+ All Categories
Home > Documents > Non-Aqueous Redox Flow Batteries: Challenges &...

Non-Aqueous Redox Flow Batteries: Challenges &...

Date post: 30-May-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
34
Non-Aqueous Redox Flow Batteries: Challenges & Opportunities 11/18/14 Fikile Brushett Department of Chemical Engineering Massachusetts of Institute of Technology, Cambridge, MA 2 nd Annual MRES Conference, Northeastern University, Boston MA August 19 th , 2014
Transcript
Page 1: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

11/18/14  

Fikile Brushett Department of Chemical Engineering

Massachusetts of Institute of Technology, Cambridge, MA

2nd Annual MRES Conference, Northeastern University, Boston MA August 19th, 2014

Page 2: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Need for Distributed Grid Energy

2

Solar Wind Tidal

Power control & generation

Storage

Community Power grid

How can excess electricity be

utilized?

Page 3: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Batteries are <1% of Grid-scale EES

11/18/14   3  

DOE, Report on the First Quadrennial Technology Review, 2012

“To accelerate widespread adoption…installed cost of electrochemical grid storage systems fall to the low $100’s/kWh range.” (US Dept. of Energy)

Page 4: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Redox Flow Batteries for Grid Storage

11/18/14   4  

Xn+ + e- ↔ X(n-1)+ Y(m-1)+ ↔ Ym+ + e-

Xn+

X(n-1)+ Ym+

Y(m-1)+ Y(m-1)+

Ym+

Xn+

X(n-1)+ C+

e-

Charge – solid line Discharge – dotted line

only charge shown

Page 5: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

11/18/14  

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

5  

Why Non-Aqueous Flow Batteries? Benefits: (+) Expanded voltage window may enable higher energy (and power)

densities and increased round-trip energy efficiency

(+) Broad design space facilitated by wide range of electrolyte options

(+) A greater selection of redox couples available based on solvent choice and/or wider voltage window

(+) Smaller footprint may enable specific high-value urban applications

Challenges: (-) Higher solvent costs may hamper cost-competitiveness

(-) Reduced electrolyte conductivity may decrease performance and limit cell stack design options

(-) Undesirable solvent properties (e.g., volatility, flammability, toxicity)

(-) Unknowns (not a well-studied area)

Page 6: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Towards Cost-effective Energy Storage

11/18/14  

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

6  

( ) d

bopaddsmm

smm

dvertqdsysddvdvdsys

a

d tcc

Sc

cMsSc

cMsUFntU

RcEP +

+⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛++

−=

−−

−−

+

++

+

++ ,,

,,

,,,,,2

,

0 11 χχεεεεεε

Power Energy All Else

( ) 1,0

−+++= ∑ ddbopaddi

iima tEccmcAcP

Price = area + materials + overhead + system

•  5 h storage •  $120/kWh*

*includes inverter

•  7000 cycles •  20 year life

Linking performance & cost (as simply as possible):

In collaboration with R. Darling (UTRC) & K. Gallagher(ANL)

Page 7: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Flow Battery Component Cost Inputs

11/18/14   7  

Component Year 2014 Cost, $/m2

Ref. Future State Cost, $/m2

Ref.

Graphite flow field plate 55 1 25-35 1

Stainless-steel flow field plate 40 2 10-20 2

Carbon fiber felt / paper electrode

70 1 10-30 2

Fluorinated ion-exchange membrane

500 1 25-75 3

Polyolefin microporous separator

10 1 1-3 Est.

Frames, seals, and manifolds 6 Est. 1-3 Est.

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

1.  V. Viswanathan et al., J. Power Sources, 2014

2.  B.D. James and A.B. Spisak, Report from Strategic Analysis Inc., October 2012

3.  M. Mathias et al., The Electrochemical Society Interface, Fall 2005

Page 8: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

$120/kWh Flow Battery Designs (includes inverter)

11/18/14  

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

8  

Both Nonaqueous & Aqueous Flow Batteries have the potential for $120/kWh!

