+ All Categories
Home > Documents > Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches...

Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches...

Date post: 04-Jul-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
162
Nonlinear Analog Behavioral Modeling of Microwave Devices and Circuits Microwave Devices and Circuits Dr. David E. Root Pi il R hSi i Principle Research Scientist High Frequency Technology Center Agilent Technologies Santa Rosa, CA IEEE MTT-S DML Lecture #1 Bergen Norway Bergen, Norway May 7, 2010 IEEE DML Norway talk #1 David E. Root May 7, 2010 Page 1
Transcript
Page 1: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Nonlinear Analog Behavioral Modeling of Microwave Devices and CircuitsMicrowave Devices and Circuits

Dr. David E. Root P i i l R h S i iPrinciple Research Scientist

High Frequency Technology Center Agilent Technologies

Santa Rosa, CA,

IEEE MTT-S DML Lecture #1Bergen NorwayBergen, Norway

May 7, 2010

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 1

Page 2: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Acknowledgement Key Contributors

Loren BettsAlex CognataChad Gillease

Norway IEEE MTT/AP ChapterChad GilleaseDaniel GunyanJason HornMasaya Iwamoto

Yngve Thodesen

Karl-Martin GjertsenMasaya IwamotoGreg JueDominique SchreursDavid Sharrit

Marius Ubostad

Jonny LangmyrenNick TufillaroJan VerspechtJianjun Xu

y g y

Peter Myhrberg

Bjorn Birkeland John Wood

Agilent ManagementMany others

Bjorn Birkeland

Riccardo Giacometti

Gi i DIEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 2

yGiovanni Damore

Page 3: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Agilent High Frequency Technology CenterIntegrated Diodes Liquid metal

it h

Measurement and ModelingSciences Internal and

GaNHyperabrupt Diodes

MEMS switches

GaAs

Agilent MeasurementHW & SW IP

external technology

Collaborative Innovation

pHEMT & FET ICsDiodes

InP

InternalCapability

Tech Access

packaging / subsystem

digital & mixed signal ICHBT ICs

Thin Film

Future use PNA2

Agilent ADS

Moment m

HFTC Fabrication & Access p y

microwave nano / microfabrication / MEMS

microwave IC

Modeling and Measurement ScienceThin Film

10M - 13.5 GHz

TC200G=10P1=11

X2

U9TC745

Pin = 15dBmG= - 11

U13TC728

U5TC905G=15P1=17

TC700G=8

P1=18

slopepad

TC728

TC728

ALCModulator

(PIN)

TC700G=8

P1=18

PIN diodespulse

Modulator2-20G

TC700G=8

P1=18

TC724G=7.5P1=26

PINswitche

slopepad

TC702G=7

P1=22

M/ACom

3.2 - 13.5 G Path

13.5 - 26 G Path

SMA

M/ACom TC700

G=8P1=18

ALCModulator(TC709)

TC200G=10P1=11

TC728

DET

SMA

ESD

TC702G=7

P1=22

TC728

TC724G=7.5P1=26

SMA

FL319.5 -26

FL216-21

FL113-16.7

B0

B5 - B7B7

B6

B5

B1 - B4

B1- B7B1 - B6

B0

B2

B

B4 -

B0 - B6

P1

P3

ESD

TC724G=7.5P1=26

TC626

TC626TC674

P4

TC728

TC700G=8

P1=18

Momentum& Access

HFTC Model & Measurement IPanalytical empirical behavioral

semiconductor materialFerromagnetics

Semiconductor

analytical empirical behavioral

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 3

Semiconductor switches

Page 4: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Outline

Introduction: Behavioral Models and NVNA

F ti l Bl k M d lFunctional Block Models• Nonlinear Time Series• X parameters (PHD Model) in the Frequency Domain• X-parameters (PHD Model) in the Frequency Domain• Mixed Time-Frequency Methods

Summary and Conclusionsy

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 4

Page 5: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Introduction: Behavioral Modeling and Design Hierarchy

S tSystem

Circuit( )( ) : ( , , ..., , ..., )ny t i f v v i i=

( )v t( )v t( )i t { Multivariate functions

for i1, i2

Embedding Variables

( )i t {{{

1 2

Behavioral Model:Accurate model of

lower level component

Equivalent Circuit Model“Compact Model”

Device

for simulation at nexthighest level

Compact Model

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 5

Page 6: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Measurement-Based and Simulation-Based ModelsActual Circuit Measurement-Based ModelMeasurement-Based Model

• Ckt. model may not exist• Ckt. models may be inaccurate• Completely protect design IP

Design of Module or Instrument Front EndCompletely protect design IP

GenerateB h i l

Amplifier or Mixer ICDC-20 GHz HBT Agilent HMMC 5200 amp [2]

BehavioralModel

Simulation-Based Model• Simulation speedup

Detailed Circuit Model (SPICE/ADS) f IC

• Simulation speedup• Design system before building/buying IC• Completely protect design IP

Simple for Linear Ckts: S parametersIEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 6

(SPICE/ADS) of IC Simple for Linear Ckts: S-parameters

Page 7: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

S-parameters as simplest behavioral model

Easy to measure at high frequenciesmeasure voltage traveling waves with a (linear) vector network analyzer (VNA)don't need shorts/opens which can cause devices to oscillate or self-destruct/ p

Relate to familiar measurements (gain, loss, reflection coefficient ...)Can cascade S-parameters of multiple devices to predict system performanceCan import and use S-parameter files in electronic-simulation tools (e.g. ADS)p p ( g )BUT: No harmonics, No distortion, No nonlinearities, …Invalid for nonlinear devices excited by large signals, despite ad hoc attempts

M d l

Incident TransmittedS 21a 1S parameters

Linear Simulation:Matrix Multiplication

Measure with linear VNA:Small amplitude sinusoids

Model Parameters:Simple algebra

S 11Reflected S 22

Reflectedb 1

a 1b 2

DUT

Port 1 Port 2

S-parametersb1 = S11a1 + S12a2

b2 = S21a1 + S22a20k

iij

ajk j

bSa =

=

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 7

Transmitted Incident

1 a 2S 12

b2 S21a1 + S22a2 k j≠

Page 8: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Three Components of Behavioral Modeling

1. Model FormulationNonlinear ODEs in Time Domain (e g Transient Analysis; all others)– Nonlinear ODEs in Time Domain (e.g. Transient Analysis; all others)

– NL Spectral Map in Freq. Domain (e.g. Harmonic Balance) X-params– Mixed Domains (e.g. ODE-Coupled Envelopes in Circuit Env. Analysis)

2. Experiment Design– Stimulus needed to excite relevant dynamics

3 Model Identification3. Model Identification– Procedure to determine model “parameters”

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 8

Page 9: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Model Formulation: Time & Freq. Domains [1,6]

( ) ( ( ), ( ), ( ), ..., ( ), ...)I t F V t V t V t I t=( ) ( ( ), ( ), ( ), ..., ( ), ...)I t F V t V t V t I tNatural for strongly nonlinear low-order (lumped) systems

,...),,( 321 AAAFB kk =

Freq. Domain natural for low-distortion, high-freq. ICs

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 9

Formulate model eqs. in language native to appropriate simulator

Page 10: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Wanted: Cascadability of Nonlinear Components

21 Pou

t

1 11 222

P di t i l d h i ( it d d h ) th h h i f

Sin(2πf0t)

Freq

1

f0

1

3f0

1

2f0

222

Predict signal and harmonics (magnitude and phase) through chains of cascaded nonlinear components under drive

• Inter-stage mismatch is important to final results– Can not infer these effects from VNA measurements (even “Hot S22”)

• Required for communication circuits and module design• Linear S-parameter theory doesn’t apply!Linear S parameter theory doesn t apply!

Most previous attempts to generalize S-parameters to nonlinear case are wrong!

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 10

Page 11: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Wanted: Hierarchical Modeling Model the cascade directly

Dev 1 Dev 2

Dev 1 Dev 2

Model the cascade directly

Mod 1 Mod 2

Mod 1 Mod 2

CompositeModel

(Higher Level)

A cascade of many models reduced to one

Mod 1 Mod 2

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 11

Page 12: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Experiment Design: Simulation

Detailed Circuit Model Goes here

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 12

Page 13: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Experiment Design: Measurement

Nonlinear Vector Network Analyzer [9,14] (NVNA)

Magnitude and Phase Data Acquisition

RFIC

A1k B1l B AA1k B1l B2m A2nReferenceplanes

Calibrated magnitude & phase of harmonics/IMD

M d li ti l i l ditiMeasures under realistic large-signal conditions

Based on Standard Agilent PNA HardwareAnd custom reference generatorNew phase calibration standard

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 13

New phase calibration standard

Page 14: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Introduction: NVNA measurements complex spectra and waveformscomplex spectra and waveforms

2 kA1kA

B 2kB

pkBpkA1kB 2k

Port IndexHarmonic Index

I 2I1I 2I

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 14

time time

Page 15: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Nonlinear Vector Network Analyzer (NVNA) [14]:

Network Analyzer Phase Reference Meas. Science Algorithms & Software

+ + = NVNA

NVNA = PNA-X + Phase Reference (custom InP IC)+ A li ti SW d lib ti ( d h )+ Application SW and calibration (mag and phase)

two internal sources, internal switches, and an internal broadband combinerNVNA measures Magnitude and Phase of all relevant frequency components

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 15

(cross-frequency coherence) necessary to measure X-parameters!

Page 16: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Nonlinear Vector Network Analyzer (NVNA) [14]

Vector (amplitude/phase) corrected nonlinear measurements from 10 MHz to 50 GHz

Calibrated absolute amplitude and relative phase (cross-p p (frequency relative phase) of measured spectra traceable to standards lab

50 GHz of vector corrected bandwidth for time domain waveforms of voltages and currents of DUTg

Multi-Envelope domain measurements for measurement and analysis of memory effects

X-parameters: Extension of Scattering parameters into the li i idi i i i ht i t linonlinear region providing unique insight into nonlinear

DUT behavior. Efficient measurements with phase control.External instrument control, pulsed, triggered measurements

X t MDIF fil d b ADS X P tX-parameter MDIF file read by ADS XnP component or nonlinear simulation and design.

X-parameter generation from detailed schematics within ADS simulator.

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 16

Standard VNA HW with Nonlinear features & capability

Page 17: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Outline

Introduction: Behavioral Models and NVNA

F ti l Bl k M d lFunctional Block Models• Nonlinear Time Series• X parameters (PHD model) in the Frequency Domain• X-parameters (PHD model) in the Frequency Domain• Mixed Time-Frequency

Summary and Conclusionsy

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 17

Page 18: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Nonlinear Time Series method of Behavioral Modeling [1,6]

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 18

Page 19: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Dynamical Systems & State Space

The dynamics of the nonlinear system can be assumed to be described by a system of nonlinear ODEs

( ) ( 1) ( )( ) ( ,... , , ,... )n n my t f y y x x x−=

O d f ti d i ti

( )( ) ( ), ( )u t f u t x t= Vector of State Equations

Order of time derivative

( )( )

( ) ( ) (

( ) ( ), (

)

)

f

y t h u t x t= Scalar output y(t)

The sampled solution of the ODE, y(t), is a time-series

The solution of the dynamical equations for state variables, (t) i ti t i d t j t i Ph S

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 19

u(t), is a time-parameterized trajectory in Phase Space

Page 20: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Phase Space and Time Series

The multi dimensional space

Lorenz system

The multi-dimensional space spanned by the state variables is known as phase spacephase space

Any measurable output is a projection of this trajectory versus time:a Time SeriesTime Series

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 20

a Time SeriesTime Series

Page 21: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Nonlinear Time Series (NLTS) Phase Space Reconstruction by Embeddingy g

Output y(t)I t (t)

NLTS Behavioral Modeling is “inverse” of solving known ODEsStart from input & output time series and discover dynamics

Output y(t)Input x(t)Unknown Nonlinear

Component

Stimulate System with drive x(t)

Record Time Series output y(t)

timetime

y

Embed drive x(t) & response y(t)

Stop when trajectory single valued

This results in the Nonlinear ODE:

x( )y t y

( ( ), ( ), ( ),...) 0f y t y t x t =

This results in the Nonlinear ODE:

Approximate f with smooth functiony

x

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 21

Attach ODE Model to Circuit Simulator

Page 22: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Excitation DesignsGoal: stimulate all relevant (observable) dynamics

Sweep Power and Frequency to “cover phase space”

Goal: stimulate all relevant (observable) dynamics

‘Two-tone’

f1 f +Δf

‘Three-tone’

Used for modelsf1 f1+Δf

f1 f1+Δff1+Δf

models

‘Modulation’ (CDMA)

f1f1+Δf

f2

‘Multi-tone’ or ‘Multi-sine’

f1+Δf?f1+Δf

fn

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 22

Page 23: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Embedding: Building up phase space to define ODE

i(t)B

i(t)i(t)B

i(t)i(t)BB

BB

AA AA

v(t)v(t)v(t) v(t)v(t)

v’(t)v (t)

( ) ( ( ) ( ))i t i v t v t( ) ( ( ))i t i v t≠IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 23

( ) ( ( ), ( ))i t i v t v t=( ) ( ( ))

Page 24: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Model Identification: Nonlinear Time Series (NLTS)

X(t) Y(t)Stimulate / Excite SystemSufficiently complex stimulus

( )

( )

( ) [ ( ), ( ),..., ( )]( ) [ ( ), ( ),..., ( )]

m

n

x t x t x t x ty t y t y t y t

Embed:Create auxiliary variables(represent waveform)( ) [ ( ), ( ), , ( )]y y y y ( p )

( ) ( )1 1 1 1 1 1

( ) ( )

( ) ( ) ... ( ) ( ) ( ) ... ( )( ) ( ) ( ) ( ) ( ) ( )

m n

m n

x t x t x t y t y t y tx t x t x t y t y t y t Sample data:

2 2 2 2 2 2

( ) ( )

( ) ( ) ... ( ) ( ) ( ) ... ( ). . ... . . . ... .

