k !=i

cijk(l)

didjdk! 1

3!

#

j,k,l !=i

dijkl(l)

didjdkdl

$

%

lµ = V µ4 + !1 nµ

1

V4: constructed using three independent external vectors n1: orthogonalspace !1: determined so as to fulfill the unitarity conditions

lµ± = V µ4 ± i

&V 2

4 ! m2l " nµ

1

Resijkl

'AN(l±)

(= M(0)(l±i ; pi+1, . . . , pj;!l±j ) "M(0)(l±j ; pj+1, . . . , pk;!l±k )

" M(0)(l±k ; pk+1, . . . , pl;!l±l ) "M(0)(l±l ; pl+1, . . . , pi;!l±i )

dijkl(l) # dijkl(n1 · l)

(n1 · l)2 $ n21 = 1

dijkl(l) = dijkl + d̃ijkl l · n1

2

d̄ijkl(lijkl) = Res (AN(l)) = (di(lijkl)dj(lijkl)dk(lijkl)dl(lijkl)AN(l)) |l=lijkl

cijk(l) = Resijk

!

"AN(l) !#

l !=i,j,k

dijkl(l)

didjdkdl

$

%

bij(l) = Resij

!

"AN(l) !#

k !=i,j

cijk(l)

didjdk! 1

2!

#

k,l !=i,j

dijkl(l)

didjdkdl

$

%

ai(l) = Resi

!

"AN(l) !#

j !=i

bij(l)

didj! 1

2!

#

j,k !=i

cijk(l)

didjdk! 1

3!

#

j,k,l !=i

dijkl(l)

didjdkdl

$

%

lµ = V µ4 + !1 nµ

1

V4: constructed using three independent external vectors n1: orthogonalspace !1: determined so as to fulfill the unitarity conditions

lµ± = V µ4 ± i

&V 2

4 ! m2l " nµ

1

Resijkl

'AN(l±)

(= M(0)(l±i ; pi+1, . . . , pj;!l±j ) "M(0)(l±j ; pj+1, . . . , pk;!l±k )

" M(0)(l±k ; pk+1, . . . , pl;!l±l ) "M(0)(l±l ; pl+1, . . . , pi;!l±i )

dijkl(l) # dijkl(n1 · l)

(n1 · l)2 $ n21 = 1

dijkl(l) = dijkl + d̃ijkl l · n1

2

Use

Then the maximum rank is one and the most general form is

Using the two solutions of the unitarity constraint one obtains

d̄ijkl(lijkl) = Res (AN(l)) = (di(lijkl)dj(lijkl)dk(lijkl)dl(lijkl)AN(l)) |l=lijkl

cijk(l) = Resijk

!

"AN(l) !#

l !=i,j,k

dijkl(l)

didjdkdl

$

%

bij(l) = Resij

!

"AN(l) !#

k !=i,j

cijk(l)

didjdk! 1

2!

#

k,l !=i,j

dijkl(l)

didjdkdl

$

%

ai(l) = Resi

!

"AN(l) !#

j !=i

bij(l)

didj! 1

2!

#

j,k !=i

cijk(l)

didjdk! 1

3!

#

j,k,l !=i

dijkl(l)

didjdkdl

$

%

lµ = V µ4 + !1 nµ

1

V4: constructed using three independent external vectors n1: orthogonalspace !1: determined so as to fulfill the unitarity conditions

lµ± = V µ4 ± i

&V 2

4 ! m2l " nµ

1

Resijkl

'AN(l±)

(= M(0)(l±i ; pi+1, . . . , pj;!l±j ) "M(0)(l±j ; pj+1, . . . , pk;!l±k )

" M(0)(l±k ; pk+1, . . . , pl;!l±l ) "M(0)(l±l ; pl+1, . . . , pi;!l±i )

dijkl(l) # dijkl(n1 · l)

(n1 · l)2 $ n21 = 1

dijkl(l) = d(0)ijkl + d(1)

ijkl l · n1

2

d(0)ijkl =

Resijkl

!AN(l+)

"+ Resijkl

!AN(l!)

"

2

d(1)ijkl =

Resijkl

!AN(l+)

"! Resijkl

!AN(l!)

"

2i#

V 24 ! m2

l

(7)

lµ = V µ3 + !1n

µ1 + !2n

µ2

lµ!1!2= V µ

3 + !1 nµ1 + !2 nµ

2 , "!1, !2 with !21 + !2

2 = !(V 23 ! m2

k)

Resijk

!AN(l!1!2)

"= M(0)(l!1!2

i ; pi+1, . . . , pj;!l!1!2j ) #M(0)(l!1!2

j ; pj+1, . . . , pk;!l!1!2k )

# M(0)(l!1!2k ; pk+1, . . . , pi;!l!1!2

i )

cijk(l) = c(0)ijk+c(1)

ijks1+c(2)ijks2+c(3)

ijk(s21!s2

2)+s1s2(c(4)ijk+c(5)

ijks1+c(6)ijks2) , si $ (l·ni)

$[d l]

dijk(l)

didjdkdl= d(0)

ijkl

$[d l]

1

didjdkdl= dijklIijkl , (8)

$[d l]

cijk(l)

didjdk= c(0)

ijk

$[d l]

1

didjdk= cijkIijk , (9)

$[d l]

bij(l)

didj= b(0)

ijk

$[d l]

1

didj= bijIij , (10)

AcutN =

%

[i1|i4]d(0)

i1i2i3i4I(D)i1i2i3i4 +

%

[i1|i3]c(0)i1i2i3I

(D)i1i2i3 +

%

[i1|i2]b(0)i1i2I

(D)i1i2

3

Page 27: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Construction of the triangle residue

Decompose loop momentum as

V3: constructed using 2 external vectors ⇒ physical space

n1, n2: span orthogonal space ⇒ trivial space

α1, α2: determined so as to fulfill the unitarity conditions

Explicitly: find an infinite number of solutions

dijkl =Resijkl

!AN(l+)

"+ Resijkl

!AN(l!)

"

2

d̃ijkl =Resijkl

!AN(l+)

"! Resijkl

!AN(l!)

"

2i#

V 24 ! m2

l

(7)

lµ = V µ3 + !1n

µ1 + !2n

µ2

lµ!1!2= V µ

3 + !1 nµ1 + !2 nµ

2 , "!,!2 with !21 + !2

2 = !(V 23 ! m2

k)

IDi1···iM =

$ dDl

i(")D/2

1

di1 · · · diM

(8)

AcutN (l) =

%

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

+%

[i1|i3]

c̄i1i2i3

di1di2di3

+%

[i1|i1]

b̄i1i2

di1di2

[i1|im] = 1 # i1 < i2 . . . < im # N

A

AD =%

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

%

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+%

[i1|i3]ci1i2i3I

(D)i1i2i3 +

%

[i1|i2]

bi1i2I(D)i1i2 +

%

[i1|i1]ai1I

(D)i1 (9)

AD =%

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

%

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

%

[i1|i3]ci1i2i3I

(D)i1i2i3+

%

[i1|i2]bi1i2I

(D)i1i2 +

%

[i1|i1]

ai1I(D)i1

(10)

3

dijkl =Resijkl

!AN(l+)

"+ Resijkl

!AN(l!)

"

2

d̃ijkl =Resijkl

!AN(l+)

"! Resijkl

!AN(l!)

"

2i#

V 24 ! m2

l

(7)

lµ = V µ3 + !1n

µ1 + !2n

µ2

lµ!1!2= V µ

3 + !1 nµ1 + !2 nµ

2 , "!1, !2 with !21 + !2

2 = !(V 23 ! m2

k)

IDi1···iM =

$ dDl

i(")D/2

1

di1 · · · diM

(8)

AcutN (l) =

%

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

+%

[i1|i3]

c̄i1i2i3

di1di2di3

+%

[i1|i1]

b̄i1i2

di1di2

[i1|im] = 1 # i1 < i2 . . . < im # N

A

AD =%

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

%

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+%

[i1|i3]ci1i2i3I

(D)i1i2i3 +

%

[i1|i2]

bi1i2I(D)i1i2 +

%

[i1|i1]ai1I

(D)i1 (9)

AD =%

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

%

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

%

[i1|i3]ci1i2i3I

(D)i1i2i3+

%

[i1|i2]bi1i2I

(D)i1i2 +

%

[i1|i1]

ai1I(D)i1

(10)

3

Page 28: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Construction of the triangle residue

dijkl =Resijkl

!AN(l+)

"+ Resijkl

!AN(l!)

"

2

d̃ijkl =Resijkl

!AN(l+)

"! Resijkl

!AN(l!)