Assumes: §  75% roundtrip

efficiency

§  5 hr discharge

§  10% - 90% SOC

§  MW = 100 g/mol

§  Specific volume = 0.1 L/kg

reactor cost

actives, salts,

solvents, & storage vessels

Page 9: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

What might success look like?

11/18/14  

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

9  

§  Tailored redox molecules are an attractive pathway if…

Properties Non-aqueous Aqueous Uavg. (V) 3 1.5

ASR (Ω-cm2) 5 0.5

Capacity (g/mol*e-) 150 (~180 mAh/g) 150 (~180 mAh/g)

Solubility (kg/kg) 0.8 0.05

Concentration (mol/L)* ~4-5 ~1-2

Material Cost ($/kg) 5 5

Electrolyte Cost ($/kg) 5 0.1

*Assuming 1 g/mL electrolyte density

§  Metal anodes are promising but cycle life (> 7000 cycles with 20% irreversible capacity fade) and charging current may limit adoption.

Page 10: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Non-Aqueous Flow Battery Materials

11/18/14  

Redox-Active Organic Molecules

Brushett et al., Adv. Energy Mater., 2012

DBBB  

Shinkle et al., J. Power Sources, 2012

Metal-centered Coordination Complexes Metal-centered Ionic Liquids

Anderson et al., Dalton Trans., 2010

Semi-solid Slurry Suspension

Duduta et al., Adv. Energy Mater., 2011

Page 11: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Why Redox Active Organic Molecules?

11/18/14   11  

Benefits: (+) High storage capacity (low MWs & multi e-)

(+) Structural tunability (e.g., activity, solubility)

(+) Cheap & abundant raw materials

(+) Potential low “CO2” footprint

Challenges: (-) Low mass density (e.g., 1-2 g/cm3)

(-) Low electronic conductivity

(-) Solubility in organic electrolytes

(-) Unproven long term stability

Armand & Tarascon, Nature, 2008

Overcharge Protection Materials

Zhang et al., LIBs– New Developments, 2012

Page 12: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

A Wide Range of Candidate Materials

11/18/14   12  

Reductive Decomposition

Oxidative Decomposition

~4.0 V

Non-Aqueous Window

Aqueous Window

~1.23 V

Page 13: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

A Wide Range of Candidate Materials

11/18/14   13  

~180 mAh/g

overcharge materials

discovery materials

goal

goal: validate chemistry

Page 14: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

DBBB (Overcharge Material)

11/18/14   14  

2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB)

MW: 338.5 g/mol electrolyte A: 1.2 M LiPF6 in EC:EMC (3:7 by vol)

Brushett et al., Adv. Energy Mater., 2012; Zhang et al., Energy & Environ. Sci., 2012; Zhang et al., J. Power Sources, 2010

A successful overcharge protection material developed which has shown remarkable reversibility, stability, & longevity in LIB applications

- e-

+ e-

Page 15: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Molecular Accounting: Addition by Subtraction

11/18/14  

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

15  

n = 1 electron MW: 338.5 g/mol

Density: 0.9 g/cm3

Capacity: 79 mAh/g [DBBB]neat = 2.7 M

Do we need the long ether chains?

Redox-active core

Do we need tert-butyl protective group?

Can this core support multi-electron transfer?

Would methyl groups suffice?

Can we maintain solubility without it?

𝑞= 𝑛𝐹/3.6∗𝑀𝑊 

n – # of electron transfer F – Faraday constant MW – molecular weight

Page 16: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Derivatization of Substituted Alkoxybenzenes

11/18/14  

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

16  

DBBB: ~79 mAh/g

O

O

O

asymmetric structures

O

O

P

O

P

O

alternate substituents

O

O

simpler structures

O

O

other structures

In collaboration with J. Huang & L. Zhang (ANL)

Just a few examples…

Page 17: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Towards higher capacity materials…

11/18/14  

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

17  

𝑞= 𝒏𝑭/3.6∗𝑀𝑊  What are the next steps…

-0.8

-0.4

0

0.4

0.8

3.5 3.7 3.9 4.1 4.3

Cur

rent

(mA/

cm2 )

Potential (V vs. Li/Li+)