( ) ( ) ... ( ) ( ) ( ) ... ( )m np p p p p p

x t x t x t y t y t y t

x t x t x t y t y t y t

at high frequency(or envelope; hard if multiple timescales)( ) ( ) ( ) ( ) ( ) ( )p p p p p py y y

( ) ( 1) ( )( ,... , , ,... )n n my f y y x x x−= Fit:Nonlinear function f

p )

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 24

Page 25: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Function approximation Artificial Neural Networks

An ANN is a parallel processor made up of simple, interconnectedprocessing units, called neurons, with weighted connections.

sigmoidweights biases

x1

...

baxwsvxxFI

i

K

kikkiiK +⎟⎠

⎞⎜⎝

⎛+=∑ ∑

= =1 11 ),...,(

xk

•Universal Approximation Theorem: Fit “any” nonlinear function of any # of variables•Infinitely differentiable: better for distortion than naïve splines or low-order polynomials.•Easy to train (fit) using standard third-party tools (MATLAB)

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 25

•Easy to train on scattered data

Page 26: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Function approximation: Artificial Neural Networks( ) ( 1) ( 2) ( ) ( 1)( ) ( ( ), ( ),..., ( ), ( ), ( ),..., ( ))n n n n n

ANNy t f y t y t y t u t u t u t− − −=

fANN

{ },ki kw a “Dynamic Neural Network”

weights biases

…{ }

{ },ki kw a Obtained by Training

… …Can also define f bypolynomials, radial basis functions, look p tables etc

( 1) ( 2) ( ) ( 1)

lookup tables etc.

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 26

y(n-1)(t) y(n-2)(t) … y(t) u(n)(t) u(n-1)(t) … u(t)

Page 27: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Model Implementation: ODE in circuit simulator(after Zhang and Xu in [6])

xx

x(1)+

-y

v2v1

+

-

( )

( 1) ( )( ,... , , ,... )

n

n m

yf y y x x x−

=

-

(1) (2)

+ v2v3

+

-1v y=

x(1) x(2)-

3 -

+

+ +

vn-1vn -1 2v v=

x(m-1) x(m)- f vn-1

( )( )mnnv v

f− =

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 27

( )1 2( , ,..., , , ,..., )m

n n nv f v v v x xx− −=

Page 28: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

NLTSA modeling flow

• MATLAB Toolbox, plus 3rd-party software

Define range of operationChoose DUT Excitation

Design

3 party software

• ‘NLTSfile’ structure

• ADS/NVNA-MATLABinterfacesMATLAB Behavioral

ADSSimulation

NNMSMeasurement

Read data into

NVNAMeasurement

interfaces

• ADS templates for

– simulation

d t di l

Modeling Toolbox

Choosemodel

MATLAB

– data display

– model verification• Model as SDD in ADS

EmbeddingDimension

modelvariables

MultivariateFunction App.

Model Verification

Create Modelin ADS

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 28

Page 29: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

A t l Ci itExample: GaAs HBT MMIC

Actual Circuit

DC-20 GHz GaAs HBT (Agilent HMMC 5200 Amp)

Series-Shunt Amplifier

G i 9 5 dB @ 1 5GHGain: 9.5 dB @ 1.5GHz

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 29

Detailed ckt model

Page 30: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Fundamental Phase

Results: NLTS Accuracy and Speed [1,6]NLTS Behavioral model Circuit model data

100

120

140

160

180

od

el[:

:,1

])IC

[::,

1])

Fundamental Phase

11

12

13

14

m(I

n_

mo

de

l[::,

1],

z1[:

:,1

])B

m(I

n_

IC[:

:,1

],z1

ic[:

:,1

])

Fundamental Gain

14

dBm

180

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4-22 6

0

20

40

60

80

-20

ph

ase

(Ou

t_m

op

ha

se(O

ut_

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4-22 6

7

8

9

10

6

dB

m(O

ut_

mo

de

l[::,

1],

z2[:

:,1

])-d

Bd

Bm

(Ou

t_IC

[::,

1],

z2ic

[::,

1])

-dB

6 -20

1 - 19 GHz

dBm(In_model[::,1],z1[::,1])dBm(In_IC[::,1],z1ic[::,1])

dbm(In_model[::,1],z1[::,1])dbm(In_IC[::,1],z1ic[::,1])-22 6

dBm(2) (2)

1 2 1 2 1 2( ) ( , ( ), ( ), ( ), ( ), ( ), ( ))i i iI t f I V t V t V t V t V t V t=-22 6

dBm

3.5

4.0

4.5

3.5

4.0

4.5

19 neurons

2.0

2.5

3.0

1.5

2.0

2.5

3.0

1 0

229.68 seconds

11315.67 seconds

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 30

Time psec

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80.0 2.0

1.5

0 200

1.0

Time psecTime Domain Waveforms

Page 31: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Circuit Co-Simulation vs. NLTSA ModelResults 3GPP WCDMA (lower) ACLRResults 3GPP WCDMA (lower) ACLR

3GHz WCDMA

Model generated from

294 sec/pt NLTS

Model generated from only sinusoidal signals

294 sec/pt NLTS

1532 sec/pt Ckt.

40 neuron model

Courtesy Greg Jue

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 31

Page 32: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Circuit Co-Simulation vs. NLTSA Behavioral ModelResults vs. Measured 3GPP WCDMA (lower) ACLRResults vs. Measured 3GPP WCDMA (lower) ACLR

WCDMA Lower ACLR Comparison:Circuit Co-Sim vs. NLTSA Model vs. Measured

3GHz simulated

2 4GH

60

70-15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

2.4GHz meas

30

40

50

60

CLR

(dB

Circuit Co-Sim 5MHz Lower

10

20

30

AC NLTSA Model 5 MHz Lower

Circuit Co-Sim 10 MHz Lower

NLTSA Model 10 MHz Lower

Measured Data 5 MHz Lower0

Input Power (dBm)Measured Data 10 MHz Lower

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 32

Model is also cascadable Model works in TA, HB, Envelope

Page 33: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Outline

Introduction: Behavioral Models and NVNA

F ti l Bl k M d lFunctional Block Models• Nonlinear Time Series• X parameters (PHD Model) in the Frequency Domain• X-parameters (PHD Model) in the Frequency Domain• Mixed Time-Frequency Methods

Summary and Conclusionsy

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 33

Page 34: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameters (PHD model): a nonlinear paradigm“Is there an analogue with linear S parameters to help withIs there an analogue with linear S-parameters to help with the nonlinear problem?”

Frequency Domain description is natural for high-frequency, distributed systems

Natural for Harmonic Balance Algorithms and NVNA data

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 34

Arbitrarily Nonlinear; Not limited to Volterra Theory

Page 35: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-Parameters: The Nonlinear Paradigm

X-parameters are the mathematically correct superset of S-parameters, applicable to both large-signal and small-signal conditions for linear and nonlinear components The math exists!conditions, for linear and nonlinear components.

We can measure, model, & simulate with X-parameters Each part of the puzzle has been created

The math exists!

p pThe pieces now fit together seamlesslyNVNA: Measure X-params X-parameter block

HARM O NIC BALANCE

ADS: Simulate with X-paramsH arm onicBalanceH B2

EquationN am e[3]="Z load"EquationN am e[2]="R Fpower"EquationN am e[1]="R Ffreq"U seKrylov=noO rder[1]=5Freq[1]=R Ffreq

Interoperable Nonlinear Measurement Modeling & Simulation with X params

“X-parameters have the potential to do for characterization, modeling, and design of nonlinear components and systems what

Interoperable Nonlinear Measurement, Modeling & Simulation with X-params

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 35

g, g p ylinear S-parameters do for linear components & systems”

Page 36: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-Parameters: Why They are Important:Predict performance of cascaded NL componentsPredict performance of cascaded NL components

Cascaded Nonlinear Amplifiers: X-parameters enable nonlinear simulation from pmeasured data in the presence of mismatch

•Unambiguously identifiable from a simple set of measurementsg y p•Extremely accurate for high-frequency, distributed nonlinear systems•Fully nonlinear vector quantities (Magnitude and phase of all harmonics)

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 36

•Cascadable (correct behavior in mismatched environment)

Page 37: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameters come from thePoly-Harmonic Distortion (PHD) Framework [3-6 12]Poly-Harmonic Distortion (PHD) Framework [3-6,12]

2A1A

1B 2B( )B F D C A A A A1 1 11 12 21 22( , , , ..., , , ...)k kB F D C A A A A=

2 2 11 12 21 22( , , , ..., , , ...)k kB F D C A A A A=Port Index Harmonic (or carrier) Index

Spectral map of complex large input phasors to large complex output phasors

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 37

Black-Box description holds for transistors, amplifiers, RF systems, etc.

Page 38: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameters: Simplest Case - driven with single large tone at port 1 [1] (derivation in lecture 2)large tone at port 1 [1] (derivation in lecture 2)

, , 11 12 21 22( , , , ..., , , ...)e f e fB F D C A A A A=

∑ ∑

Concept: simplify general nonlinear spectral mapping by spectral linearization

, ,

( )11

( )( ), 1 1

,,1

*1(| |) (( ) )

ef g gh ef hef

S fF fe f

T f hgh

g

hgh

g h h

B X X A AA P A X P AP − + ⋅= +⋅+∑ ∑

f l h dMismatch terms: Mismatch terms:

11( )j AP e ϕ=

Perfectly matched responses c e s:

linear in ghA linear in *ghA

Not both g and h =1 in sums

Phase terms come from time-invariance:

“Output of delayed input is just the delayed output”

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 38

Page 39: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameter Results: Cascadability of Nonlinear BlocksNonlinear BlocksHMMC 5200 Amp

Sin(2πf0t)P t

dB

Compression

deg

f0 3f02f0

PoutAM/PM

2nd Harmonic PhasedBm deg

Cascaded PHD modelsCascaded Ckt. Models

0 6GH 6 0GH

2nd Harmonic Amplitude 2nd Harmonic PhasedBm deg

Does for distortion of

0.6GHz – 6.0GHz

dBm deg3rd Harmonic Amplitude nonlinear components

what S-parameters do for linear components3rd Harmonic Phase

3rd Harmonic Amplitude

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 39

Page 40: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Improved Asymptotic Behavior

Volterra Theory Constraints Added for

20

Improved asymptotic behavior at low power

-80

-60

-40

-20

0

-40 -35 -30 -25 -20 -15 -10 -5 0 5-45 10

-140

-120

-100

-160

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 40

Pinc

Page 41: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameters: HMMC 5200 Response to Digital Modulation

Circuit Model

Modulation

X-parameters generated from ckt model

f SIEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 41

Excellent Results from Simple Excitations

Page 42: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameter Results: Transportability 27 Ohm validation measurement-based model 50 Ohm data

1 0 1 0

v1

0.0

0.5

1.0

v20.0

0.5

1.0

100 200 300 400 500 6000 700

-0.5

-1.0

100 200 300 400 500 6000 700

-1.0

-0.5

-1.5

100 200 300 400 500 6000 700

time, psec

100 200 300 400 500 6000 700

time, psec

0.005

0.010

i1

0.04

0.05

i2

-0.005

0.000

0.005 1

-0.02

0.00

0.02i2

100 200 300 400 500 6000 700

-0.010

time, psec

100 200 300 400 500 6000 700

-0.04

time, psec

M B d X M d l I d d t NVNA D t

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 42

Measurement-Based X-parameter Model Independent NVNA Data

Page 43: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Rough Comparison of Methods and Applicability

X-Parameters

Frequency Domain natural for highly linear distributed broad band ckts

NLTSA

Works in TA, HB, Envelopelinear, distributed, broad-band ckts

Experiment Design completely solved

Highly automated Model Identification

Excellent for strongly nonlinear, but lumped (low order ODE) systems

T i i l ith i Highly automated Model Identification

Works in HB & Envelope

Very robust for convergence

Training non-algorithmic

Experiment design not fully solved

Not as robust for convergence e y obust o co e ge ce

Always accurate if sampled densely

Complexity increases rapidly for

Not as robust for convergence

Scales well with complexity

Great gains in simulation speedmultiple tones

Great gains in simulation speed

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 43

Page 44: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Outline

Introduction: Behavioral Models and NVNA

F ti l Bl k M d lFunctional Block Models• Nonlinear Time Series• X parameters (PHD Model) in the Frequency Domain• X-parameters (PHD Model) in the Frequency Domain• Mixed Time-Frequency Methods