"

2i#

V 24 ! m2

l

(7)

lµ = V µ3 + !1n

µ1 + !2n

µ2

lµ!1!2= V µ

3 + !1 nµ1 + !2 nµ

2 , "!1, !2 with !21 + !2

2 = !(V 23 ! m2

k)

Resijk

!AN(l!1!2)

"= M(0)(l!1!2

i ; pi+1, . . . , pj;!l!1!2j ) #M(0)(l!1!2

j ; pj+1, . . . , pk;!l!1!2k )

# M(0)(l!1!2k ; pk+1, . . . , pi;!l!1!2

i )

IDi1···iM =

$ dDl

i(")D/2

1

di1 · · · diM

(8)

AcutN (l) =

%

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

+%

[i1|i3]

c̄i1i2i3

di1di2di3

+%

[i1|i1]

b̄i1i2

di1di2

[i1|im] = 1 $ i1 < i2 . . . < im $ N

A

3

dijkl =Resijkl

!AN(l+)

"+ Resijkl

!AN(l!)

"

2

d̃ijkl =Resijkl

!AN(l+)

"! Resijkl

!AN(l!)

"

2i#

V 24 ! m2

l

(7)

lµ = V µ3 + !1n

µ1 + !2n

µ2

lµ!1!2= V µ

3 + !1 nµ1 + !2 nµ

2 , "!1, !2 with !21 + !2

2 = !(V 23 ! m2

k)

Resijk

!AN(l!1!2)

"= M(0)(l!1!2

i ; pi+1, . . . , pj;!l!1!2j ) #M(0)(l!1!2

j ; pj+1, . . . , pk;!l!1!2k )

# M(0)(l!1!2k ; pk+1, . . . , pi;!l!1!2

i )

cijk(l) = c(0)ijk+c(1)

ijks1+c(2)ijks2+c(3)

ijk(s21!s2

2)+s1s2(c(4)ijk+c(5)

ijks1+c(6)ijks2) , si $ (l·ni)

IDi1···iM =

$ dDl

i(")D/2

1

di1 · · · diM

(8)

AcutN (l) =

%

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

+%

[i1|i3]

c̄i1i2i3

di1di2di3

+%

[i1|i1]

b̄i1i2

di1di2

[i1|im] = 1 % i1 < i2 . . . < im % N

A

3

Three cut propagators are onshell ⇒ the amplitude factorizes into 3 tree-level amplitudes

The maximum rank is three, taking into account all constraints the most general form is

Make 7 choices of α1, α2 and find all 7 coefficients

For bubble and tadpole coefficients proceed in the same way.

FIG. 3: The factorization of the 6-gluon ordered amplitude for the calculation of the c234(l) residue

with the loop momentum parametrization choice q0 = !p5 ! p6 = p1 + p2 + p3 + p4.

with

V µ3 = !1

2(q2

i ! m2i + m2

k) vµ1 ! 1

2(q2

j ! q2i ! m2

j + m2i ) vµ

2 , (42)

where

vµ1 =

!µk2k1k2

!(k1, k2); vµ

2 =!k1µk1k2

!(k1, k2), (43)

and

k1 = qi; k2 = qj ! qi; !(k1, k2) = !k1k2k1k2

. (44)

The base vectors of the trivial space {n1, n2} have to be explicitly constructed using the

constraints

ni · nj = !ij ; ni · kj = 0; wµ!(k1, k2, k3) = nµ1n

!1 + nµ

2n!2 . (45)

The unitarity constraints (di = dj = dk = 0) give an infinite set of solutions 8

lµ"1"2= V µ

3 + "1 nµ1 + "2 nµ

2 ; "21 + "2

2 = !(V 23 ! m2

k) . (46)

8 For massless internal lines the parameterization of ref. [22] is obtained by taking !1 = " " (a + i b) and!2 = " " (a ! i b) where "2 = !V 2

3 , a = 12 (t ! 1/t) and b = 1

2 (t + 1/t). By taking the t # $ limit onegets the coe!cient of the triangle master integrals.

15

Page 29: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Final result: cut-constructible part

dijkl =Resijkl

!AN(l+)

"+ Resijkl

!AN(l!)

"

2

d̃ijkl =Resijkl

!AN(l+)

"! Resijkl

!AN(l!)

"

2i#

V 24 ! m2

l

(7)

lµ = V µ3 + !1n

µ1 + !2n

µ2

lµ!1!2= V µ

3 + !1 nµ1 + !2 nµ

2 , "!1, !2 with !21 + !2

2 = !(V 23 ! m2

k)

Resijk

!AN(l!1!2)

"= M(0)(l!1!2

i ; pi+1, . . . , pj;!l!1!2j ) #M(0)(l!1!2

j ; pj+1, . . . , pk;!l!1!2k )

# M(0)(l!1!2k ; pk+1, . . . , pi;!l!1!2

i )

cijk(l) = c(0)ijk+c(1)

ijks1+c(2)ijks2+c(3)

ijk(s21!s2

2)+s1s2(c(4)ijk+c(5)

ijks1+c(6)ijks2) , si $ (l·ni)

$[d l]

dijk(l)

didjdkdl= d(0)

ijkl

$[d l]

1

didjdkdl= dijklIijkl , (8)

$[d l]

cijk(l)

didjdk= c(0)

ijk

$[d l]

1

didjdk= cijkIijk , (9)

$[d l]

bij(l)

didj= b(0)

ijk

$[d l]

1

didj= bijIij , (10)

AcutN =

%

[i1|i4]d(0)

i1i2i3i4I(D)i1i2i3i4 +

%

[i1|i3]c(0)i1i2i3I

(D)i1i2i3 +

%

[i1|i2]b(0)i1i2I

(D)i1i2

3

d(0)ijkl =

Resijkl

!AN(l+)

"+ Resijkl

!AN(l!)

"

2

d(1)ijkl =

Resijkl

!AN(l+)

"! Resijkl

!AN(l!)

"

2i#

V 24 ! m2

l

(7)

lµ = V µ3 + !1n

µ1 + !2n

µ2

lµ!1!2= V µ

3 + !1 nµ1 + !2 nµ

2 , "!1, !2 with !21 + !2

2 = !(V 23 ! m2

k)

Resijk

!AN(l!1!2)

"= M(0)(l!1!2

i ; pi+1, . . . , pj;!l!1!2j ) #M(0)(l!1!2

j ; pj+1, . . . , pk;!l!1!2k )

# M(0)(l!1!2k ; pk+1, . . . , pi;!l!1!2

i )

cijk(l) = c(0)ijk+c(1)

ijks1+c(2)ijks2+c(3)

ijk(s21!s2

2)+s1s2(c(4)ijk+c(5)

ijks1+c(6)ijks2) , si $ (l·ni)

$[d l]

dijk(l)

didjdkdl= d(0)

ijkl

$[d l]

1

didjdkdl= dijklIijkl (8)

$[d l]

cijk(l)

didjdk= c(0)

ijk

$[d l]

1

didjdk= cijkIijk (9)

$[d l]

bij(l)

didj= b(0)

ijk

$[d l]

1

didj= bijIij (10)

AcutN =

%

[i1|i4]d(0)

i1i2i3i4I(D)i1i2i3i4 +

%

[i1|i3]c(0)i1i2i3I

(D)i1i2i3 +

%

[i1|i2]b(0)i1i2I

(D)i1i2

3

Spurious terms integrate to zero

The final result for the cut constructible part then reads

Page 30: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

One-loop virtual amplitudes

Cut constructible part can be obtained by taking residues in D=4

Contents

!gµ! + kµk!

k2 ! m2"

!!!(k)!µ(k)"(k2 ! m2) (1)

AN = +!

[i1|i4]

"di1i2i3i4 I(D)

i1i2i3i4

#

+!

[i1|i3]

"ci1i2i3 I(D)

i1i2i3

#+

!

[i1|i2]

"bi1i2 I(D)

i1i2

#+ R (2)

AN =!

[i1|i4]

"di1i2i3i4 I(D)

i1i2i3i4

#+

!

[i1|i3]

"ci1i2i3 I(D)

i1i2i3

#+

!

[i1|i2]

"bi1i2 I(D)

i1i2

#+ R (3)

R =!

[i1|i4]

!d(4,0)

i1i2i3i4

6+

!

[i1|i3]

+c(2,0)i1i2i3

2+

!

[i1|i2]

!b(2,0)i1i2

6q2i1,i2 (4)

1. Introduction

The current TEVATRON collider and the upcoming Large Hadron Collider need a goodunderstanding of the standard model signals to carry out a successful search for the Higgsparticle and physics beyond the standard model. At these hadron colliders QCD plays anessential role. From the lessons learned at the TEVATRON we need fixed order calculationsmatched with parton shower Monte Carlo’s and hadronization models for a successfulunderstanding of the observed collisions.