1005020105

scan rate(mV/s)

oxidation

reduction

Experimental: 0.01 M redox species / 1 M LiClO4 / PC, GCE/Au/Li

-1

-0.5

0

0.5

1

3.5 3.7 3.9 4.1 4.3

Cur

rent

(mA/

cm2 )

Potential (V vs. Li/Li+)

1005020105

scan rate(mV/s)

oxidation

reduction

~79 mAh/g ~162 mAh/g

Page 18: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Quinoxalines (Discovery Material)

11/18/14  

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

18  

Substituent groups can impart favorable and unfavorable traits on the base molecule

Can we validate the observed chemistry and better understand how the value proposition of this discovery material

MW: 130.15 g/mol Solubility: ~7 M

Capacity: 412 mAh/g

Page 19: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Effect of Substituent Group on Redox Behavior

11/18/14   19  

5 mM redox, 0.2 M LiBF4/PC in Pt/Li/Li cell, 20 mV/s

- 2e-

+ 2e-

Compounds Lower Redox (V vs. Li/Li+)

Upper Redox (V vs. Li/Li+)

Quinoxaline 2.649 ± 0.005 3.07 ± 0.02

2-methylquinoxaline 2.609 ± 0.006 2.94 ± 0.02

2,3-dimethylquinoxaline 2.525 ± 0.007 2.85 ± 0.02

2,3,6-trimethylquinoxaline 2.484 ± 0.008 2.80 ± 0.02

Brushett et al., Adv. Energy Mater., 2012

Page 20: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Unusual Redox Behavior of Quinoxalines

11/18/14   20  

Barqawi & Atfah, Electrochim. Acta, 1987

quinoxaline

2,3,6,7-tetramethylquinoxaline

cyclopentano{b}quinoxaline

Prior reports show different CV behavior Unexpected Anion Sensitivity

Page 21: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

A Quick Detour into Li-ion Battery Degradation

11/18/14   21  

Xu, Chem. Soc. Rev., 2004

§  At moderate temperatures (> 55°C), capacity fades after a few months

§  Decomposition primarily driven by Lewis acid equilibrium products

LiPF6 ↔ LiF + PF5

§  Mitigation strategy: Bind with a Lewis base (e.g. pyridine)

What can this tell us about Quinoxaline activity? Li et al., J. Electrochem. Soc., 2005

Page 22: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Quantum Calculations to Understand Redox Potential

11/18/14   22  

LiBF4 Li+ + BF4- + LiF + BF3 Salt dissociation:

In collaboration with R. Assary & L. Curtiss (ANL)

Page 23: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

11/18/14  

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

23  

Validation of BF3-enabled Redox Behavior

Pre-synthesized Adduct Direct spike of BF3 into the electrolyte

In collaboration with C. Diesendruck & J. Moore (UIUC)

§  Leads to an order of magnitude increase in the observed current §  Activation in previously inert electrolytes §  Complex electrochemical behavior (still under investigation…)

DFT Prediction

DFT Prediction

Page 24: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Concluding Remarks

11/18/14  

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

24  

§  Non-aqueous (and aqueous) flow batteries have the potential to meet $100/kWh grid storage targets

§  Non-aqueous solvents loosen one constraint (voltage) but take on another (solubility from electrolyte cost)

§  Organic molecules offer unique design opportunities through substituent modification and electrolyte interactions

§  A flow battery is more than the redox materials (electrolyte, membranes, electrodes) all of which need developmental work

Page 25: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Acknowledgements  

11/18/14   25  

Funding:

Not shown: Kyler Carroll (PD), Apurba Sakti (PD), John Barton (GS), Steven Brown (GS), Jeff Kowalski (GS), Jarrod Milshtein (GS)

T-E Modeling: §  Rob Darling (UTRC) §  Seungbum Ha, Kevin Gallagher (ANL)

Organic Synthesis: §  Jinhua Huang, Lu Zhang (ANL) §  Charles Diesendruck, Jeff Moore (UIUC)

Quantum Calculations: §  Rajeev Assary, Larry Curtiss (ANL)

Flow Cell Testing: §  Larry Pederson, Xiaoliang Wei, Wei

Wang (PNNL)

We gratefully acknowledge the Materials Engineering Research Facility and the ABR program providing scaled-up materials.