Summary and Conclusionsy

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 44

Page 45: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Envelope Domain for Long-Term Memory [7,8]Applies to systems under large-signal modulated drives

Time-varying spectra for all inputs, outputs, & state variables

Perfectly suited for Circuit Envelope Analysis y p y

Well-matched for data from Nonlinear Vector Network AnalyzerTime Domain (envelope)

B2(t)Time-varying spectrum

1 2 3 4DC

02

0

( ) Re ( )H

j h f th

h

x t X t e π

=

⎛ ⎞= ⎜ ⎟⎝ ⎠∑

Xh(t) set of complex (amplitude and phase) waveforms at each harmonic index htime

Freq. (GHz)1 2 3 4DC

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 45

Modeling problem: map input envelopes to output envelopes

Page 46: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Envelope Domain for Long-Term Memory [7,8]

Merge Frequency and Time DomainsSpectral mapping ( ) ( )FB X A A A A=Spectral mapping

a differential equation in the envelope domain

(1) ( ) (1) ( )ˆ ˆ ˆ ˆˆ ˆ ˆ

( )11 12 21 22( , , ..., , , ...)pk pkB X A A A A=

(1) ( ) (1) ( )( ( ),..., ( ), ( ), ( ),..., ( ),..., ( ))n mk k k k l l k kB f B t B t A t A t A t A t=

Envelope or carrier indexOrder of time derivative

Envelope or carrier index

21 21 20 11ˆˆ ˆ( ) ( ( ), ( ))

ˆ ( )

B t f B t A t

dB

=Example:2

2011 21

( ) ˆ ˆ( ( ) , ( ))dB t g A t B tdt

=

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 46

Page 47: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Envelope Model: Amplifier with Self-Heating [8]0.4

F d t l I t4

G i R d 0.2

0.3

Fundamental Input

2

3

Fundamental Output

Gain Reduces as device heats up0.1

0.0

1

2

Pulsed RF signal at 1GHz:

10 20 30 400 50time, usec

time, usec10 20 30 400 50

0

0.04 40Third Harmonic Output Mag & Phase

Pulsed RF signal at 1GHz: Thermal Time Const. 10usec

0.02

0.03

20

30

Systematic approach to0.01

0.00

10

0

Systematic approach to identifying “hidden” state variables for long-term

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 47

10 20 30 400 50time, usec memory IMS2007 [13]

Page 48: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Dynamic Long-Term Memory PHD Models Envelope Differential Equations in ADS [7,8,13]

X t ith d i ( d)

Envelope Differential Equations in ADS [7,8,13]Verspecht et al in 2007 International Microwave Symposium Digest [13]

X-parameters with dynamic memory (red)compared to circuit-level model (blue)

2.5

1.5

2.0B21

0.5

1.0

0.2 0.4 0.6 0.8 1.0 1.20.0 1.4

0.0

A11

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 48

A11

Page 49: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

ConclusionsPowerful nonlinear device & behavioral modeling approaches inPowerful nonlinear device & behavioral modeling approaches in time, frequency, and mixed domains have been presented• X-parameters are mature. Commercial solutions to measure, model, and

simulate are available supported and expanding (see lecture 2)simulate are available, supported, and expanding (see lecture 2).• Time-domain (NLTSA) techniques could become practical soon.• Envelope domain (dynamic X-parameters) is attractive for memory.

Emergence of commercially available Large-Signal HW & SW• e.g. NVNA on modern PNA-X platform [9,14]• e.g. nonlinear simulators with built-in XnP components & X-param analysisg p p y

Great opportunity for applicationsS ifi ti f ti t b X t• Specification of active components by X-parameters

• Device and behavioral modeling applications of NVNA measurements• Stability analysis and matching power amplifiers under drive

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 49

• Active Signal Integrity

Page 50: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

References[1] J. Wood, D. E. Root, N. B. Tufillaro, “A behavioral modeling

approach to nonlinear model-order reduction for RF/microwave ICs and systems ” IEEE Transactions on

[9] Blockley et al 2005 IEEE MTT-S International Microwave S i Di t L B h CA USA J 2005RF/microwave ICs and systems, IEEE Transactions on

Microwave Theory and Techniques, Vol. 52, Issue 9, Part 2, Sept. 2004 pp. 2274-2284

[2] Agilent HMMC-5200 DC-20 GHz HBT Series-Shunt Amplifier, Data Sheet, August 2002.

[3] J Verspecht M Vanden Bossche F Verbeyst

Symposium Digest, Long Beach, CA, USA, June 2005.

[10] Jan Verspecht Patent US 7,038,468 B2 (issued May 2, 2006 based on a provisional patent 60/477,349 filed on June 11, 2003)

[11] Soury et al 2005 IEEE International Microwave Symposium Digest pp 975 978[3] J. Verspecht, M. Vanden Bossche, F. Verbeyst,

“Characterizing Components under Large Signal Excitation: Defining Sensible `Large Signal S-Parameters'?!,” in 49th IEEE ARFTG Conference Dig., Denver, CO, USA, June 1997, pp. 109-117.

[4] J. Verspecht, D.E. Root, J. Wood, A. Cognata, “Broad-Band, Multi-Harmonic Frequency Domain Behavioral Models from

Digest pp. 975-978

[12] J. Verspecht and D. E. Root, “Poly-Harmonic Distortion Modeling,” in IEEE Microwave Theory and Techniques Microwave Magazine, June, 2006.

[13] J Verspecht D Gunyan J Horn J Xu A Cognata and D E RootMulti Harmonic Frequency Domain Behavioral Models from Automated Large-Signal Vectorial Network Measurements,” in 2005 IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA, USA, June 2005.

[5] D. E. Root, J. Verspecht, D. Sharrit, J. Wood, and A. Cognata, “Broad-Band Poly-Harmonic Distortion (PHD) Behavioral Models from Fast Automated Simulations and

[13] J. Verspecht, D. Gunyan, J. Horn, J. Xu, A. Cognata, and D.E. Root, “Multi-tone, Multi-Port, and Dynamic Memory Enhancements to PHD Nonlinear Behavioral Models from Large-Signal Measurements and Simulations,” 2007 IEEE MTT-S Int. Microwave Symp. Dig.,Honolulu, HI, USA, June 2007.

[14] Horn et al 2008 Power Amplifier Symposium, Orlando, Jan. 2008

Large-Signal Vectorial Network Measurements”, IEEE Transactions on Microwave Theory and Techniques Vol. 53. No. 11, November, 2005 pp. 3656-3664

[6] J. Wood, D. E. Root, editors, Fundamentals of NonlinearBehavioral Modeling for RF and Microwave Design, 1sted. Norwood, MA, USA, Artech House, 2005.

[7] Root et al US Patent Publication # US2005102124 AA,Published 2005

[8] D. E. Root, D. Sharrit, J. Verspecht, “Nonlinear Behavioral Models with Memory: Formulation, Identification, and Implementation,” 2006 IEEE MTT-S International Microwave S ( S ) ff

IEEE DML Norway talk #1 David E. Root

May 7, 2010 Page 50

Symposium Workshop (WSL) on Memory Effects in Power Amplifiers

Page 51: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameters*:A new paradigm for measurement modeling andA new paradigm for measurement, modeling, and design of nonlinear microwave & RF components

Dr David E RootDr. David E. RootPrincipal R&D Scientist

High Frequency Technology CenterSanta Rosa, CA USA

IEEE MTT-S DML Lecture #2Bergen, Norway

May 7 2010

* X parameters is a trademark of Agilent Technologies Inc

May 7, 2010

© Copyright Agilent Technologies 2010

Page 1Page 1 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

* X-parameters is a trademark of Agilent Technologies, Inc.

Page 52: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Key Contributors

• Keith Anderson

• Loren Betts

• Radek Biernacki

• Jack Sifri

• Mary Lou Simmermacher

• Gary Simpson• Radek Biernacki

• Chad Gillease

• Daniel Gunyan

• Gary Simpson

• Franz Sischka

• Darlene Solomon

• John Harmon

• Jason Horn

• Tina Sun

• Yee Ping Teoh

• Yuchen Hu

• Masaya Iwamoto

• Mihai Marcu

• Dan Thomasson

• Jan Verspecht

• Kenn WildnauerMihai Marcu

• Troels Nielson

• Greg Peters

Kenn Wildnauer

• Jianjun Xu

• Yoshiyuki Yanagimoto

© Copyright Agilent Technologies 2010

Page 2Page 2 D. E. RootD. E. Root

• Mark PierpointX-parameter DML lecture Norway #2

May 7, 2010

Page 53: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Outline

• Introduction: X-parameter Basics

• Survey of X-parameter benefits and applications

• Summary

• References and LinksReferences and Links

© Copyright Agilent Technologies 2010

Page 3Page 3 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Page 54: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-Parameters: Mainstream Nonlinear Interoperable TechnologyElectronic design

automation softwareAgilent Nonlinear Vector

Network Analyzer

Nonlinear Nonlinear

CustomerNonlinear

Simulation & DesignMeasurements

Customer Applications

Nonlinear Modeling

© Copyright Agilent Technologies 2010

Page 4Page 4 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

*11 , 11 , 11( ) ( ) ( )F S m n T m n

pm pm pm qn qn pm qn qnB X A X A P A X A P A− += + +

Page 55: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

S-parameters Solve All Small-Signal ProblemsBut devices must operate linearlyp y

Reflected Transmitted

Incident ModelB1 S11A1 + S12A2

Measure

Agilent Vector Network AnalyzerS

B1 = S11A1 + S12A2

B2 = S21A1 + S22A2

g y

S-Parameters

ReflectedDesign

What about large-signal

nonlinear problems?

Reflected

Incident

1 2S_ParamSP1

Step=0.1 GHzStop=10.0 GHzStart=1.0 GHz

S-PARAMETERS

freq (1 000GHz to 26 00GHz)

$TC

700.

.S(2

,1)

© Copyright Agilent Technologies 2010

Page 5Page 5 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

nonlinear problems?freq (1.000GHz to 26.00GHz)

Page 56: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameters Solve Nonlinear ProblemsSame use model as S-parameters, but much more powerfulp , p

Reflected Transmitted

Incident Model

Measure

X

11

, 11

*

( )

( )

( )

F mpm pm

S m npm qn qn

T m n

B X A P

X A P A

X A P A

+

=

+

+Nonlinear Vector Network Analyzer

X-Parameters, 11( )pm qn qnX A P A+

Reflected

Design

Reflected

Incident

1 2EDA Software

© Copyright Agilent Technologies 2010

Page 6Page 6 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Page 57: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Capturing the imagination of the industry

Solves real-world problems now

Changing the way the industry worksp

Interoperable characterization, modeling and design

Continuous wave of innovations and award-winning modeling, and design

solutions

Potential to do for

a a d gresearch

nonlinear components and systems what S-parameters do forparameters do for linear components and systems

© Copyright Agilent Technologies 2010

Page 7Page 7 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Page 58: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameters: Hierarchical Design and Validation

T D D i S ifi ti ( t t il bl )

ESL

System IntegratorsBottom-up Measurement-based VerificationElectronic System Level Design

Top-Down Design Specifications (not yet available)

Bottom-up Simulation-based Verification

X-parameterSpecs

20092009

X tX-par analysisSimulator

20092009

X-par generator

X-pars X P

2009200920092009

C dNVNA 50 GHz

X-pars XnPcomponent

XnP: nativesimulation

load-dep X-parshi h X

© Copyright Agilent Technologies 2010

Page 8Page 8 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Component vendors X-par meassimulationcomponent

high power X-pars

Page 59: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Introduction: NVNA measurements complex spectra and waveformscomplex spectra and waveforms

2 kA1kA

B 2kB

pkBpkA1kB 2k

Port IndexHarmonic Index

I I1I 2I

© Copyright Agilent Technologies 2010

Page 9Page 9 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

time time

Page 60: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Measurement-Based Modeling & Design Flow“X-parameters enable predictive nonlinear design from NL data”

NVNA ADSSimulation and DesignNonlinear Measurements

X parameters enable predictive nonlinear design from NL data

v2v1

ConnectorX1

MCA_ZX60_2522MCA_ZX60_2522_1fundamental_1=fundamental

MCA_ZFL_11ADMCA_ZFL_11AD_1fundamental_1=fundamental

RR1R=25 Ohm

V_1ToneSRC14

Freq=fundamentalV=polar(2*A11N,0) V

RR11R=50 Ohm DC_Block

DC_Block1DC_BlockDC_Block2

I_Probei2

I_Probei1

X-parameter blocks

Data File25

75

76

20

-15 150

X-parameters enable accurate nonlinear simulation under small to moderate mismatch. (See later for large mismatch)

Drag and drop

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

-30

-20

-10

0

-40

10

.

.

-50

-40

-30

-20

-10

0

10

.

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

5

10

15

20

0

.

.

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

70

71

72

73

74

75

69

.

.

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

-135

-130

-125

-120

-140

-115

2

4

6

8

10

12

14

.

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

-80

-70

-60

-50

-40

-30

-90

-20

.

.

-100

-80

-60

-40

-20

.

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

-40

-35

-30

-25

-20

-45

.

.

130

140

150

160

170

.

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

130

135

140

145

125

.