For successful implementation of numerical algorithms for evaluating the fixed orderamplitudes one needs to take into account the so-called complexity of the algorithm. Thatis, how does the evaluation time grows with the number of external particles. An algo-rithm of polynomial complexity is highly desirable. Furthermore algebraic methods can besuccessfully implemented in e!cient and reliable numerical procedures. This can lead torather di"erent methods from what one would develop and use in analytic calculation.

The leading order parton level generators are well understood. Generators have beenconstructed using algebraic manipulation programs to calculate the tree amplitudes directlyfrom Feynman diagrams. However, such a direct approach leads to an algorithm of doublefactorial complexity. Techniques such as helicity amplitudes, color ordering and recursion

– 1 –

Rational part: can be obtained with D ≠ 4

Page 31: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Generic D dependence

Two sources of D dependence

dimensionality of loop momentum D

# of spin eigenstates/polarization states Ds

AD({pi}, {Ji}) =! dD l

i(!)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(1)

di = di(l) = (l + qi)2 ! m2

i =

"

#l ! q0 +i$

j=1

pi

%

&2

! m2i (2)

AD =$

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+$

[i1|i3]ci1i2i3I

(D)i1i2i3 +

$

[i1|i2]

bi1i2I(D)i1i2 +

$

[i1|i1]ai1I

(D)i1 (3)

AD =$

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

$

[i1|i3]ci1i2i3I

(D)i1i2i3+

$

[i1|i2]bi1i2I

(D)i1i2 +

$

[i1|i1]

ai1I(D)i1

(4)

IDi1···iM =

! dDl

i(!)D/2

1

di1 · · · diM

(5)

l2 = l2 ! 'l2 = l21 ! l22 ! l23 ! l24 !

D$

i=5

l2i (6)

AD " A(D,Ds) (7)

!gµ! + kµk!

k2 ! m2#

$"!(k)"µ(k)#(k2 ! m2) (8)

AN = +$

[i1|i4]

(di1i2i3i4 I(D)

i1i2i3i4

)

+$

[i1|i3]

(ci1i2i3 I(D)

i1i2i3

)+

$

[i1|i2]

(bi1i2 I(D)

i1i2

)+ R (9)

AN =$

[i1|i4]

(di1i2i3i4 I(D)

i1i2i3i4

)+

$

[i1|i3]

(ci1i2i3 I(D)

i1i2i3

)+

$

[i1|i2]

(bi1i2 I(D)

i1i2

)+R (10)

1

Keep D and Ds distinct

Page 32: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Two key observations

1. External particles in D=4 ⇒ no preferred direction in the extra space

☛ in arbitrary D up to 5 constraints ⇒ get up to pentagon integrals

!C = log10

|Av,unitN ! Av,anly

N ||Av,anly

N |(1)

"tree =

!N

3

"

E3 +

!N

4

"

E4 " N4 (2)

"one!loop,N # ntree · "tree,N " N9 (3)

AD({pi}, {Ji}) =# dD l

i(#)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(4)

di = di(l) = (l + qi)2 ! m2

i =

$

%l ! q0 +i&

j=1

pi

'

(2

! m2i (5)

AD =&

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+&

[i1|i3]ci1i2i3I

(D)i1i2i3 +

&

[i1|i2]

bi1i2I(D)i1i2 +

&

[i1|i1]ai1I

(D)i1 (6)

AD =&

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

&

[i1|i3]ci1i2i3I

(D)i1i2i3+

&

[i1|i2]bi1i2I

(D)i1i2 +

&

[i1|i1]

ai1I(D)i1

(7)

IDi1···iM =

# dDl

i(#)D/2

1

di1 · · · diM

(8)

l2 = l2 ! )l2 = l21 ! l22 ! l23 ! l24 !

D&

i=5

l2i (9)

)l2 = !D&

i=5

l2i (10)

1

AD ! A(D,Ds) (11)

N (l) = N (l4, l̃2) l̃2 = "

D!

i=1

l2i (12)

NDs(l) = N0(l) + (Ds " 4)N1(l) (13)

N (14)

N (15)

N (Ds)(l)

d1d2 · · ·dN=

!

[i1|i5]

e(Ds)i1i2i3i4i5(l)

di1di2di3di4di5

+!

[i1|i4]

d(Ds)i1i2i3i4(l)

di1di2di3di4

+!

[i1|i3]

c(Ds)i1i2i3(l)

di1di2di3

+!

[i1|i2]

b(Ds)i1i2 (l)

di1di2

+!

[i1|i1]

a(Ds)i1 (l)

di1

e(Ds)ijkmn(lijkmn) = Resijkmn

"N (Ds)(l)

d1 · · · dN

#

di(lijkmn) = · · · = dn(lijkmn) = 0

lµijkmn = V µ5 +

$%%& "V 25 + m2

n

!25 + · · ·+ !2

D

"D!

h=5

!hnµh

#

#!i

Resijkmn

"N (Ds)(l)

d1 · · · dN

#

=!

M(li; pi+1, . . . , pj,"lj) $M(lj; pj+1, . . . , pk;"lk)

$M(lk; pk+1, . . . , pm;"lm) $M(lm; pm+1, . . . , pn;"ln) $M(ln; pn+1..., pi;"li)

Resijkmn

'N (Ds)(l)d1···dN

(=

)M(li; pi+1, . . . , pj,"lj)$M(lj ; pj+1, . . . , pk;"lk)$M(lk; pk+1, . . . , pm;"lm) $M(lm; pm+1, . . . , pn;"ln) $M(ln; pn+1..., pi;"li)

2

: numerator functionN

IDi1···iM =

! dDl

i(!)D/2

1

di1 · · · diM

(11)

AcutN (l) =

"

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

+"

[i1|i3]

c̄i1i2i3

di1di2di3

+"

[i1|i1]

b̄i1i2

di1di2

[i1|im] = 1 ! i1 < i2 . . . < im ! N

A

AD ="

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

"

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+"

[i1|i3]ci1i2i3I

(D)i1i2i3 +

"

[i1|i2]

bi1i2I(D)i1i2 +

"

[i1|i1]ai1I

(D)i1 (12)

AD ="

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

"

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

"

[i1|i3]ci1i2i3I

(D)i1i2i3+

"

[i1|i2]bi1i2I

(D)i1i2 +

"

[i1|i1]

ai1I(D)i1

(13)

IDi1···iM =

! dDl

i(!)D/2

1

di1 · · · diM

(14)

l2 = l2 " #l2 = l21 " l22 " l23 " l24 "

D"

i=5

l2i (15)

#l2 = "D"

i=5

l2i (16)

4

Page 33: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Two key observations

1. External particles in D=4 ⇒ no preferred direction in the extra space

☛ in arbitrary D up to 5 constraints ⇒ get up to pentagon integrals

!C = log10

|Av,unitN ! Av,anly

N ||Av,anly

N |(1)

"tree =

!N

3

"

E3 +

!N

4

"

E4 " N4 (2)

"one!loop,N # ntree · "tree,N " N9 (3)

AD({pi}, {Ji}) =# dD l

i(#)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(4)

di = di(l) = (l + qi)2 ! m2

i =

$

%l ! q0 +i&

j=1

pi

'

(2

! m2i (5)

AD =&

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+&

[i1|i3]ci1i2i3I

(D)i1i2i3 +

&

[i1|i2]

bi1i2I(D)i1i2 +

&

[i1|i1]ai1I

(D)i1 (6)

AD =&

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

&

[i1|i3]ci1i2i3I

(D)i1i2i3+

&

[i1|i2]bi1i2I

(D)i1i2 +

&

[i1|i1]

ai1I(D)i1

(7)

IDi1···iM =

# dDl

i(#)D/2

1

di1 · · · diM

(8)

l2 = l2 ! )l2 = l21 ! l22 ! l23 ! l24 !

D&

i=5

l2i (9)

)l2 = !D&

i=5

l2i (10)

1

AD ! A(D,Ds) (11)

N (l) = N (l4, l̃2) l̃2 = "

D!

i=1

l2i (12)

NDs(l) = N0(l) + (Ds " 4)N1(l) (13)

N (14)

N (15)

N (Ds)(l)

d1d2 · · ·dN=

!

[i1|i5]

e(Ds)i1i2i3i4i5(l)

di1di2di3di4di5

+!

[i1|i4]

d(Ds)i1i2i3i4(l)

di1di2di3di4

+!

[i1|i3]

c(Ds)i1i2i3(l)

di1di2di3

+!

[i1|i2]

b(Ds)i1i2 (l)

di1di2

+!