Page 26: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

BACK-UP SLIDES

11/18/14  

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

26  

Page 27: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Range of Grid Storage Options & Applications

11/18/14   27  

Adapted from the original figure in Sandia National Laboratory report, SAND 2013-5131, 2013

UPS-Power Quality T & D Grid Support – Load Shifting Bulk Power Mgmt.

Pumped Hydro

Flow Batteries

NaS Battery

Li-ion Battery

Lead-Acid Battery

High-Power Flywheels

High-Power Supercapacitors SMES

Advanced Pb-Acid battery High-Energy Supercapacitors

1 kW 1 GW 100 MW 10 MW 1 MW 100 kW 10 kW

Seco

nds

Min

utes

H

ours

Dis

char

ge T

ime

at R

ated

Pow

er

System Power Ratings, Module Size

Molten Salt

CAES

Page 28: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

11/18/14   28  

3.8

4

4.2

4.4

4.6

0 1 2 3 4 5 6 7 8 9 10

E0' (V

vs.

Li/L

i+ )

Redox Potential

0.0

1.0

2.0

3.0

0 1 2 3 4 5 6 7 8 9 10

k0(×10

-4cm/s) Rate Constant

MW 338 248 402 346 294 338 427 166 166

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9 10

D0(×10

-6cm2/s) Diffusion

1 M LiClO4 / PC (Similar  trends  observed  in  LiTFSI/DME)  

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

Page 29: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

11/18/14 29

(But  high  cost  of  inac7ve  materials  and  manufacturing,  >40%)  

V-­‐redox  

Target  range  

Goal:    Lower  cost  chemistries  at  higher  concentra7ons  and  higher  voltage  

Flow  BaUeries:    Cost  of  energy  ($/kWh)  is  func7on  of  cost  of  materials  ($/kg)  and  concentra7on  of  redox-­‐ac7ve  species  (M)  and  hardware  cost*  

(Plot assumes 40% of system cost is hardware)

JCESR  goal  

Li-­‐ion  electrodes  

Page 30: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Non-Aqueous vs. Aqueous Power Performance

11/18/14  

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

30  

Page 31: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

Interesting Trends as Function of Concentration

11/18/14  

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

31  

Peak currents were obtained from CV measurements taken in a GC / Pt / Ag/Ag+ cell at a scan rate of 10 mV/s. PC was used as a solvent.

§  For 0.005 M → 0.05 M 2,3,6-TMQ, leads to a 2-fold increase in peak current

§  Increasing the [LiBF4] is directly proportional to increased peak current

§  Similar results observed with quinoxaline (Q)

Page 32: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

An  All-­‐Organic  Non-­‐Aqueous  Redox  Couple  

11/18/14  

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

32  

V  

2DBBB    

2[DBBB+A-­‐]  

TMQ  

TMQ2-­‐  [C+]2  

Note:  Only  showing  charging  

2e-­‐  

2C+  

Can we transition this electrochemical redox couple to a prototype flow cell?

2e-­‐  

Page 33: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

JCESR’s  10  cm2  Flow  Cell  Prototype  

11/18/14  

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

33  

Test Conditions in Ar-glovebox: Electrolyte = 0.1 M DBBB & 0.2 M TMQ / 0.6 M LiBF4 / PC Electrolyte Volume = 10 mL each Flow rate = 40 mL/min Li+-Nafion 212 membrane ic/id = 0.0625 mA/cm2, 0.2 – 2.5 V

Page 34: Non-Aqueous Redox Flow Batteries: Challenges & Opportunitiesnuweb9.neu.edu/mres/wp-content/uploads/2014/11/Fikile-Brushett... · Non-Aqueous Redox Flow Batteries: Challenges & Opportunities

0th order Energy Density based on Li metal

11/18/14  

May  contain  trade  secrets  or  commercial  or  financial  informa7on  that  is  privileged  or  confiden7al  and  exempt  from  public  disclosure.    

34  

Based only on the capacity of the

organic material


Recommended