.

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

120

122

124

126

128

130

132

134

118

136

.

.

-10 -5 0 5 10 15-15 20

-30

-20

-10

0

10

-40

20

.

Drag and drop

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

-60

-70

.

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

0

-2

.

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

-120

.

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

120

.

.

allowing prediction of component behavior in complicated nonlinear circuits. IMD / ACPR exact in narrow-band limit

© Copyright Agilent Technologies 2010

Page 10Page 10 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

“X-parameters: the same use model as S-parameters but much more powerful”

Page 61: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameter Concept: Linearized Spectral Map around a Large-Signal Operating Point (LSOP)

Incident Port 1 Scattered Port 2Incident Port 1 Scattered Port 22 1 1 1 2 1 3 2 1 2 2 2 3( , , , , . . . , , , . . .)kB D C A A A A A A

Multi-variate NL map

Simpler NL map

( )2 11( , , 0, 0, 0, ...)F

kX DC A

+Linear non analytic map

Simpler NL map

Linear non-analytic map( ) ( ) *2 , 11 2 , 11[ ( , ) ( , ) ]S T

k pj pj k pj pjX D C A A X D C A A+∑X-pars include exact nonlinear mapping to totally linear (S-pars) & everything in between

© Copyright Agilent Technologies 2010

Page 11Page 11 D. E. RootD. E. Root

X pars include exact nonlinear mapping to totally linear (S pars) & everything in between Trade simplicity for accuracy.

May 7, 2010

X-parameter DML lecture Norway #2

Page 62: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameters: What they are & where they come fromDC f

aj2

DC f0 2f0 3f0 4f0 5f0

A11

•Scattering of multiple incident large-amplitude waves.

•Can be simplified according•Can be simplified according to linear or nonlinear dependence on inputs (simplicity vs accuracy)( p y y)

•Measured on NVNA orgenerated in simulator

2

( )3, 2 j

Si jX a

2

( ) *3, 2 j

Ti jX a ( )

3F

iX•Rules for computing the response to general signals

generated in simulator

2j2, jj

0 15 f f− 0 1f f+03 f

, ,

( )11

( )( ), 1 11

*1(| |) (( ) )

ef g gh ef hef

S fF fe f

T f hgh

hghB X X A AA P a X P aP − + ⋅= +⋅+∑ ∑ 11( )j AP e ϕ=

given extracted X-parameters

© Copyright Agilent Technologies 2010

Page 12Page 12 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

, ,,,

ef g gh ef hefgg h h

Page 63: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Simplest X-parameters for a Power Amplifier( )( ) ( ) 2 *()( ) ( )( ) TF SXB AA A PAP X X A A+ +( )( )

21 11( )21,21

2 *21 11 21 2121 11,21 11()( ) ( )( ) TF SXB AA A PAP X X A A= + +

( )( )11 11

( )11,11

211 11 21 2121 11,21 11()( ) ( )( ) TF SXB AA A PAP X X A A= + +

40dB ( )

21 11FX A

( )F

X-parameters reduce to (linear) S-parameters in the appropriate limit

11

( )11 11 11| | 0

F

AX A s

→→

40

20 ( )21 21

SX11

( )21 11 21| | 0

F

AX A s

→→

( )S 11

( )11,21 11 12| | 0

( )S

AX A s

→→

0

-20

21,21

( )TX 11

( )11,21 11 | | 0

( ) 0T

AX A

→→

11

( )21,21 11 22| | 0

( )S

AX A s

→→11| |

-25 -20 -15 -10 -5 0 5 10-40

20 ( )21,21TX 11| | 0A →

11

( )21,21 11 | | 0

( ) 0T

AX A

→→

© Copyright Agilent Technologies 2010

Page 13Page 13 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

|A11| (dBm) X-parameters are a superset of S-parameters

Page 64: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameter Experiment Design & Identification [1,14]

Stimulate port 1 with large tone at freq. fStimulate port 2 with small tone at freq. f + ΔMeasure response at three different frequencies

Take limit as D goes to zero

( ) 121 21 1,1( , )FX B f A P−=

Input Spectrum

21 11( )21 21

( , )S B f AX

+ Δ= Output Spectrum

f+Δf21,21

21( )A f + Δ

11 2121 11 2 ( )( ) ( , ) j A AT B f AX e φ −− Δ

Optimal and orthogonalf f+Δ

11 21( )( )21,21

21( )jX e

A fφ=

+ ΔSimilarly for harmonics

Optimal and orthogonalexperiment design and model identification

© Copyright Agilent Technologies 2010

Page 14Page 14 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Page 65: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-Parameters and the Harmonic Jacobian [1]X t th “ d li l ” f HB l i

From 1-tone HB analysis ( )11( )F m

pm pmX A B P−=

X-parameters are the “modeling analog” of HB analysisWrite model equations in language native to simulator algorithms

y 11( )pm pm

( ) ( ) pmS m n BX A P− + ∂

=( )

11 *( ) pmT m npm qn

BX A P

A− − ∂

=∂

11 12 21

, 11

, 0,... 0,...

( )pm qnqn A A A

X A PA

= =

=∂

from known Jacobian of 1-tone HB analysis.

11 12 21

, 11 *

, 0,... 0,..

( )pm qnqn A A A

A= =

yJacobian comes from I-V and Gij, Cij from element constitutive relations

Never need 2-tone HB analysis. Faster, guaranteed spectrally linearMost of the terms in the required Jacobian are know ahead of time

( ) *( )11

)11

(11(| | ( ) )) (S f T f h

hh

hF f

fB X A P X A P AX A P A− += + +∑ ∑© Copyright Agilent Technologies 2010

Page 15Page 15 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

, ,11,

1111,

, (| | ( ) )) (ef ghe ef ghf ghgh

gh hge fB X A P X A P AX A P A+ +∑ ∑

Page 66: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-Parameter: How they are measured: Experiment Design & Identification (2): Ideal CaseExperiment Design & Identification (2): Ideal Case

E.g. functions for Bpm (port p, harmonic m) given small extraction tones Aqn (port q, harmonic n)

( ) ( ) ( ) *11 , 11 , 11( ) ( ) ( )F m S m n T m n

pm pm pm qn qn pm qn qnB X A P X A P A X A P A− += + +

Perform 3 independent experiments with fixed A11input Aqn output Bpm

( ) ( ) ( )(1) ( ) ( ) (1) ( ) (1)11 11 11

F m S m n T m npm pm pm qn qn pm qn qnB X A P X A P A X A P A− += + +

p qn pm

ImIm ( )(0) ( )

11F m

pm pmB X A P=

( ) ( ) ( )11 , 11 , 11pm pm pm qn qn pm qn qn

( ) ( ) ( )(2) ( ) ( ) (2) ( ) (2)*11 , 11 , 11

F m S m n T m npm pm pm qn qn pm qn qnB X A P X A P A X A P A− += + +Re

Re

© Copyright Agilent Technologies 2010

Page 16Page 16 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Page 67: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameter properties and benefitsStatic nonlinearity (AM-AM) at any/all CW frequenciesStatic nonlinearity (AM-AM) at any/all CW frequencies

High-frequency memory (AM-PM)

Large-signal output match (correct “Hot S22”)

Harmonics (even and odd) at input and output ports

PAE and DC currents / voltages at supply ports

Cascadable: distortion through chains of components Does for driven nonlinear systems what S-parameters do for linear systems

Hierarchical: apply to one component or multiple (e.g. multi-stage amp)pp y p p ( g g p)

Transportable: mismatch at fundamental and harmonics taken into account

Can be used to simulate some long-term memory affects g y

Can be generated from Simulation and Measurement

Highly automated experiment design & model identification

© Copyright Agilent Technologies 2010

Page 17Page 17 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

g y p g

Page 68: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Outline

• Introduction: X-parameter Basics

• Survey of X-parameter benefits and applications– Cascading nonlinear blocks– Integrating handset amplifier into cell phone (customer example)

Load dependent X parameters and their harmonic tuning capability– Load-dependent X-parameters and their harmonic tuning capability– High power X-parameter measurements– X-parameter generation from detailed schematics in ADS– X-parameter simulation component (XNP) built-in to ADS– Dynamic X-parameters: Long-term memory research

• Summaryy

• References and Links

© Copyright Agilent Technologies 2010

Page 18Page 18 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Page 69: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Measurement-based nonlinear design with X-parameters

ZFL-AD11+11dB gain, 3dBmmax output power

SourceConnector

80 psdelay

ZX60-2522M-S+23.5dB gain, 18dBm

max output powerLoad

v2v1

ConnectorX1

MCA_ZX60_2522MCA_ZX60_2522_1fundamental 1=fundamental

MCA_ZFL_11ADMCA_ZFL_11AD_1fundamental 1=fundamental

RR1R=25 Ohm

RR11R=50 Ohm DC_Block

DC_Block1DC_BlockDC_Block2

I_Probei2

I_Probei1

fundamental_1 fundamentalfundamental_1 fundamental

V_1ToneSRC14

Freq=fundamentalV=polar(2*A11N,0) V Amplifier Component Models from individual X-parameter measurements

© Copyright Agilent Technologies 2010

Page 19Page 19 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Page 70: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

ResultsCascaded Simulation vs. MeasurementCascaded Simulation vs. Measurement

Red: Cascade MeasurementBlue: Cascaded X-parameter SimulationLight Green: Cascaded Simulation No X(T) termsLight Green: Cascaded Simulation, No X(T) termsDark Green: Cascaded Models, No X(S) or X(T) terms

34

36

1])

::,1]

)T

[::,1

])

Fundamental Gain

74

76

]))1]))

,1])

):,1

]))

Fundamental Phase

30

32

34

dB(b

2[::,

1]/a

1[::,

1])

B(b

2ref

[::,1

]/a1r

ef[::

,b2

NoT

[::,1

]/a1N

oT[:

2NoS

T[::

,1]/a

1NoS

T

70

72

74

wra

p(ph

ase(

b2[::

,1]

wra

p(ph

ase(

b2re

f[::,

rap(

phas

e(b2

NoT

[::ap

(pha

se(b

2NoS

T[:

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

28

26

Pinc

dBdB

(bdB

(b2

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

68

66

Pinc

unw

Pincref

unw

unw

run

wra

© Copyright Agilent Technologies 2010

Page 20Page 20 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Page 71: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

ResultsCascaded Simulation vs. MeasurementCascaded Simulation vs. Measurement

Red: Cascade MeasurementBlue: Cascaded X-parameter SimulationLight Green: Cascaded Simulation, No X(T) termsgDark Green: Cascaded Models, No X(S) or X(T) terms

Fundamental % Error Second Harmonic % Error

0*2]

6

8

10

12

::,1

])/b

2ref

[::,

1]*1

00ef

[::,

1])/

b2re

f[::

,1]*

1re

f[::

,1])

/b2r

ef[:

:,1]

*

60

80

100

[::,

2])/

b2re

f[::

,2]*

10re

f[::

,2])

/b2r

ef[:

:,2]

2ref

[::,

2])/

b2re

f[::

,2

28 26 24 22 20 18 16 14 12 10 8 630 4

2

4

6

0

(b2[

::,1

]-b2

ref[

:(b

2NoT

[::,

1]-b

2re

(b2N

oST

[::,

1]-b

2r

28 26 24 22 20 18 16 14 12 10 8 630 4

20

40

0(b

2[::

,2]-

b2re

f[(b

2NoT

[::,

2]-b

2r(b

2NoS

T[:

:,2]

-b2

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

Pinc

-28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6-30 -4

Pinc

“X-parameters enable predictive nonlinear design from NL data”

© Copyright Agilent Technologies 2010

Page 21Page 21 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Page 72: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameters solve key, real customer problems Example: GSM amp. and cell phone integrationH l IEEE E Mi C f A d O b 2008Horn et al IEEE European Microwave Conference, Amsterdam, October 2008

F d t l b t t 2

Red Elliptical shape: X-parameter predictionBlue circular shape Hot S22 prediction

Fundamental b-wave at port 2

-1 2

-1.1

-1

Measurementssmall colored crossesSkyworks amp

-1.5

-1.4

-1.3

-1.2

Imag

0 0.2 0.4Real

-1.7

-1.6

“X-parameters predict output match under large input drive Hot S does not”

Allowed Sony-Ericsson to take into account second-harmonic mismatch on amp in system integration

© Copyright Agilent Technologies 2010

Page 22Page 22 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

input drive Hot S22 does not

Page 73: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Complete X-parameter Model of GSM Amplifier“We didn’t think this was possible”“We didn’t think this was possible” – Sony-Ericsson engineer Joakim Eriksson, Ph.D

Unprecedented capability

1015

Output Voltage

Unprecedented capabilityData acquisition 30x faster

.