[i1|i1]

a(Ds)i1 (l)

di1

e(Ds)ijkmn(lijkmn) = Resijkmn

"N (Ds)(l)

d1 · · · dN

#

di(lijkmn) = · · · = dn(lijkmn) = 0

lµijkmn = V µ5 +

$%%& "V 25 + m2

n

!25 + · · ·+ !2

D

"D!

h=5

!hnµh

#

#!i

Resijkmn

"N (Ds)(l)

d1 · · · dN

#

=!

M(li; pi+1, . . . , pj,"lj) $M(lj; pj+1, . . . , pk;"lk)

$M(lk; pk+1, . . . , pm;"lm) $M(lm; pm+1, . . . , pn;"ln) $M(ln; pn+1..., pi;"li)

Resijkmn

'N (Ds)(l)d1···dN

(=

)M(li; pi+1, . . . , pj,"lj)$M(lj ; pj+1, . . . , pk;"lk)$M(lk; pk+1, . . . , pm;"lm) $M(lm; pm+1, . . . , pn;"ln) $M(ln; pn+1..., pi;"li)

2

: numerator functionN

IDi1···iM =

! dDl

i(!)D/2

1

di1 · · · diM

(11)

AcutN (l) =

"

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

+"

[i1|i3]

c̄i1i2i3

di1di2di3

+"

[i1|i1]

b̄i1i2

di1di2

[i1|im] = 1 ! i1 < i2 . . . < im ! N

A

AD ="

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

"

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+"

[i1|i3]ci1i2i3I

(D)i1i2i3 +

"

[i1|i2]

bi1i2I(D)i1i2 +

"

[i1|i1]ai1I

(D)i1 (12)

AD ="

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

"

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

"

[i1|i3]ci1i2i3I

(D)i1i2i3+

"

[i1|i2]bi1i2I

(D)i1i2 +

"

[i1|i1]

ai1I(D)i1

(13)

IDi1···iM =

! dDl

i(!)D/2

1

di1 · · · diM

(14)

l2 = l2 " #l2 = l21 " l22 " l23 " l24 "

D"

i=5

l2i (15)

#l2 = "D"

i=5

l2i (16)

4

AD({pi}, {Ji}) =! dD l

i(!)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(1)

di = di(l) = (l + qi)2 ! m2

i =

"

#l ! q0 +i$

j=1

pi

%

&2

! m2i (2)

AD =$

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+$

[i1|i3]ci1i2i3I

(D)i1i2i3 +

$

[i1|i2]

bi1i2I(D)i1i2 +

$

[i1|i1]ai1I

(D)i1 (3)

AD =$

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

$

[i1|i3]ci1i2i3I

(D)i1i2i3+

$

[i1|i2]bi1i2I

(D)i1i2 +

$

[i1|i1]

ai1I(D)i1

(4)

IDi1···iM =

! dDl

i(!)D/2

1

di1 · · · diM

(5)

l2 = l2 ! 'l2 = l21 ! l22 ! l23 ! l24 !

D$

i=5

l2i (6)

AD " A(D,Ds) (7)

N (l) = N (l4, l̃2) l̃2 = !

D$

i!1

l2i (8)

NDs(l) = N0(l) + (Ds ! 4)N1(l) (9)

!gµ! + kµk!

k2 ! m2#

$"!(k)"µ(k)#(k2 ! m2) (10)

1

2. Dependence of on Ds is linear (or two-parameter form)

☛ evaluate at any Ds1, Ds2 ⇒ get 0 and 1, i.e. , full

AD({pi}, {Ji}) =! dD l

i(!)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(1)

di = di(l) = (l + qi)2 ! m2

i =

"

#l ! q0 +i$

j=1

pi

%

&2

! m2i (2)

AD =$

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+$

[i1|i3]ci1i2i3I

(D)i1i2i3 +

$

[i1|i2]

bi1i2I(D)i1i2 +

$

[i1|i1]ai1I

(D)i1 (3)

AD =$

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

$

[i1|i3]ci1i2i3I

(D)i1i2i3+

$

[i1|i2]bi1i2I

(D)i1i2 +

$

[i1|i1]

ai1I(D)i1

(4)

IDi1···iM =

! dDl

i(!)D/2

1

di1 · · · diM

(5)

l2 = l2 ! 'l2 = l21 ! l22 ! l23 ! l24 !

D$

i=5

l2i (6)

AD " A(D,Ds) (7)

N (l) = N (l4, l̃2) l̃2 = !

D$

i=1

l2i (8)

NDs(l) = N0(l) + (Ds ! 4)N1(l) (9)

N (10)

!gµ! + kµk!

k2 ! m2#

$"!(k)"µ(k)#(k2 ! m2) (11)

1

AD({pi}, {Ji}) =! dD l

i(!)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(1)

di = di(l) = (l + qi)2 ! m2

i =

"

#l ! q0 +i$

j=1

pi

%

&2

! m2i (2)

AD =$

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+$

[i1|i3]ci1i2i3I

(D)i1i2i3 +

$

[i1|i2]

bi1i2I(D)i1i2 +

$

[i1|i1]ai1I

(D)i1 (3)

AD =$

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

$

[i1|i3]ci1i2i3I

(D)i1i2i3+

$

[i1|i2]bi1i2I

(D)i1i2 +

$

[i1|i1]

ai1I(D)i1

(4)

IDi1···iM =

! dDl

i(!)D/2

1

di1 · · · diM

(5)

l2 = l2 ! 'l2 = l21 ! l22 ! l23 ! l24 !

D$

i=5

l2i (6)

AD " A(D,Ds) (7)

N (l) = N (l4, l̃2) l̃2 = !

D$

i=1

l2i (8)

NDs(l) = N0(l) + (Ds ! 4)N1(l) (9)

N (10)

!gµ! + kµk!

k2 ! m2#

$"!(k)"µ(k)#(k2 ! m2) (11)

1

AD({pi}, {Ji}) =! dD l

i(!)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(1)

di = di(l) = (l + qi)2 ! m2

i =

"

#l ! q0 +i$

j=1

pi

%

&2

! m2i (2)

AD =$

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+$

[i1|i3]ci1i2i3I

(D)i1i2i3 +

$

[i1|i2]

bi1i2I(D)i1i2 +

$

[i1|i1]ai1I

(D)i1 (3)

AD =$

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

$

[i1|i3]ci1i2i3I

(D)i1i2i3+

$

[i1|i2]bi1i2I

(D)i1i2 +

$

[i1|i1]

ai1I(D)i1

(4)

IDi1···iM =

! dDl

i(!)D/2

1

di1 · · · diM

(5)

l2 = l2 ! 'l2 = l21 ! l22 ! l23 ! l24 !

D$

i=5

l2i (6)

AD " A(D,Ds) (7)

N (l) = N (l4, l̃2) l̃2 = !

D$

i=1

l2i (8)

NDs(l) = N0(l) + (Ds ! 4)N1(l) (9)

N (10)

!gµ! + kµk!

k2 ! m2#

$"!(k)"µ(k)#(k2 ! m2) (11)

1

AD({pi}, {Ji}) =! dD l

i(!)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(1)

di = di(l) = (l + qi)2 ! m2

i =

"

#l ! q0 +i$

j=1

pi

%

&2

! m2i (2)

AD =$

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+$

[i1|i3]ci1i2i3I

(D)i1i2i3 +

$

[i1|i2]

bi1i2I(D)i1i2 +

$

[i1|i1]ai1I

(D)i1 (3)

AD =$

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

$

[i1|i3]ci1i2i3I

(D)i1i2i3+

$

[i1|i2]bi1i2I

(D)i1i2 +

$

[i1|i1]

ai1I(D)i1

(4)

IDi1···iM =

! dDl

i(!)D/2

1

di1 · · · diM

(5)

l2 = l2 ! 'l2 = l21 ! l22 ! l23 ! l24 !

D$

i=5

l2i (6)

AD " A(D,Ds) (7)

N (l) = N (l4, l̃2) l̃2 = !

D$

i=1

l2i (8)

NDs(l) = N0(l) + (Ds ! 4)N1(l) (9)

N (10)

N (11)

1

Page 34: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Two key observations

1. External particles in D=4 ⇒ no preferred direction in the extra space

☛ in arbitrary D up to 5 constraints ⇒ get up to pentagon integrals

!C = log10

|Av,unitN ! Av,anly

N ||Av,anly

N |(1)

"tree =

!N

3

"

E3 +

!N

4

"

E4 " N4 (2)

"one!loop,N # ntree · "tree,N " N9 (3)

AD({pi}, {Ji}) =# dD l

i(#)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(4)

di = di(l) = (l + qi)2 ! m2

i =

$

%l ! q0 +i&

j=1

pi

'

(2

! m2i (5)

AD =&

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+&

[i1|i3]ci1i2i3I

(D)i1i2i3 +

&

[i1|i2]

bi1i2I(D)i1i2 +

&

[i1|i1]ai1I

(D)i1 (6)

AD =&

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

&

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

&

[i1|i3]ci1i2i3I

(D)i1i2i3+

&

[i1|i2]bi1i2I

(D)i1i2 +

&

[i1|i1]

ai1I(D)i1

(7)

IDi1···iM =

# dDl

i(#)D/2

1

di1 · · · diM

(8)

l2 = l2 ! )l2 = l21 ! l22 ! l23 ! l24 !