-10-505

10

-15

Volts

02

-2

4

Volts

TX_Enable

VAPC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 16

0.51.01.5

0.0

2.0

Time (ms)

Volts

© Copyright Agilent Technologies 2010

Page 23Page 23 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

( )

“X-parameters provide a nonlinear electronic interactive datasheet based on data”

Page 74: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Load-dependence of another GSM commercial Amp from X-parameters measured at only 50 ohms 900 MHz Vbatt=3.7, Vapc = 1.4

System Integrator wants to use X-parameters to compareperformance among vendor parts within their system

Pout, 1dBm contour spacingm7IndexPout2=$LPData ZPout2=0 010 / 40 002

28.000m8indep(m8)=Pdel contours p 0 040 / 137 001

12 Red: LoadPull measurementsBl Si l ti i X

p g p y

$LPData..ZPout2=0.010 / -40.002Pout2=34.364350impedance = Z0 * (1.015 - j0.012)

Pdel_contours_p=0.040 / -137.001level=34.364350, number=1impedance = Z0 * (0.942 - j0.051)

Blue: Simulations using X-parameters extracted in 50 ohms

m7m8 50 ohm X-parameters, predict performance well over a wide range of impedance

But what if we want even more accuracy?

© Copyright Agilent Technologies 2010

Page 24Page 24 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Page 75: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameters with load-dependence

1 1 11 12 21 22( , , , ..., , , ...)k kB F DC A A A A=

2 2 11 12 21 22( , , , ..., , , ...)k kB F DC A A A A=

2kA1kA

Port IndexHarmonic (or carrier) Index

1kB 2kBX-parameters allow us to simplify the general B(A) relations:Trade efficiency, practicality, for generality & accuracyPowerful, correct, and practical

,,

( ) *1

( )11

,1

( ), 1

,1( ,| |) ), ( ,( )

ef gef gh hef

S f hgh

g h

T f hg

F fe

g hf hB X DC A X DP C A DC A P AP A X +− ⋅= + +⋅∑ ∑

, , p

, ,

( )11 21

( ), 11

( ) *11 21

,1

,2 ( , ,| |,( ,| ( , ,| |,|,| ) )| ),

ef ghghf efe

F fe f

S f h T f hg

hgh

g hh

g

B X DC A A X DC A X DC AA A AP AP Pθθθ − += + + ⋅⋅∑ ∑

,,

( )11 2

,

( ) *( ), 1 2 1

,1 1 2( , , ) (( ,| , ,|, ) )

ef ef f ghg eh

S f hgh

g

T f hgh

gh

F f

he f X DC XAB X DC A AP DP C AA P− += Γ + + Γ ⋅Γ ⋅∑ ∑

© Copyright Agilent Technologies 2010

Page 25Page 25 D. E. RootD. E. RootMay 7, 2010

“X-parameters unify S-parameters and Load-Pull”X-parameter DML lecture Norway #2

Page 76: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

NVNA+Load-Pull = Instant Large-Signal Model

• Drag and drop measured X-parameters for immediate ADS simulation “This is a breakthrough for the industry.”

– Gary Simpson Maury Microwavey p y

NVNA +Load-Pull

© Copyright Agilent Technologies 2010

Page 26Page 26 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Page 77: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Load-Dependent X-Parameters of a FETWJ FP2189 1W HFET

G. Simpson et al IEEE ARFTG Conference, December, 2008

15

20

0.25

0.30

Me

ag

eg

e Sim

Measured and Simulated Voltage and Current Waveforms

Measurements X-par Simulation

Pout Contour (dBm)

WJ FP2189 1W HFET

0

5

10

0.10

0.15

0.20

ea

sure

dC

urre

ntM

ea

sure

dV

olta

Sim

ula

ted

Vo

lta

mu

late

dC

urre

nt

0.2 0.4 0.6 0.80.0 1.0

-5 0.05

time, nsec

Measured and Simulated Voltage and Current Waveforms0 30

Measured and Simulated Dynamic Load Line

8

10

12

14

16

0.2

0.3

0.4

0.5

Me

asu

red

Cu

sure

dV

olta

ge

late

dV

olta

ge S

imu

late

dC

u0.15

0.20

0.25

0.30

asu

red

Cur

ren

tm

ula

ted

Cu

rre

nt

0.2 0.4 0.6 0.80.0 1.0

4

6

2

0.1

0.0

time, nsec

urre

ntM

ea

sS

imu

urre

nt

0 2 4 6 8 10 12 14 16-2 18

0.10

0.05

MeasuredVoltage

Me

SimulatedVoltage

Sim

E i t l H i B l X t if S t d l d ll

© Copyright Agilent Technologies 2010

Page 27Page 27 D. E. RootD. E. RootMay 7, 2010

Experimental Harmonic Balance X-parameters unify S-parameters and load-pull

X-parameter DML lecture Norway #2

Page 78: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Harmonic Load-Tuning Predictions from X-parametersHorn et al, IEEE Power Amplifier Symposium, September, 2009

Fundamental Output Magnitude Second Harmonic Output Magnitude

, p y p , p ,

Cree CGH40010 10 W RF Power GaN HEMT

Contours vs. 2nd Harmonic Load (Fixed input power and fundamental load)

X-Parameter Prediction: Blue

)

Measured with Harmonic LP System: RedKey Agilent IP calibrates out uncontrolled harmonic impedances presented by tuner &re-grids impedance data for accuracy and interpolation in ADS

© Copyright Agilent Technologies 2010

Page 28Page 28 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Harmonic load-pull may be unnecessary! Simpler, cheaper, faster alternatives exist

Page 79: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Simple SetupFast, automated measurementsTime-domain waveforms

Load-dependent X-parameters as a measurement-based device model“The data is the model”The data is the model

Useful for:• High-power device characterization• X-parameter transistor modelsp• multi-stage amps w. large mismatch

Control power, frequency, bias and load at fundamental frequency: faster, fewer d t i l t th h i L Pdata, simpler setup than harmonic L-P

• Get sensitivity to harmonic loads at output and input ports without having to control harmonic impedances

• Estimate the effects of source-pull on device performance in ADS without having

© Copyright Agilent Technologies 2010

Page 29Page 29 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

to control source impedance

Page 80: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Load-dependent X-parameters versus harmonic load-pull Root et al INMMiC Conference, April, 2010versus harmonic load pull

Load-dependent X-pars Harmonic load-pull validation

Root et al INMMiC Conference, April, 2010Horn et al submitted to IEEE CSICS2010

• One output tuner to vary load at fundamental frequency. At each load inject small tones at 2nd and

• Three output tuners to vary loads at fundamental, second, and third harmonics j

3rd harmonic freqs(9x(1+2x2) = 45 measurements,actually ~99 measurements)

independently (9x9x9 = 729 measurements)

actually ~99 measurements)

• Measured DC – 4th harmonic • Measured DC - 4th harmonic

• Take into ADS. Present 729 independent loads to model

© Copyright Agilent Technologies 2010

Page 30Page 30 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Compare waveforms, PAE, dynamic load-lines, etc.

Page 81: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Load-dependent X-parameter model for GaN HEMT:

GPIB

Bias

Cree CGH40010 G N HEMTPNA‐X

MDC S l

Bias Tees

NVNA

GaN HEMT10 W packaged

transistor Maury Software

U

DC Supply NVNA Firmware

• 900 MHz• Measure Load-dependent

DUT Maury Tuner

USB

Maury Tuner

X-parametersvs power at 9 impedances

• 4 harmonics measured2 d 3 dTunerTuner

9 load states x 3 x 2• probe tones at 2nd and 3rd

harmonics• harmonic impedancesuncontrolledX-parameter file taken into ADS

© Copyright Agilent Technologies 2010

Page 31Page 31 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

uncontrolledpfor independent validation

Page 82: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Harmonic Load-pull Setup: For Validation Only

J. Horn et al Submitted to CSICS2010

•Waveforms measured

PNA‐X

GPIB

Bias Tees

•Waveforms measured versus power at each set of 729 harmonic loads as controlled independently

Maury Software

DC Supply NVNA Firmware

by the tuners.•Fundamental, second, and third complex impedances setSoftware

USB

Firmware impedances set independently

DUT Maury Tuner Z1

Maury Tuner

Maury Tuner Z2

Maury Tuner Z2

© Copyright Agilent Technologies 2010

Page 32Page 32 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

9 states 9 states 9 states

Page 83: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Load-dependent X-parameters versus harmonic load-pullversus harmonic load pull

Load-dependent X-pars Harmonic load-pull validation• One output tuner to vary load at

fundamental frequency. At each load inject small tones at 2nd

• Three output tuners to vary loads at fundamental, second, and third harmonics j

and 3rd harmonic freqs(9x(1+2x2) = 45 measurements,actually ~125 measurements)

independently (9x9x9 = 729 measurements)

actually ~125 measurements)

• Measured DC – 4th harmonic • Measured DC - 4th harmonic

• Take into ADS. Present 729 independent loads to model

© Copyright Agilent Technologies 2010

Page 33Page 33 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Compare waveforms, PAE, dynamic load-lines, etc.

Page 84: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Prediction of GaN HEMT harmonic-load dependencefrom fundamental-only load-dependent X-pars

60

70

80

PAE

Courtesy of J. Horn J. Horn et al, submitted to CSICS2010

30

40

50Z1Z2 Z3 Cree

Harmonic loads

6 8 10 12 14 16 184 20

20

10

CGH40010 GaN HEMT

Pin (available)2.0

y

Id [A] 70 2.0

Vd VdId

0.5

1.0

1.5

Id [A]

30

40

50

60

0 5

1.0

1.5

Vd IdVdId

10 20 30 40 50 600 70

0.0

-0.5

Vd [V]X t d l

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.20.0 2.4

10

20

30

0

0.0

0.5

-0.5

Time (nanoseconds)

© Copyright Agilent Technologies 2010

Page 34Page 34 D. E. RootD. E. RootMay 7, 2010

X-parameter DML lecture Norway #2

X-parameter model Harmonic time-domain load-pull measurements

Time (nanoseconds)

Page 85: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Prediction of GaN HEMT harmonic-load dependencefrom fundamental-only load-dependent X-pars

50

60

70

ZCree

CGH40010

PAE

20

30

40Z1Z2 Z3

CGH40010 GaN HEMT Harmonic loads

6 8 10 12 14 16 184 20

10

2.0

y a c oad e

Pin (available)70 2.0

VdId

VdId

1.0

1.5Id [A]

30

40

50

60

1.0

1.5

Vd

0.0

0.5

0.5

0

10

20

-10

0.0

0.5

-0.5

© Copyright Agilent Technologies 2010

Page 35Page 35 D. E. RootD. E. Root

0 10 20 30 40 50 60-10 70

May 7, 2010

X-parameter DML lecture Norway #2

Vd [V] 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.20.0 2.4

Time (nanoseconds)

Page 86: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

70

PAE vs. Available Input Power

Prediction of GaN HEMT harmonic-load dependencefrom fundamental-only load-dependent X-pars

50

60

70

Cree CGH40010

PAE

20

30

40Z1Z2 Z3

CGH40010 GaN HEMT Harmonic loads

6 8 10 12 14 16 184 20

10

y 60

70

1 5

2.0

Vd IdVdId

Pin (available)

0 5

1.0

1.5

2.0

30

40

50

60

0.5

1.0

1.5

Id [A]

-0.5

0.0

0.5

-1.0

10

20

0

-0.5

0.0

-1.0

© Copyright Agilent Technologies 2010

Page 36Page 36 D. E. RootD. E. Root

10 20 30 40 50 600 70 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.20.0 2.4

May 7, 2010

X-parameter DML lecture Norway #2

Vd [V] Time (nanoseconds)

Page 87: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Prediction of GaN HEMT harmonic-load dependencefrom fundamental-only load-dependent X-pars

50

60

70

PAE

20

30

40

_Z1Z2 Z3

Cree CGH40010

Harmonic loads

6 8 10 12 14 16 184 20

10

70 2.0

2.0

GaN HEMT

Id Vd VdId

Pin (available)

30

40

50

60

0 5

1.0

1.5

1.0

1.5

Id [A] Vd IdVdId

0 2 0 4 0 6 0 8 1 0 1 2 1 4 1 6 1 8 2 0 2 20 0 2 4

10

20

30

0

0.0

0.5

-0.5

0.0

0.5

-0.5

© Copyright Agilent Technologies 2010

Page 37Page 37 D. E. RootD. E. Root

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.20.0 2.410 20 30 40 50 600 70

0.5

May 7, 2010

X-parameter DML lecture Norway #2

Vd [V] Time (nanoseconds)

Page 88: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Summary: Fundamental-only load-dependent X-parametersFundamental only load dependent X parameters• Full two-port nonlinear functional block model for simulation

A t f l d t i d d f d i f– Accounts for load-tuning dependence of device performance without the requirement of independently controlling harmonic loads

– Use to design matching networks, multi-stage amps, Doherty amps., …

• Large data / time reduction compared to harmonic load-pullX t d l l li l i b f l d N• X-parameter model scales linearly in number of loads N

• Harmonic L-P scales as H = no. of controlled harmonic loads

• Harmonic load pull may be unnecessary

HN• Harmonic load-pull may be unnecessary

– Validates “principle of harmonic superposition” (Verspecht et al 1997) – Source-pull unnecessary (Horn et al submitted to CSISC 2010])

© Copyright Agilent Technologies 2010

Page 38Page 38 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Source pull unnecessary (Horn et al submitted to CSISC 2010]) except for power transfer

Page 89: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameters at 100W(courtesy K. Anderson) Gain Compression at fundamental

Mini-Circuits ZHL-100W-52

51.0

51.5

100 MHzParameter Description

P t N b ZHL 100W 52

50.0

50.5

/a1

[::,1

])