D&

i=5

l2i (9)

)l2 = !D&

i=5

l2i (10)

1

AD ! A(D,Ds) (11)

N (l) = N (l4, l̃2) l̃2 = "

D!

i=1

l2i (12)

NDs(l) = N0(l) + (Ds " 4)N1(l) (13)

N (14)

N (15)

N (Ds)(l)

d1d2 · · ·dN=

!

[i1|i5]

e(Ds)i1i2i3i4i5(l)

di1di2di3di4di5

+!

[i1|i4]

d(Ds)i1i2i3i4(l)

di1di2di3di4

+!

[i1|i3]

c(Ds)i1i2i3(l)

di1di2di3

+!

[i1|i2]

b(Ds)i1i2 (l)

di1di2

+!

[i1|i1]

a(Ds)i1 (l)

di1

e(Ds)ijkmn(lijkmn) = Resijkmn

"N (Ds)(l)

d1 · · · dN

#

di(lijkmn) = · · · = dn(lijkmn) = 0

lµijkmn = V µ5 +

$%%& "V 25 + m2

n

!25 + · · ·+ !2

D

"D!

h=5

!hnµh

#

#!i

Resijkmn

"N (Ds)(l)

d1 · · · dN

#

=!

M(li; pi+1, . . . , pj,"lj) $M(lj; pj+1, . . . , pk;"lk)

$M(lk; pk+1, . . . , pm;"lm) $M(lm; pm+1, . . . , pn;"ln) $M(ln; pn+1..., pi;"li)

Resijkmn

'N (Ds)(l)d1···dN

(=

)M(li; pi+1, . . . , pj,"lj)$M(lj ; pj+1, . . . , pk;"lk)$M(lk; pk+1, . . . , pm;"lm) $M(lm; pm+1, . . . , pn;"ln) $M(ln; pn+1..., pi;"li)

2

: numerator functionN

IDi1···iM =

! dDl

i(!)D/2

1

di1 · · · diM

(11)

AcutN (l) =

"

[i1|i4]

d̄i1i2i3i4

di1di2di3di4

+"

[i1|i3]

c̄i1i2i3

di1di2di3

+"

[i1|i1]

b̄i1i2

di1di2

[i1|im] = 1 ! i1 < i2 . . . < im ! N

A

AD ="

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

"

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+"

[i1|i3]ci1i2i3I

(D)i1i2i3 +

"

[i1|i2]

bi1i2I(D)i1i2 +

"

[i1|i1]ai1I

(D)i1 (12)

AD ="

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

"

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

"

[i1|i3]ci1i2i3I

(D)i1i2i3+

"

[i1|i2]bi1i2I

(D)i1i2 +

"

[i1|i1]

ai1I(D)i1

(13)

IDi1···iM =

! dDl

i(!)D/2

1

di1 · · · diM

(14)

l2 = l2 " #l2 = l21 " l22 " l23 " l24 "

D"

i=5

l2i (15)

#l2 = "D"

i=5

l2i (16)

4

AD({pi}, {Ji}) =! dD l

i(!)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(1)

di = di(l) = (l + qi)2 ! m2

i =

"

#l ! q0 +i$

j=1

pi

%

&2

! m2i (2)

AD =$

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+$

[i1|i3]ci1i2i3I

(D)i1i2i3 +

$

[i1|i2]

bi1i2I(D)i1i2 +

$

[i1|i1]ai1I

(D)i1 (3)

AD =$

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

$

[i1|i3]ci1i2i3I

(D)i1i2i3+

$

[i1|i2]bi1i2I

(D)i1i2 +

$

[i1|i1]

ai1I(D)i1

(4)

IDi1···iM =

! dDl

i(!)D/2

1

di1 · · · diM

(5)

l2 = l2 ! 'l2 = l21 ! l22 ! l23 ! l24 !

D$

i=5

l2i (6)

AD " A(D,Ds) (7)

N (l) = N (l4, l̃2) l̃2 = !

D$

i!1

l2i (8)

NDs(l) = N0(l) + (Ds ! 4)N1(l) (9)

!gµ! + kµk!

k2 ! m2#

$"!(k)"µ(k)#(k2 ! m2) (10)

1

2. Dependence of on Ds is linear (or two-parameter form)

☛ evaluate at any Ds1, Ds2 ⇒ get 0 and 1, i.e. , full

AD({pi}, {Ji}) =! dD l

i(!)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(1)

di = di(l) = (l + qi)2 ! m2

i =

"

#l ! q0 +i$

j=1

pi

%

&2

! m2i (2)

AD =$

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+$

[i1|i3]ci1i2i3I

(D)i1i2i3 +

$

[i1|i2]

bi1i2I(D)i1i2 +

$

[i1|i1]ai1I

(D)i1 (3)

AD =$

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

$

[i1|i3]ci1i2i3I

(D)i1i2i3+

$

[i1|i2]bi1i2I

(D)i1i2 +

$

[i1|i1]

ai1I(D)i1

(4)

IDi1···iM =

! dDl

i(!)D/2

1

di1 · · · diM

(5)

l2 = l2 ! 'l2 = l21 ! l22 ! l23 ! l24 !

D$

i=5

l2i (6)

AD " A(D,Ds) (7)

N (l) = N (l4, l̃2) l̃2 = !

D$

i=1

l2i (8)

NDs(l) = N0(l) + (Ds ! 4)N1(l) (9)

N (10)

!gµ! + kµk!

k2 ! m2#

$"!(k)"µ(k)#(k2 ! m2) (11)

1

AD({pi}, {Ji}) =! dD l

i(!)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(1)

di = di(l) = (l + qi)2 ! m2

i =

"

#l ! q0 +i$

j=1

pi

%

&2

! m2i (2)

AD =$

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+$

[i1|i3]ci1i2i3I

(D)i1i2i3 +

$

[i1|i2]

bi1i2I(D)i1i2 +

$

[i1|i1]ai1I

(D)i1 (3)

AD =$

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

$

[i1|i3]ci1i2i3I

(D)i1i2i3+

$

[i1|i2]bi1i2I

(D)i1i2 +

$

[i1|i1]

ai1I(D)i1

(4)

IDi1···iM =

! dDl

i(!)D/2

1

di1 · · · diM

(5)

l2 = l2 ! 'l2 = l21 ! l22 ! l23 ! l24 !

D$

i=5

l2i (6)

AD " A(D,Ds) (7)

N (l) = N (l4, l̃2) l̃2 = !

D$

i=1

l2i (8)

NDs(l) = N0(l) + (Ds ! 4)N1(l) (9)

N (10)

!gµ! + kµk!

k2 ! m2#

$"!(k)"µ(k)#(k2 ! m2) (11)

1

AD({pi}, {Ji}) =! dD l

i(!)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(1)

di = di(l) = (l + qi)2 ! m2

i =

"

#l ! q0 +i$

j=1

pi

%

&2

! m2i (2)

AD =$

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+$

[i1|i3]ci1i2i3I

(D)i1i2i3 +

$

[i1|i2]

bi1i2I(D)i1i2 +

$

[i1|i1]ai1I

(D)i1 (3)

AD =$

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

$

[i1|i3]ci1i2i3I

(D)i1i2i3+

$

[i1|i2]bi1i2I

(D)i1i2 +

$

[i1|i1]

ai1I(D)i1

(4)

IDi1···iM =

! dDl

i(!)D/2

1

di1 · · · diM

(5)

l2 = l2 ! 'l2 = l21 ! l22 ! l23 ! l24 !

D$

i=5

l2i (6)

AD " A(D,Ds) (7)

N (l) = N (l4, l̃2) l̃2 = !