Part Number ZHL-100W-52

Pout max(@1dB compression)

45dBm (min, 50M-500MHz)47dBm (typ, 50M-500MHz)

49.0

49.5

dB

(b2[

::,1]

/

Pout max(@3dB compression)

46.5dBm (min, 50M-500MHz)48.5dBm (typ, 50M-500MHz)

48.0

48.5

47 5

Pin max (no damage)

+3dBm

Gain 48dB (min)50dB (typ)

-18 -16 -14 -12 -10 -8 -6 -4 -2-20 0

47.5

pinInput VSWR 1.45:1 (typ)

Output VSWR 2.5:1 (typ)X-parameters have been

d t 250 W© Copyright Agilent Technologies 2010

Page 39Page 39 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

measured at 250 W

Page 90: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameters at 100W

XS21,21

5 harmonics magnitude and phase:XT21,21

5 harmonics, magnitude and phase: fund=150 MHz

200 4

XS23,21

50

100

150

200

1

2

3

4

x,re

al_i

ndex

,::])

ts(Iload.i[imag_in

XT23,21

-150

-100

-50

0

-3

-2

-1

0

ts(v

load

[imag

_ind

ex

ndex,real_index,::])

© Copyright Agilent Technologies 2010

Page 40Page 40 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

2 4 6 8 10 12 14 16 180 20

-200 -4

time, nsec

t

Page 91: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Generate an IP-Protected X-parameter model

Slid t f J Sif i

© Copyright Agilent Technologies 2010

Page 41Page 41 D. E. RootD. E. RootMay 7, 2010

Slide courtesy of J. Sifri

X-parameter DML lecture Norway #2

Page 92: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Single Tone Amp model with 50 ohm loadIP protected model; Fast X parameter simulation component (20x faster)IP-protected model; Fast X-parameter simulation component (20x faster)

X-pars Vs ckt-level PA Results

Test the PA circuit

© Copyright Agilent Technologies 2010

Page 42Page 42 D. E. RootD. E. RootMay 7, 2010

X-parameter DML lecture Norway #2

Page 93: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Soon: Two-tone X-parameter NVNA measurements

•Magnitude and Phase of intermod products and sensitivity to mismatch•Measure and simulate freq-dependence & asymmetry of complex intermodsD i li i it th t l di t ti•Design nonlinear circuits that cancel distortion

•ADS X-parameter generator and XnP component can do this already

Red = 2‐Tone X‐parameters predictionBl I d d t d d t

Courtesy J. Horn

-22

-21

-20

(dB

m)

-22

-21

-20

(d

Bm

)

Blue = Independent measured data

26

-25

-24

-23

IM3

_L

ow

-25

-24

-23

-22

IM3

_H

igh

1.0

E6

2.0

E6

3.0

E6

4.0

E6

5.0

E6

6.0

E6

7.0

E6

8.0

E6

9.0

E6

0.0

1.0

E7

-26

-27 1.0

E6

2.0

E6

3.0

E6

4.0

E6

5.0

E6

6.0

E6

7.0

E6

8.0

E6

9.0

E6

0.0

1.0

E7

-25

-26

© Copyright Agilent Technologies 2010

Page 43Page 43 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Tone Spacing Tone Spacing

Page 94: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

3-Port X-parameter Measurements

For characterization and measurement-based simulation of three-port components (mixers, converters, switches)

Note: ADS can already generate and simulate with multi-port, multi-tone X t

V4

4GND I4

X-parameters

Here A and B

1 2A1

B1

A2

B2

waves include multiple spectral components

3

A3B3

© Copyright Agilent Technologies 2010

Page 44Page 44 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

33

Page 95: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Multi-tone, Multi-port X-parameters: Two large signals at different frequencies at different portssignals at different frequencies at different portsLess restrictive approximation to the general theory:Linearization around the multi-tone nonlinear responses

1A1

2BTerms linear in the

remaining components( )

, , 1,10 2 ,01( , , 0, 0, ...)Fi kl i klB X A A= +

© Copyright Agilent Technologies 2010

Page 45Page 45 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Page 96: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Mixers: X-parameters extracted from an Agilent DC-50 GHz InP-based Mixer 1GC1-8068: Mismatched (10 Ohms) at IFAccurate fast IP protectedAccurate, fast, IP-protected

Gain (dB) Phase (deg)Down

Conversion

UpCConversion

LO: 45 GHz RF: 45.1 GHz LO power = 3.5 dBmSi l ti b d

© Copyright Agilent Technologies 2010

Page 46Page 46 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

LO: 45 GHz RF: 45.1 GHz LO power 3.5 dBmCircuit Model (solid blue) X-parameter Model (red points)Simulation-based

Page 97: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Mixers: X-parameters extracted from an Agilent DC-50 GHz InP-based Mixer 1GC1-8068: Mismatched (10 Ohms) at IFAccurate, fast, IP-protected

Gain (dB) Phase (deg)Down

Conversion

UpUpConversion

LO: 45 GHz RF: 45.1 GHz LO power = 3.5 dBmSi l ti b d

© Copyright Agilent Technologies 2010

Page 47Page 47 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

LO: 45 GHz RF: 45.1 GHz LO power 3.5 dBmCircuit Model (solid blue) X-parameters (red points)Simulation-based

Page 98: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Two Fundamentals: 50 GHz Integrated Mixer Mismatched load (10 Ohms) at IFMismatched load (10 Ohms) at IF

Gain (dB) Phase (deg)LO

Leakageg

RFRFLeakage

LO: 45 GHz RF: 45.1 GHz LO power = 3.5 dBmSi l ti b d

© Copyright Agilent Technologies 2010

Page 48Page 48 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

LO: 45 GHz RF: 45.1 GHz LO power 3.5 dBmCircuit Model (solid blue) X-parameter Model (red points)Simulation-based

Page 99: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Agilent MMICs: Available for purchase

50 GHz InP-based Mixer Part number: 1GC1-8068Part number: 1GC1-8068

See: http://www.agilent.com/find/mmic

X-parameters available

© Copyright Agilent Technologies 2010

Page 49Page 49 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Page 100: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Design Nonlinear RF Systems

Antenna

LTCC LPF

RFICMMIC PA

Simulation speedup of 20x to 100x

© Copyright Agilent Technologies 2010

Page 50Page 50 D. E. RootD. E. RootMay 7, 2010

Simulation speedup of 20x to 100x

X-parameter DML lecture Norway #2

Page 101: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-Parameter technology available in commercial EDA SW

Available Today

Available Soon Available

© Copyright Agilent Technologies 2010

Page 51Page 51 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

TodaySoon

Page 102: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Extending X-parameters to long-term memoryOriginal X-parameters are Static Spectral Mappings

Static transmission

NVNA

Original X parameters are Static Spectral Mappings

Can be measured under

Slides courtesy J. Verspecht

Static transmission X-parameter: XF21

Can be measured under True CW, pulsed DC orPulsed RF conditions

A1 B2

time

1 2

B2

XF21

F D i

A1( ) ( )1

1212AjeAXFB ϕ=

Frequency Domain:

© Copyright Agilent Technologies 2010

Page 52Page 52 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

1

Page 103: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Modulation Simulated in Envelope Domain:

A1(t) B2(t)ADS envelope simulator

t tt t

XF2121B2

( ) ( ))(1212

1)()( tAjetAXFtB ϕ=Envelope Domain:

A

( )1212 )()(X-parameters determine Quasi-Static Response

No “BW” effects

© Copyright Agilent Technologies 2010

Page 53Page 53 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

A1Symmetric intermods independent of envelope rate (or history)

Page 104: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Memory Effects: Beyond Static X-parametersMemory Effects:

When output depends not only in instantaneous input but also on past input values

• Response to fast input envelope variations may violate quasi-static assumption for useResponse to fast input envelope variations may violate quasi static assumption for use in envelope domain for estimation of response to modulated signals

• Physical causes of memory: Dynamic self-heating, bias-line interaction, trapping effects caused by additional dynamic variables – multiple time-scale problem

Hysteresis in compression plotIM3 products asymetricDepend on tone spacing

HBT IM3 [dB ] t ti [H ] GHBT IM3 [dBm] versus tone separation [Hz] Gain-compression

© Copyright Agilent Technologies 2010

Page 54Page 54 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Page 105: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Dynamic X-parameters: Long-Term MemoryF d t l “hidd i bl ” th Anadigics AWT6282

ain

Fundamental “hidden variable” theoryVerspecht et al “Extension of X-parameters to include long-term dynamic memory effects,” IEEE MTT-S Int’l Microwave Symposium Digest, 2009. pp 741-744

Anadigics AWT6282

Vol

tage

Ga

( ) ( ) ( )( )tAjeduuutAtAGtAXFtB ϕ

⎭⎬⎫

⎩⎨⎧

−+= ∫∞

021 ,)(,)()()(

A1 (V)

3.2

3.3

V)

3.0

3.1

B2

Am

plitu

de (V

17

-14

184 186 188 190 192 194 196 198182 200

2.9

Time (µs)Measured Data: RedMemory model prediction: Blue

-23

-20

-17

Sim

IM3

Mea

sIM

3

© Copyright Agilent Technologies 2010

Page 55Page 55 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Memory model prediction: BlueStatic X-parameter prediction: Magenta-4.0E6 0.0 4.0E6-8.0E6 8.0E6

-26

Offset Frequency

Page 106: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Dynamic X-parameters Beyond Quasi-Static

|B (t)|

comparison• Pulsed Envelope NVNA extraction• Prototyped in ADS• Not yet commercialized

B (t)|A(t)|

|Bmeas (t)|Not yet commercialized

A(t)Bmeas(t)

t |Bsim(t)|B i (t)B2 t | sim( )|Bsim(t)

t

( ) ( ) ( )( )tAjeduuutAtAGtAXFtB ϕ⎬⎫

⎨⎧

−+= ∫∞

21 ,)(,)()()(ADS envelope simulatorA1

© Copyright Agilent Technologies 2010

Page 56Page 56 D. E. RootD. E. RootX-parameter DML lecture Norway #2

( ) ( ) eduuutAtAGtAXFtB⎭⎬

⎩⎨ + ∫

021 ,)(,)()()(

May 7, 2010

Page 107: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Dynamic X-parameters Predict Memory Effects0.5|B|

0.4

0.5|B|Vpeak 60kHz Tone Spacing

Courtesy

ZFL11AD AmpF0= 1.75GHz

0.2

0.3

yJ. Verspecht

0.0

0.1

30kHz Tone Spacing

0.00 0.05 0.10 0.15

|A| (Vpeak)Measurement 60kHz Tone Spacing Measurement 30kHz Tone SpacingModel 60kHz Tone Spacing Model 30kHz Tone Spacing

See Latest Research Results on Dynamic X-parametersJ. Verspecht, J. Horn, D. E. Root “A Simplified Extension of X-parameters to Describe Memory Effects for Wideband Modulated Signals”

© Copyright Agilent Technologies 2010

Page 57Page 57 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

to Describe Memory Effects for Wideband Modulated Signals ARFTG Conference Session 2-1 Friday, May 28, 2010 10:20AM (Hilton)

Page 108: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-parameter universe is expanding rapidlyPowerful, practical interoperable solutions for nonlinear

Summary:characterization, modeling, and design of microwave and RF

X-parameters: “doing for nonlinear components and systems what S-parametersdo for linear components and systems”

• X-parameters for GSM amp.• Load-dependent X-parameters

Applications

• 50 GHz Agilent NVNA• High-Power X-parameter meas.• X-parameter generator in ADS• XnP component in ADS• Two-tone measured X-pars• Three-port measured X-pars

Memory: Dynamic X params• Memory: Dynamic X-params• Device modeling• Education, training, app. notes• Industry is adopting paradigm

© Copyright Agilent Technologies 2010

Page 58Page 58 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Industry is adopting paradigm

Page 109: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

X-Parameters: Agilent Completes the Nonlinear Puzzle!Electronic design

automation softwareAgilent Nonlinear Vector

Network Analyzer

Nonlinear Nonlinear

CustomerNonlinear

Simulation & DesignMeasurements

Customer Applications

Nonlinear Modeling

© Copyright Agilent Technologies 2010

Page 59Page 59 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

*11 , 11 , 11( ) ( ) ( )F S m n T m n

pm pm pm qn qn pm qn qnB X A X A P A X A P A− += + +

Page 110: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Selected References and Links1 D E Root J Horn L Betts C Gillease J Verspecht “X-parameters: The new paradigm for measurement modeling and design1. D. E. Root, J. Horn, L. Betts, C. Gillease, J. Verspecht, X-parameters: The new paradigm for measurement, modeling, and design

of nonlinear RF and microwave components,” Microwave Engineering Europe, December 2008 pp 16-21. http://www.nxtbook.com/nxtbooks/cmp/mwee1208/#/16

2. D. E. Root, “X-parameters: Commercial implementations of the latest technology enable mainstream applications” Microwave Journal, Sept. 2009, http://www.mwjournal.com/search/ExpertAdvice.asp?HH_ID=RES_200&SearchWord=root

3. J. Verspecht and D. E. Root, “Poly-Harmonic Distortion Modeling,” in IEEE Microwave Theory and Techniques Microwave Magazine June 2006Magazine, June, 2006.