D$

i=1

l2i (8)

NDs(l) = N0(l) + (Ds ! 4)N1(l) (9)

N (10)

!gµ! + kµk!

k2 ! m2#

$"!(k)"µ(k)#(k2 ! m2) (11)

1

AD({pi}, {Ji}) =! dD l

i(!)D/2

N ({pi}, {Ji}; l)d1d2 · · ·dN

(1)

di = di(l) = (l + qi)2 ! m2

i =

"

#l ! q0 +i$

j=1

pi

%

&2

! m2i (2)

AD =$

[i1|i5]ei1i2i3i4i5I

(D)i1i2i3i4i5 +

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4

+$

[i1|i3]ci1i2i3I

(D)i1i2i3 +

$

[i1|i2]

bi1i2I(D)i1i2 +

$

[i1|i1]ai1I

(D)i1 (3)

AD =$

[i1|i5]

ei1i2i3i4i5I(D)i1i2i3i4i5+

$

[i1|i4]di1i2i3i4I

(D)i1i2i3i4+

$

[i1|i3]ci1i2i3I

(D)i1i2i3+

$

[i1|i2]bi1i2I

(D)i1i2 +

$

[i1|i1]

ai1I(D)i1

(4)

IDi1···iM =

! dDl

i(!)D/2

1

di1 · · · diM

(5)

l2 = l2 ! 'l2 = l21 ! l22 ! l23 ! l24 !

D$

i=5

l2i (6)

AD " A(D,Ds) (7)

N (l) = N (l4, l̃2) l̃2 = !

D$

i=1

l2i (8)

NDs(l) = N0(l) + (Ds ! 4)N1(l) (9)

N (10)

N (11)

1

[Ds = 4 - 2ε ‘t-Hooft-Veltman scheme, Ds = 4 FDH scheme]

Choose Ds1, Ds2 integer ⇒ suitable for numerical implementation

Page 35: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

In practice

N (Ds)(l)

d1d2 · · ·dN=

!

[i1|i5]

e(Ds)i1i2i3i4i5(l)

di1di2di3di4di5

+!

[i1|i4]

d(Ds)i1i2i3i4(l)

di1di2di3di4

+!

[i1|i3]

c(Ds)i1i2i3(l)

di1di2di3

+!

[i1|i2]

b(Ds)i1i2 (l)

di1di2

+!

[i1|i1]

a(Ds)i1 (l)

di1

!gµ! + kµk!

k2 ! m2"

!!!(k)!µ(k)"(k2 ! m2) (11)

AN = +!

[i1|i4]

"di1i2i3i4 I(D)

i1i2i3i4

#

+!

[i1|i3]

"ci1i2i3 I(D)

i1i2i3

#+

!

[i1|i2]

"bi1i2 I(D)

i1i2

#+ R (12)

AN =!

[i1|i4]

"di1i2i3i4 I(D)

i1i2i3i4

#+

!

[i1|i3]

"ci1i2i3 I(D)

i1i2i3

#+

!

[i1|i2]

"bi1i2 I(D)

i1i2

#+R (13)

R =!

[i1|i4]!d(4,0)

i1i2i3i4

6+

!

[i1|i3]+

c(2,0)i1i2i3

2+

!

[i1|i2]!b(2,0)

i1i2

6q2i1,i2 (14)

Av = c!

$N

!2+

1

!

$N!

i=1

ln!si,i+1

µ2! 11

3

%%

Atree , (15)

2

‣ Start from

‣ Use unitarity constraints to determine the coefficients, computed as products of tree-level amplitudes with complex momenta in higher dimensions

‣ Berends-Giele recursion relations are natural candidates to compute tree level amplitudes: they are very fast for large N and very general (spin, masses, complex momenta)

Berends, Giele ’88

Page 36: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

In practice

N (Ds)(l)

d1d2 · · ·dN=

!

[i1|i5]

e(Ds)i1i2i3i4i5(l)

di1di2di3di4di5

+!

[i1|i4]

d(Ds)i1i2i3i4(l)

di1di2di3di4

+!

[i1|i3]

c(Ds)i1i2i3(l)

di1di2di3

+!

[i1|i2]

b(Ds)i1i2 (l)

di1di2

+!

[i1|i1]

a(Ds)i1 (l)

di1

!gµ! + kµk!

k2 ! m2"

!!!(k)!µ(k)"(k2 ! m2) (11)

AN = +!

[i1|i4]

"di1i2i3i4 I(D)

i1i2i3i4

#

+!

[i1|i3]

"ci1i2i3 I(D)

i1i2i3

#+

!

[i1|i2]

"bi1i2 I(D)

i1i2

#+ R (12)

AN =!

[i1|i4]

"di1i2i3i4 I(D)

i1i2i3i4

#+

!

[i1|i3]

"ci1i2i3 I(D)

i1i2i3

#+

!

[i1|i2]

"bi1i2 I(D)

i1i2

#+R (13)

R =!

[i1|i4]!d(4,0)

i1i2i3i4

6+

!

[i1|i3]+

c(2,0)i1i2i3

2+

!

[i1|i2]!b(2,0)

i1i2

6q2i1,i2 (14)

Av = c!

$N

!2+

1

!

$N!

i=1

ln!si,i+1

µ2! 11

3

%%

Atree , (15)

2

‣ Start from

‣ Use unitarity constraints to determine the coefficients, computed as products of tree-level amplitudes with complex momenta in higher dimensions

‣ Berends-Giele recursion relations are natural candidates to compute tree level amplitudes: they are very fast for large N and very general (spin, masses, complex momenta)

Berends, Giele ’88

☺ Generalized unitarity: very simple, efficient, general, transparent method, straightforward to implement/automate

Page 37: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Final result

+!

[i1|i2]

"b(0)i1i2 I(D)

i1i2 !D ! 4

2b(9)i1i2 I(D+2)

i1i2

#+

N!

i1=1

a(0)i1 I(D)

i1

ACCN =

!

[i1|i4]d̃(0)

i1i2i3i4 I(4!2!)i1i2i3i4+

!

[i1|i3]c(0)i1i2i3 I(4!2!)

i1i2i3 +!

[i1|i2]b(0)i1i2 I(4!2!)

i1i2 +N!

i1=1

a(0)i1 I(4!2!)

i1

RN = !!

[i1|i4]

d(4)i1i2i3i4

6+

!

[i1|i3]

c(9)i1i2i3

2!

!

[i1|i2]

$(qi1 ! qi2)

2

6!

m2i1 + m2

i2

2

%

b(9)i1i2

!gµ" + kµk"

k2 ! m2"

!!"(k)!µ(k)"(k2 ! m2) (11)

AN = +!

[i1|i4]

&di1i2i3i4 I(D)

i1i2i3i4

'

+!

[i1|i3]

&ci1i2i3 I(D)

i1i2i3

'+

!

[i1|i2]

&bi1i2 I(D)

i1i2

'+ R (12)

AN =!

[i1|i4]

&di1i2i3i4 I(D)

i1i2i3i4

'+

!

[i1|i3]

&ci1i2i3 I(D)

i1i2i3

'+

!

[i1|i2]

&bi1i2 I(D)

i1i2

'+R (13)

R =!

[i1|i4]!d(4,0)

i1i2i3i4

6+

!

[i1|i3]+

c(2,0)i1i2i3

2+

!

[i1|i2]!b(2,0)

i1i2

6q2i1,i2 (14)

Av = c!

$N

!2+

1

!

$N!

i=1

ln!si,i+1

µ2! 11

3

%%

Atree , (15)

4

+!

[i1|i2]

"b(0)i1i2 I(D)

i1i2 !D ! 4

2b(9)i1i2 I(D+2)

i1i2

#+

N!

i1=1

a(0)i1 I(D)

i1

ACCN =

!

[i1|i4]d̃(0)

i1i2i3i4 I(4!2!)i1i2i3i4+

!

[i1|i3]c(0)i1i2i3 I(4!2!)

i1i2i3 +!

[i1|i2]b(0)i1i2 I(4!2!)

i1i2 +N!

i1=1

a(0)i1 I(4!2!)

i1

RN = !!

[i1|i4]

d(4)i1i2i3i4

6+

!

[i1|i3]

c(9)i1i2i3

2!

!

[i1|i2]

$(qi1 ! qi2)

2

6!

m2i1 + m2

i2

2

%

b(9)i1i2

A = O(!)

!gµ" + kµk"

k2 ! m2"

!!"(k)!µ(k)"(k2 ! m2) (11)

AN = +!

[i1|i4]

&di1i2i3i4 I(D)

i1i2i3i4

'

+!

[i1|i3]

&ci1i2i3 I(D)

i1i2i3

'+

!

[i1|i2]

&bi1i2 I(D)

i1i2

'+ R (12)

AN =!

[i1|i4]

&di1i2i3i4 I(D)

i1i2i3i4

'+

!

[i1|i3]

&ci1i2i3 I(D)

i1i2i3

'+

!

[i1|i2]

&bi1i2 I(D)

i1i2

'+R (13)

R =!

[i1|i4]!

d(4,0)i1i2i3i4

6+

!

[i1|i3]+

c(2,0)i1i2i3

2+

!

[i1|i2]!

b(2,0)i1i2

6q2i1,i2 (14)

Av = c!

$N

!2+

1

!

$N!

i=1

ln!si,i+1

µ2! 11

3

%%

Atree , (15)

4

A(D) =!

[i1|i5]e(0)

i1i2i3i4i5 I(D)i1i2i3i4i5

+!

[i1|i4]

"

d(0)i1i2i3i4 I(D)

i1i2i3i4 !D ! 4

2d(2)

i1i2i3i4 I(D+2)i1i2i3i4 +

(D ! 4)(D ! 2)

4d(4)

i1i2i3i4 I(D+4)i1i2i3i4

#

+!

[i1|i3]

$c(0)i1i2i3 I(D)

i1i2i3 !D ! 4

2c(9)i1i2i3 I(D+2)

i1i2i3

%+

!

[i1|i2]

$b(0)i1i2 I(D)

i1i2 !D ! 4

2b(9)i1i2 I(D+2)

i1i2

%

ACCN =

!

[i1|i4]d(0)

i1i2i3i4 I(4!2!)i1i2i3i4 +

!

[i1|i3]c(0)i1i2i3 I(4!2!)

i1i2i3 +!

[i1|i2]b(0)i1i2 I(4!2!)

i1i2

RN = !!

[i1|i4]

d(4)i1i2i3i4

6+

!

[i1|i3]

c(9)i1i2i3

2!

!

[i1|i2]

"(qi1 ! qi2)

2

6!

m2i1 + m2

i2

2

#

b(9)i1i2

A = O(!)

AFDH =$

D2 ! 4

D2 ! D1

%A(D,Ds=D1) !

$D1 ! 4

D2 ! D1

%A(D,Ds=D2)

!gµ" + kµk"

k2 ! m2"

!!"(k)!µ(k)"(k2 ! m2) (12)

AN = +!

[i1|i4]

&di1i2i3i4 I(D)

i1i2i3i4

'

+!

[i1|i3]

&ci1i2i3 I(D)

i1i2i3

'+

!

[i1|i2]

&bi1i2 I(D)

i1i2

'+ R (13)

AN =!

[i1|i4]

&di1i2i3i4 I(D)

i1i2i3i4

'+

!

[i1|i3]

&ci1i2i3 I(D)

i1i2i3

'+

!

[i1|i2]

&bi1i2 I(D)

i1i2

'+R (14)

4

A(D) =!

[i1|i5]e(0)

i1i2i3i4i5 I(D)i1i2i3i4i5

+!

[i1|i4]

"

d(0)i1i2i3i4 I(D)

i1i2i3i4 !D ! 4

2d(2)

i1i2i3i4 I(D+2)i1i2i3i4 +

(D ! 4)(D ! 2)

4d(4)

i1i2i3i4 I(D+4)i1i2i3i4

#

+!

[i1|i3]

$c(0)i1i2i3 I(D)

i1i2i3 !D ! 4

2c(9)i1i2i3 I(D+2)

i1i2i3

%+

!

[i1|i2]

$b(0)i1i2 I(D)

i1i2 !D ! 4

2b(9)i1i2 I(D+2)

i1i2

%

ACCN =

!

[i1|i4]d(0)

i1i2i3i4 I(4!2!)i1i2i3i4 +

!

[i1|i3]c(0)i1i2i3 I(4!2!)

i1i2i3 +!

[i1|i2]b(0)i1i2 I(4!2!)

i1i2

RN = !!

[i1|i4]

d(4)i1i2i3i4

6+

!

[i1|i3]

c(9)i1i2i3

2!

!

[i1|i2]

"(qi1 ! qi2)

2

6!

m2i1 + m2

i2

2

#

b(9)i1i2

A = O(!)

AFDH =$

D2 ! 4

D2 ! D1

%A(D,Ds=D1) !

$D1 ! 4

D2 ! D1

%A(D,Ds=D2)

!gµ" + kµk"

k2 ! m2"

!!"(k)!µ(k)"(k2 ! m2) (12)

AN = +!

[i1|i4]

&di1i2i3i4 I(D)

i1i2i3i4

'

+!

[i1|i3]

&ci1i2i3 I(D)

i1i2i3

'+

!

[i1|i2]

&bi1i2 I(D)

i1i2

'+ R (13)

AN =!

[i1|i4]

&di1i2i3i4 I(D)

i1i2i3i4

'+

!

[i1|i3]

&ci1i2i3 I(D)

i1i2i3

'+

!

[i1|i2]

&bi1i2 I(D)

i1i2

'+R (14)

4

Cut-constructible part:

Rational part:

Vanishing contributions:

Scalar integrals I(D)i1i2... all known

‘t Hooft & Veltman ‘79; Bern, Dixon Kosower ’93, Duplancic & Nizic ’02; Ellis & GZ ’08, public code ⇒ http://www.qcdloop.fnal.gov

Page 38: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

The F90 Rocket program

So far computed one-loop amplitudes:✓N-gluons ✓qq + N-gluons✓qq + W + N-gluons✓qq + QQ + W✓tt + N-gluons [Melnikov,Schulze]✓tt + qq + N-gluons [Melnikov,Schulze]✓qq WW + N g ✓qq WW qq + 1 g

Rocket science!

Eruca sativa =Rocket=roquette=arugula=rucola

Recursive unitarity calculation of one-loop amplitudes

Rocket science!

Eruca sativa = Rocket = roquette = arugula = rucolaRecursive unitarity calculation of one-loop amplitudes

Page 39: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

The F90 Rocket program

So far computed one-loop amplitudes:✓N-gluons ✓qq + N-gluons✓qq + W + N-gluons✓qq + QQ + W✓tt + N-gluons [Melnikov,Schulze]✓tt + qq + N-gluons [Melnikov,Schulze]✓qq WW + N g ✓qq WW qq + 1 g

In perspective, for gluons: N = 6 ⇒ 10860 diags.N = 7 ⇒ 168925 diags.

Computed up to N=20

Rocket science!

Eruca sativa =Rocket=roquette=arugula=rucola

Recursive unitarity calculation of one-loop amplitudes

Rocket science!

Eruca sativa = Rocket = roquette = arugula = rucolaRecursive unitarity calculation of one-loop amplitudes

Page 40: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

W+W+ plus dijets

Melia, Melnikov, Rontsch, GZ ’11

Page 41: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

W+W+ plus dijets

W+W+ production is a peculiar SM process

Melia, Melnikov, Rontsch, GZ ’11

Page 42: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

W+W+ plus dijets

W+W+ production is a peculiar SM process

• it requires the presence of two jets (two quark lines)

Melia, Melnikov, Rontsch, GZ ’11

Page 43: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

W+W+ plus dijets

W+W+ production is a peculiar SM process

• it requires the presence of two jets (two quark lines)

• each quark line emits a W

Melia, Melnikov, Rontsch, GZ ’11

Page 44: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

W+W+ plus dijets

W+W+ production is a peculiar SM process

• it requires the presence of two jets (two quark lines)

• each quark line emits a W

• this implies that the process is infrared safe as the jet pT goes to zero

Melia, Melnikov, Rontsch, GZ ’11

Page 45: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

W+W+ plus dijets

W+W+ production is a peculiar SM process

• it requires the presence of two jets (two quark lines)

• each quark line emits a W

• this implies that the process is infrared safe as the jet pT goes to zero

• we consider the leptonic decay of the W. This gives a clear signature of two same-sign leptons, Et,miss and two jets

Melia, Melnikov, Rontsch, GZ ’11

Page 46: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

W+W+ plus dijets

W+W+ production is a peculiar SM process

• it requires the presence of two jets (two quark lines)

• each quark line emits a W

• this implies that the process is infrared safe as the jet pT goes to zero

• we consider the leptonic decay of the W. This gives a clear signature of two same-sign leptons, Et,miss and two jets [background to double parton scattering, models with doubly charged Higgs, di-quark production, R-parity violating smoun production . . . ]

Melia, Melnikov, Rontsch, GZ ’11

Page 47: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

W+W+ plus dijets

W+W+ production is a peculiar SM process

• it requires the presence of two jets (two quark lines)

• each quark line emits a W

• this implies that the process is infrared safe as the jet pT goes to zero

• we consider the leptonic decay of the W. This gives a clear signature of two same-sign leptons, Et,miss and two jets [background to double parton scattering, models with doubly charged Higgs, di-quark production, R-parity violating smoun production . . . ]

• the cross-section is around 6 fb at 14 TeV (3 fb at 7 TeV)

Melia, Melnikov, Rontsch, GZ ’11

Page 48: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

W+W+ plus dijets

W+W+ production is a peculiar SM process

• it requires the presence of two jets (two quark lines)

• each quark line emits a W

• this implies that the process is infrared safe as the jet pT goes to zero

• we consider the leptonic decay of the W. This gives a clear signature of two same-sign leptons, Et,miss and two jets [background to double parton scattering, models with doubly charged Higgs, di-quark production, R-parity violating smoun production . . . ]