4. D . E. Root, J. Verspecht, D. Sharrit, J. Wood, and A. Cognata, “Broad-Band, Poly-Harmonic Distortion (PHD) Behavioral Models from Fast Automated Simulations and Large-Signal Vectorial Network Measurements,” IEEE Transactions on Microwave Theory and Techniques Vol. 53. No. 11, November, 2005 pp. 3656-3664

5. Verspecht, J.; Horn, J.; Betts, L.; Gunyan, D.; Pollard, R.; Gillease, C.; Root, D.E.; “Extension of X-parameters to include long-term dynamic memory effects,” IEEE MTT-S International Microwave Symposium Digest, 2009. pp 741-744, June, 2009

6. J. Verspecht, J. Horn, D. E. Root “A Simplified Extension of X-parameters to Describe Memory Effects for Wideband Modulated p , , p p ySignals,” Proceedings of the 75th IEEE MTT-S ARFTG Conference, May, 2010

7. J. Xu, J. Horn, M. Iwamoto, D. E. Root, “Large-signal FET Model with Multiple Time Scale Dynamics from Nonlinear Vector Network Analyzer Data,” IEEE MTT-S International Microwave Symposium Digest, May, 2010.

8. J. Horn, S. Woodington, R. Saini, J. Benedikt, P. J. Tasker, and D. E. Root; “Harmonic Load-Tuning Predictions from X-parameters,” IEEE PA Symposium, San Diego, Sept. 2009

9. D. Gunyan , J. Horn, J Xu, and D.E.Root, “Nonlinear Validation of Arbitrary Load X-parameter and Measurement-Based Device y y pModels,” IEEE MTT-S ARFTG Conference, Boston, MA, June 2009

10. G. Simpson, J. Horn, D. Gunyan, and D.E. Root, “Load-Pull + NVNA = Enhanced X-Parameters for PA Designs with High Mismatch and Technology-Independent Large-Signal Device Models, ” IEEE ARFTG Conference, Portland, OR December 2008.

11. J. Horn, J. Verspecht, D. Gunyan , L. Betts, D. E. Root, and Joakim Eriksson, “X-Parameter Measurement and Simulation of a GSM Handset Amplifier,” 2008 European Microwave Conference Digest Amsterdam, October, 2008

12. J. Verspecht, D. Gunyan, J. Horn, J. Xu, A. Cognata, and D.E. Root, “Multi-tone, Multi-Port, and Dynamic Memory Enhancements to PHD Nonlinear Behavioral Models from Large-Signal Measurements and Simulations,” 2007 IEEE MTT-S Int. Microwave Symp. Dig., Honolulu, HI, USA, June 2007.

13. http://www.agilent.com/find/x-parameters for X-parameters14. http://www.agilent.com/find/nvna for NVNA15. http://www.agilent.com/find/mmic for Agilent MMICs16. http://www.agilent.com/find/x-parameters-info for information about X-parameter open standards

© Copyright Agilent Technologies 2010

Page 60Page 60 D. E. RootD. E. RootX-parameter DML lecture Norway #2

May 7, 2010

Page 111: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Survey and Trends in Nonlinear T i t M d li M th d l iTransistor Modeling Methodologies

Dr. David E. RootPrincipal R&D Scientistp

High Frequency Technology CenterSanta Rosa, CA USA

IEEE MTT-S Lecture #3Bergen, Norway

May 7 2010May 7, 2010

© Copyright Agilent Technologies 2010

Page 1Page 1 D. E. RootD. E. RootNorway #3 Transistor Modeling

May 7, 2010

Page 112: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Key Contributors

• Alex Cognata

• Daniel Gunyan

• Jason Horn• Jason Horn

• Masaya Iwamoto

• Alexander Pekker

• Dominique Schreurs

• Jonathan Scott

• Gary Simpson

• Franz Sischka

• Paul TaskerPaul Tasker

• John Wood

• Jianjun Xu

© Copyright Agilent Technologies 2010

Page 2Page 2 D. E. RootD. E. RootNorway #3 Transistor Modeling

May 7, 2010

Page 113: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Presentation Outline

• Introduction• I-V modeling• Nonlinear Charge Modeling• Non Quasi-Static Effects & Dispersion Modeling• Electro-Thermal Modeling• Advanced Measurements

NVNA d t d d d d i l FET d li• NVNA data and advanced dynamical FET modeling• Symmetry Considerations • Summary & Conclusions• Summary & Conclusions

© Copyright Agilent Technologies 2010

Page 3Page 3 D. E. RootD. E. RootMay 7, 2010

Norway #3 Transistor Modeling

Page 114: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Introduction

All models are wrong, but some are useful.“

t ti ti i G B- statistician George Box

“All models are approximations. Some models are useful ”Some models are useful.

- attributed to Mike Golio and others

© Copyright Agilent Technologies 2010

Page 4Page 4 D. E. RootD. E. RootNorway #3 Transistor Modeling

May 7, 2010

Page 115: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Compact Transistor Models (AgilentHBT model) [48, 49, 10][48, 49, 10]

Thermal Subcircuit (Two-Poles)( )

Complete Circuit Model(Intrinsic Model in Red)

Coupled nonlinear ordinary differential equations in the time

IqI

Icr

cf −⎟⎟⎠

⎞⎜⎜⎝

⎛3 ⎟

⎠⎞

⎜⎝⎛ −

−=VKDC

VJCVIKDCIcrit BCi131

equations in the time domain

Equivalent Circuit with d

ICE⎠⎝=

( ) ( )IKDCIKDCIcritIcf

IKDCIKDCIKDCIcritIcf

IKDC 211

21

211

21 22

⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛ −+⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛ −

⎠⎝ VKDCnonlinear elements

© Copyright Agilent Technologies 2010

Page 5Page 5 D. E. RootD. E. RootNorway #3 Transistor Modeling

May 7, 2010

oqIKDCIKDCIKDCIKDC

q 312

22223 −+⎦⎣ ⎠⎝⎠⎝⎠⎝⎠⎝=

Page 116: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Agilent HBT Model Parameters (over 100)

AgilentHBT_ModelHBTM1HBTM1

Xth2=0.0Cth2=0.0Rth2=0.0Xth1=0.0Cth1=5.0e-10Rth1=1000.0

Eaa=0.0 VXtik3=0.0Xtirh=4.0Xtic=3.0Xtir=3.0Egc=1.5 V

Tvje=0.0Xre=0.0Xrc=0.0Xrb=0.0Lpe=0.0 HLpc=0.0 H

Vkrk2Inv=0.2Vkrk=3.0 VIkrktr=1.0e-06 AIkrk=0.025 ATkrk=1.0e-12 secFextc=0.8

Itc=0.006 ATcmin=5.0e-13 secTfc0=2.0e-12 secFextb=0.2Tfb=1.0e-12 secAbcx=0.75

Cemax=1.0e-13 FMje=0.3Vje=1.3 VCje=4.0e-14 FIk=1.0 AGkdc=0.0

Var=1000.0 VVaf=500.0 VAbel=0.0Nc=2.0Isc=1.0e-13 ANrh=2.0

Rbx=5.0 OhmRbi=15.0 OhmRcx=5.0 OhmRci=1.0 OhmRe=2.0 OhmTnom=25.0

Fb=1.0 HzAb=1.0Kb=0.0Ffe=1.0Af=1.0Kf=0.0Xth2 0.0

Xitc2=0.0Xitc=0.0Xtfc0=0.0Xtcmin=0.0Xtfb=0.0Eab=0.0 VEaa 0.0 V

Ege=1.55 VTnr=0.0Tnf=0.0Tvpc=0.0Tvjc=0.0Tvpe=0.0Tvje 0.0

Cpce=1.0e-15 FTr=1.0e-09 secFexke=0.2Vkmx=1.0 VVktr=1.0 VGkrk=4.0Vkrk2Inv 0.2

Vtrmin=1.0 VVtcminInv=0.5Vmx0=2.0 VVtr0=2.0 VVtc0Inv=0.3Itc2=0.008 AItc 0.006 A

Mjc=0.3Vjc=1.1 VCjc=5.0e-14 FAbex=0.0Mjer=0.05Vpte=1.0 VCemax 1.0e 13 F

Ikdc2Inv=0.0Ikdc1=1.0 ANb=1.0Isb=1.0e+10 ANa=1.0Isa=1.0e+10 AVar 1000.0 V

Nh=1.0Ish=1.0e-27 ANr=2.0Isr=1.0e-15 ANf=1.0Is=1.0e-25 ARbx 5.0 Ohm

AllParams=Imax=10.0 A

Xvkrk=0.0Xikrk=0.0Xtkrk=0.0

Xtie=3.0Xtih=4.0Xtis=3.0

g

Lpb=0.0 HCpbc=1.0e-15 FCpbe=1.0e-15 F

p

Vtc2Inv=0.1VtcInv=0.1Vmxmin=1.0 V

Mjcr=0.03Vptc=3.0 VCcmax=9.0e-14 F

j

Nkdc=3.0VkdcInv=0.1Ikdc3=1.0 A

Isrh=1.0e-15 ANe=2.0Ise=1.0e-18 A

Resistances: 5 Parasitics: 6Resistances: 5DC Currents: 26Depletion Charge: 14Delay Charge: 25

Parasitics: 6Temp., DC & R’s: 22Temp., Charges: 12Noise: 6

© Copyright Agilent Technologies 2010

Page 6Page 6 D. E. RootD. E. RootNorway #3 Transistor Modeling

May 7, 2010

Delay Charge: 25 Noise: 6

Page 117: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Transistor Modeling

• Compact Models: Equivalent circuit models for IC design formulated in the time-domain. Examples are BSIM models for MOSFET Angelov model for GaAs FETs Gummel PoonMOSFET, Angelov model for GaAs FETs, Gummel-Poonmodels for bipolars, AgilentHBT model for III-V HBTs

• “Compact” models can be complex (> 100 parameter values)• Compact models can be complex (> 100 parameter values)

• Parameters typically extracted from DC and S-pars Ironic for a nonlinear modelIronic for a nonlinear model– Some devices may not be able to be characterized under DC and static

operating conditions (power, temperature)– Advanced models may not be identifiable from only DC and

S-parameter data.– No direct evidence that these nonlinear models will reproduce large-

© Copyright Agilent Technologies 2010

Page 7Page 7 D. E. RootD. E. Root

p gsignal behavior

Norway #3 Transistor Modeling

May 7, 2010

Page 118: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Device Requirements and Modeling Implications• Linearity: Harmonic & Intermod. Distortion; ACPR; AM-AM; AM-PM• Efficiency: PAE; Fundamental Output Power; Self-biasing

M Sl th l ff t l t i h• Memory: Slow thermal effects, slow trapping phenomena• Modeling Challenges from • Device physics (III V transport trapping dynamics)• Device physics (III-V transport, trapping dynamics)

Complex signals, multiple time-scale dynamicsAmplifier, switch, and mixer applicationsWide variety of device designs in many material systemsy g y y

• Accuracy required over • Bias, frequency, and temperature; power; • Different types of models may be required at different stages in the

development of a technology

© Copyright Agilent Technologies 2010

Page 8Page 8 D. E. RootD. E. RootMay 7, 2010

Norway #3 Transistor Modeling

Page 119: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Physical Models to Circuit (compact) Models [16,17]

Q(VGS) Q(VGD)

( ( ))( ) ( ( ) ( ))DC GDdQ V tI t I V t V t ( ( ))( ) ( ( ), ( ))DC GDD D GS DS

QI t I V t V tdt

= −( ( )) ( ( ))( ) GS GD

GdQ V t dQ V tI t

dt dt= +

dt dt

( )( )3 32 2

2

2 2( , ) ( )3

DC DD GS DS DS DS GS GS

D

W qN aI V V V V V VL qN a

μ ε φ φε

⎛ ⎞⎡ ⎤= − + − − −⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

© Copyright Agilent Technologies 2010

Page 9Page 9 D. E. RootD. E. Root

( ) 2 ( ) (up to a constant)DQ V WL q N Vε φ= − −

May 7, 2010

Norway #3 Transistor Modeling

Page 120: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Typical characteristics of real devices not ideal120 90

80

100

120

A)

50

60

70

80 Vgs=1.4V

(0.2V steps)

I d(m

A)

20

40

60

Ids

(mA

20

30

40

50

Vgs=-1.2V

2 4 6 80 10

20

0

Vds (Volts)

1 2 3 4 5 6 7 8 9 10 110 12

10

0

Vgs=-1.6VVgs=-2.0V

Vds (V)Vds (Volts)

pHEMTMESFET 3 temperatures

Typical Features of real device often not captured by

ds ( )

simple physics-based models

Non-zero, and sometimes negative, output conductanceDrain-voltage dependent “pinch-off voltage”

© Copyright Agilent Technologies 2010

Page 10Page 10 D. E. RootD. E. Root

Drain voltage dependent pinch off voltageHigher drain current at lower ambient temperature (near Vp)

May 7, 2010

Norway #3 Transistor Modeling

Page 121: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Measurement-Based (Empirical) Modeling “The Device Knows Best”The Device Knows BestElectrons know where to go, even if the modelers don’t!