• the cross-section is around 6 fb at 14 TeV (3 fb at 7 TeV)

•W-W- + dijet is roughly 40% the size Melia, Melnikov, Rontsch, GZ ’11

Page 49: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Setup

Cuts and input parameters

• pp collision at 14 TeV with decay to e+μ+ (full l+l+ ∼ twice as large)

• jets reconstructed using anti-kT with R = 0.4

• use MTSW08LO, αs(MZ)= 0.139, and MSTW08NLO, αs(MZ) = 0.120

• EW input

MW = 80.419 GeV, ΓW = 2.141 GeV αQED = 1/128.802 sin2θW = 0.222

• Cuts:

pT,l > 20 GeV, |ηl | < 2.4, pt,miss > 30 GeV, no jet cut

• Real + virtual implemented in the MCFM parton level integrator

Melia, Melnikov, Rontsch, GZ ’11

Page 50: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Setup

Cuts and input parameters

• pp collision at 14 TeV with decay to e+μ+ (full l+l+ ∼ twice as large)

• jets reconstructed using anti-kT with R = 0.4

• use MTSW08LO, αs(MZ)= 0.139, and MSTW08NLO, αs(MZ) = 0.120

• EW input

MW = 80.419 GeV, ΓW = 2.141 GeV αQED = 1/128.802 sin2θW = 0.222

• Cuts:

pT,l > 20 GeV, |ηl | < 2.4, pt,miss > 30 GeV, no jet cut

• Real + virtual implemented in the MCFM parton level integrator

Campbell, Ellis

Page 51: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Inclusive and exclusive cross-sections

‣ scale dependence reduced significantly at NLO

‣ 2-jet inclusive cross-section considerably larger than 2-jet exclusive ⇒ most events have a relatively hard third jet

µ = µR = µF

σLO = 2.7± 1.0 fb

σNLO = 2.4± 0.2 fb

∼ 60 l+l- events for 10 fb-1

Melia, Melnikov, Rontsch, GZ ’11

Page 52: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Inclusive and exclusive cross-sections

‣ scale dependence reduced significantly at NLO

‣ 2-jet inclusive cross-section considerably larger than 2-jet exclusive ⇒ most events have a relatively hard third jet

Melia, Melnikov, Rontsch, GZ ’11

Page 53: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Kinematic distributions

‣ scale dependence reduced significantly at NLO

‣ LO result overshoot at high pT. Characteristic effect of using a fixed rather than a dynamical scale in the LO calculation

Melia, Melnikov, Rontsch, GZ ’11

50 GeV < µ < 400 GeV

Page 54: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Kinematic distributions

‣ broad angular distribution between jet and lepton, peaked at ΔR = 3. NLO enhances the peak slightly.

‣ leptons prefer to be back to back (less so at NLO)

‣ in double parton scattering lepton directions are uncorrelated -- cut on ϕll could reduce the background

Melia, Melnikov, Rontsch, GZ ’11

50 GeV < µ < 400 GeV

Page 55: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

NLO + Parton Shower

‣ NLO describes the effect of at most one additional parton in the final state. Quite far from realistic LHC events that involve a large number of particles in the final state

‣ NLO accurate for inclusive observables, but not so much for exclusive ones, sensitive to the complex structure of LHC events

‣ recently the QCD production of W+W+ calculation was implemented in the POWHEG-BOX, this allow to maintain NLO accuracy while generating exclusive, realistic events

‣ the code is publicly available http://powheg-box.mib.infn.it

‣ this is the first 2 → 4 scattering process to be know at this accuracy

Page 56: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

NLO + Parton Shower

‣ NLO describes the effect of at most one additional parton in the final state. Quite far from realistic LHC events that involve a large number of particles in the final state

‣ NLO accurate for inclusive observables, but not so much for exclusive ones, sensitive to the complex structure of LHC events

‣ recently the QCD production of W+W+ calculation was implemented in the POWHEG-BOX, this allow to maintain NLO accuracy while generating exclusive, realistic events

‣ the code is publicly available http://powheg-box.mib.infn.it

‣ this is the first 2 → 4 scattering process to be know at this accuracy

Melia, Nason, Rontsch, GZ ’11

Page 57: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

NLO vs NLO+PS: inclusive distributions

Melia, Nason, Rontsch, GZ ’11

Page 58: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

NLO vs NLO+PS: HT,TOT

Melia, Nason, Rontsch, GZ ’11

HT,TOT =pt,e+ +pt,µ+ +pt,miss+�

j

pt,j

Page 59: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

NLO vs NLO+PS: HT,TOT

Melia, Nason, Rontsch, GZ ’11

HT,TOT =pt,e+ +pt,µ+ +pt,miss+�

j

pt,j

Page 60: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

NLO vs NLO+PS: HT,TOT

Melia, Nason, Rontsch, GZ ’11

HT,TOT =pt,e+ +pt,µ+ +pt,miss+�

j

pt,j

Page 61: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

NLO vs NLO+PS: HT,TOT

Melia, Nason, Rontsch, GZ ’11

HT,TOT =pt,e+ +pt,µ+ +pt,miss+�

j

pt,j

Details of the observable definition can be important

Page 62: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

NLO vs NLO+PS: exclusive distributions

Important differences between NLO and NLO+PS

Page 63: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

NLO vs NLO+PS: exclusive distributions

Melia, Nason, Rontsch, GZ ’11

Important differences between NLO and NLO+PS

Page 64: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

• compared to W+W+ more challenging calculation

• larger number of subprocesses and of primitive amplitudes required

• important background to intermediate mass/heavy Higgs searches + New Physics searches

W+W- plus dijets

Melia, Melnikov, Rontsch, GZ ’11

Page 65: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

W+W- plus dijets

Melia, Melnikov, Rontsch, GZ ’11

• compared to W+W+ more challenging calculation

• larger number of subprocesses and of primitive amplitudes required

• important background to intermediate mass/heavy Higgs searches + New Physics searches

Page 66: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

At the Tevatron this process is important background to Higgs plus dijets production. For mH = 160 GeV, with standard CFD Higgs search cuts:

W+W- plus dijets: Tevatron

σNLO

H(→WW→lept)+2j∼ 0.2fb

Ellis, Campbell, Williams ’10

Page 67: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

At the Tevatron this process is important background to Higgs plus dijets production. For mH = 160 GeV, with standard CFD Higgs search cuts:

W+W- plus dijets: Tevatron

σNLO

H(→WW→lept)+2j∼ 0.2fb

Melia, Melnikov, Rontsch, GZ ’11

At LO the uncertainty of W+W- + 2j cross-section is larger than the signal

σLO

WW (→lept)+2j ∼ 2.5± 0.9 fb

σNLO

WW (→lept)+2j ∼ 2.0± 0.1 fb

Ellis, Campbell, Williams ’10

Page 68: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

W+W- plus dijets: LHC

Page 69: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

W+W- plus dijets: LHC

Melia, Melnikov, Rontsch, GZ ’11

Page 70: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

• NLO cross section grows almost linearly with energy

• “optimal scale choice” depends on collider energy

• as at the Tevatron, after inclusion of NLO corrections, cross-section know to around 10% accuracy

W+W- plus dijets: LHC

Melia, Melnikov, Rontsch, GZ ’11

Page 71: NLO predictions for W W + jets · ‣typical SM process is accompanied by radiation multi-jet events ‣most signals involve pair-production and subsequent chain decays More important

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

! all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure theirproperties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

simple, efficient, general and transparent method

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

! all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure theirproperties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

needs as input only tree level amplitudes (computed with Berends-Giele recursion relations)

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

! all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure theirproperties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

D-dimensional unitarity is a very powerful tool for NLO calculations

Conclusions

⇒ a number of highly non-trivial calculations performed with this method

W+W+ plus dijet production + merging to parton shower

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

! all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure theirproperties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

W+W- plus dijet production

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

! all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure theirproperties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

suitable for automation

also: W + 3 jets, tt, tt+ 1jet

Today’s high energy colliders

Collider Process status

HERA (A & B) e±p running

Tevatron (I & II) pp̄ running

LHC pp starts 2007

current and upcoming ex-

periments collide protons

! all involve QCD

HERA: mainly measurements of parton densities and diffraction

Tevatron: mainly discovery of the top and related measurements

LHC designed to

discover the Higgs and measure it’s properties

unravel possible physics beyond the SM

Our ability to discover new particles and to measure theirproperties limited by the quality of our understanding of QCD

The one-loop amplitude for six gluon scattering - April 2006 – p.2/20

For a pedagogical review see One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts, Ellis, Kunszt, Melnikov, GZ to appear soon


Recommended