Use device data as much as possible in the modelUse device data as much as possible in the modelUseful for circuit design when good measurements are available, and when no good (fast, robust, extractable) physical models are available•Empirical models (fitting closed-form functions to data) •Table-based models with spline interpolation•Neural-network based modelsExperiment Design:

measure the device I-V (and Q-V) Model Identification

fit the empirical expressions to data (parameter extraction)fit the empirical expressions to data (parameter extraction)or store data and interpolate

© Copyright Agilent Technologies 2010

Page 11Page 11 D. E. RootD. E. RootMay 7, 2010

Norway #3 Transistor Modeling

Page 122: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Empirical Models

The same dynamics (equivalent circuit topology) G( ( ))dQ V t ( )GS GSQ V ( )GD GDQ V( ( ))( ) ( ( ), ( ))DC GD GD

D D GS DSdQ V tI t I V t V t

dt= −

( ( )) ( ( ))( ) GS GS GD GDG

dQ V t dQ V tI t = +DS

( , )dcD GS DSI V V

Large Signal Equivalent Circuit

( )G dt dt

Large-Signal Equivalent Circuit

Modified Constitutive Relations for easy fitting (Curtice Cubic[7])

( )2 30 1 1 2 1 3 1( , ) ( )DC

D GS DS DSI V V A AV A V A V tanh Vγ= + + +

0( )GD GDQ V C V=1

0( ) 11

jGS

C VQ Vηφ

η φ

+⎛ ⎞

= − −⎜ ⎟+ ⎝ ⎠

© Copyright Agilent Technologies 2010

Page 12Page 12 D. E. RootD. E. Root

η φ⎝ ⎠

May 7, 2010

Norway #3 Transistor Modeling

Page 123: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Experiment Design: Measure DC I-V curves

IDDC Vgs Vds,( ) A0 A1V1 A2V1

2 A3V13+ + +

⎝ ⎠⎛ ⎞ γVds( )tanh⋅=

Model Identification (1): minimize error

Guess Initial Coefficient Values in Fixed Constitutive Relations

D g( ) 0 1 1 2 1 3 1⎝ ⎠ γ ds( )

Simulate Circuit

Compare Simulation with MeasurementsCompare Simulation with Measurements

Good Fit?ModifyCoefficientGood Fit?

No

Yes

Done

CoefficientValues

© Copyright Agilent Technologies 2010

Page 13Page 13 D. E. RootD. E. Root

Done

May 7, 2010

Norway #3 Transistor Modeling

Page 124: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Issues with parameter extraction

Optimization-based parameter extraction can be:

• Slow (simulate circuit and update parameters hundreds of times)• Sensitive to initial parameter values• Non-repeatablep• Can get stuck in local minima of optimizer cost function•Require user interaction• Good parameter values depend on good datap p g

•May never achieve good fit (constitutive relations may not be flexible enough)( y g )Changes to constitutive relations -> changes to extraction routines

© Copyright Agilent Technologies 2010

Page 14Page 14 D. E. RootD. E. RootMay 7, 2010

Norway #3 Transistor Modeling

Page 125: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Parameter Extraction: What can go wrong

(Curtice Cubic example also see [30])

( )2 3( ) ( )DCI V V A AV A V A V tanh Vγ= + + +( )1 2 0 1 1 2 1 3 1 2( , ) ( )DI V V A AV A V A V tanh Vγ= + + +

I XX

VVp Vmax

X

XX

XX

V1Vp Vmax

© Copyright Agilent Technologies 2010

Page 15Page 15 D. E. RootD. E. RootMay 7, 2010

Norway #3 Transistor Modeling

Page 126: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Table-Based Models: Accurate and General [3,17,21]

Vertical Power Si MOSFET GaAs pHEMT

Measure, transform data, tabulate, interpolate, scale

[A][A]

0.3

ID

0.15

ID[A][A]

0.00 0 10 0VDS 0 0 5 0VDS

0.0

© Copyright Agilent Technologies 2010

Page 16Page 16 D. E. RootD. E. Root

Process and Technology Independent0.0 10.0VDS 0.0 5.0VDS

May 7, 2010

Norway #3 Transistor Modeling

Page 127: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Table Models

C tit ti R l ti i t l t d f d tConstitutive Relations are interpolated from dataTable 1 Table 2

d gs ds d_dcI t Interpolate{Table1, [V t ,V t ,I ]}=( ) ( ) ( )

gs ds dInterpolate{Table2, [V t ,V t ,Q ]}ddt

+ ( ) ( )

Works well for dc S versus bias & freq med-high power signals

© Copyright Agilent Technologies 2010

Page 17Page 17 D. E. RootD. E. Root

Works well for dc, S versus bias & freq., med-high power signals

May 7, 2010

Norway #3 Transistor Modeling

Page 128: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Warning: Interpolation algorithms may limit table models! [43]models! [43]

Original HPFET Model with ADS splines vs Measured25

Two-tone Intermodulation

-25

0

-75

-50

ower

(dB

m)

Fund

R h d

-125

-100

Out

put P

o

IM3

IM5

IM7

Fund

Spline-based Root Model

Rough and unphysical behavior

200

-175

-150Fund

IM3

IM5

IM7Measured

© Copyright Agilent Technologies 2010

Page 18Page 18 D. E. RootD. E. Root

-200-50 -40 -30 -20 -10 0 10

Input Power (dBm)

May 7, 2010

Norway #3 Transistor Modeling

Page 129: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Vgs 2 @ 100MH ( 1MH )

Naïve Splines Limit Distortion Accuracy [17, 8]

IP3(dBM)

0.2V

P=-10dBmVgs

-0.6 Si NJFET2-tones @ 100MHz (+1MHz)

Table Model

Vd

(a) Vg=-1V Power=-10dBmVds

-1.4

-1.0

IP3(dBM)

P=-20dBm

Voltage Swing

Vgs

-0.6

VdDataHPFET table modelCurtice analytic model

-1.4

-1.0

Voltage Swing

Vds0.06V(b) Vg=-1V Power=-20dBm

VdSimple Cubic Splines

•Third order derivative vanishes at symmetry points•Low order polynomial can’t predict high-order distortion at low amplitudes

© Copyright Agilent Technologies 2010

Page 19Page 19 D. E. RootD. E. Root

p y p g pinterpolation model is better when signal size ~ data spacing

May 7, 2010

Norway #3 Transistor Modeling

Page 130: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

OutputsSpline Alternatives: Artificial Neural Networks

( )y F x x x=y1 y2

Outputs

yyjj = = Σ Σ VVjkjk Zkk

1 1 3( , , )i iy F x x x=

VjkHidden Neuron Output

k

Z1 Z2 Z3 Z4

Wki

Σ Σ WWki ki xiZk = tanh( = tanh( )

Wki

Parameters w = [WWkiki, V, Vjkjk]x1 x2 x3 Inputs

• Universal Approx. Thm: Can fit any nonlinear function of many variables• Infinitely differentiable: better for distortion than naïve splines

© Copyright Agilent Technologies 2010

Page 20Page 20 D. E. RootD. E. Root

y p• Easy to train (identify) using standard third-party tools (MATLAB)

May 7, 2010

Norway #3 Transistor Modeling

Page 131: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

NeuroFET: FET Model using ANNs [43]Constitutive Relations are ANNs!

80

90Vgs=1.4V ANN-based FET model (___ ) dcI

Constitutive Relations are ANNs!

50

60

70

(0.2V steps)

Measured device test data ( o ) dIANN

30

40

50

I d(m

A)

V =-1 2V

10

20

0

Vgs=-1.6VVgs=-2.0V

Vgs=-1.2V

Vgs Vds

1 2 3 4 5 6 7 8 9 10 110 12

Vds (V)

© Copyright Agilent Technologies 2010

Page 21Page 21 D. E. RootD. E. RootMay 7, 2010

Norway #3 Transistor Modeling

Page 132: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

NeuroFET Distortion Validation (2-tone) [43]ANN-Based FET vs Measured

-25

0

25

-75

-50

-25

wer

(dB

m)

Fund

-125

-100

Out

put P

ow

Fund

IM3

IM5

IM7

Physically

correct behavior-175

-150Fund

IM3

IM5

IM7-200

-50 -40 -30 -20 -10 0 10Input Power (dBm)

IM7

Alternatives to ANNs are “Smoothing Splines” [5]

© Copyright Agilent Technologies 2010

Page 22Page 22 D. E. RootD. E. Root

gbut they don’t have all the advantages

May 7, 2010

Norway #3 Transistor Modeling

Page 133: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Global Domains for Measurement-based Models

ANNs inside, Intelligent Extrapolation outside [44]Enables nonlinear simulation from discrete, bounded, measured data

Two orders of continuity at boundary Asymptotically ~ exponential

+ simpler algorithmx robust algorithm

© Copyright Agilent Technologies 2010

Page 23Page 23 D. E. RootD. E. Root

Required for robust convergenceMay 7, 2010

Norway #3 Transistor Modeling

Page 134: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Guided Extrapolation Algorithm Compiled into Model

Improves DC convergence, HB, TA range of use [45]

Training Domain Training Domain

© Copyright Agilent Technologies 2010

Page 24Page 24 D. E. RootD. E. RootMay 7, 2010

Norway #3 Transistor Modeling

Page 135: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Presentation Outline

• Introduction• I-V modeling• Nonlinear Charge Modeling and Related Issues• Non Quasi-Static Effects & Dispersion Modeling• Electro-Thermal Modeling• Advanced Measurements for

Experiment Design & Model IdentificationExperiment Design & Model Identification• Symmetry Considerations • Summary & ConclusionsSummary & Conclusions

Artificial Neural Network applications given throughout© Copyright Agilent Technologies 2010

Page 25Page 25 D. E. RootD. E. Root

Artificial Neural Network applications given throughout

May 7, 2010

Norway #3 Transistor Modeling

Page 136: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Charge Modeling: Key to Distortion at high frequencies [4]

M d l A Sh kl M d l B St t ] M d l C HP/A il tFET ]

Gain/Phase vs. Pin IM3 vs. Pin

•All three models use the same DC analytical equations

Model A= Shockley Model B = Statz[32] Model C =HP/AgilentFET [33]

[4] J. Staudinger, M.C. De Baca, R. Vaitkus, “An examination of several large signal capacitance

© Copyright Agilent Technologies 2010

Page 26Page 26 D. E. RootD. E. Root

g , , , g gmodels to predict GaAs HEMT linear power amplifier performance,” Radio and Wireless Conference, Aug. 1998 pp343-346.

May 7, 2010

Norway #3 Transistor Modeling

Page 137: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Good Charge Model Required to Predict ACPR [4][ ]

M d l A Sh klModel A= Shockleyjunction capacitances

Model B = Statz/Raytheon gate terminal chargegate terminal charge conserving but not terminal charge conserving at drain

Model C =HPFETModel C =HPFET (Root model) terminal charge conserving model at both gate and drain by direct integration of measured admittances and spline interpolation

© Copyright Agilent Technologies 2010

Page 27Page 27 D. E. RootD. E. RootMay 7, 2010

Norway #3 Transistor Modeling

Page 138: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Adjoint Neural Network Training for Qg

ωYIm

bias11 )(ω

YImbias12 )(Train Adjoint network on partial

derivative data derived from ω ω

Q E

derivative data derived from S (Y) parameters

Qg

gQf

)( w,V,Vf Q dsgsgQ

ANNg =bias

gs

QANNV

f g

∂∂

biasds

QANNV

f g

∂∂

Adjust wgQE

gdQ( )

gANN

f

ww

gQI (t)= g dt

V VV V

1Adjoint Neural

NetworkJianjun Xu, M.C.E. Yagoub, Runtao Dingand Q.J. Zhang,“Exact adjoint sensitivity analysis for neuralbased microwave modeling and design,”IEEE Transactions on Microwave Theory and

© Copyright Agilent Technologies 2010

Page 28Page 28 D. E. RootD. E. Root

Vgs VdsVgs VdsIEEE Transactions on Microwave Theory andTechniques, vol. 51, pp.226-237, 2003.

May 7, 2010

Norway #3 Transistor Modeling

Page 139: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Adjoint Neural Network Approach to Charge ModelingCharge Q obtained by Adjoint Training Methods [27 43]

Im(Y11)/ω and ∂Qg/∂Vgsx 10-12(F)Q ( C)

Charge Qg obtained by Adjoint Training Methods [27,43](Generate an ANN function given partial derivative data)

0 15

0.2

0.25

Vgs

Qg (pC)

0

0.1

0.2

0 2 4 6 8 10 12

0.1

0.15

x 10-12(F)-0.3

-0.2

-0.1

0.1

0.15 -Im(Y12)/ω and -∂Qg/∂Vdsx 10(F)

-0 7

-0.6

-0.5

-0.4

NeuroFET model ( __ ) Measured device data ( o )

0 2 4 6 8 10 120

0.05 Vgs -2 0 2 4 6 8 10 12-0.8

-0.7

Vds (V)

Measured device data ( o )

Another experimental validation of terminal

© Copyright Agilent Technologies 2010

Page 29Page 29 D. E. RootD. E. Root

0 2 4 6 8 10 12

Vds (V) charge conservation at the gate for GaAs pHEMT

May 7, 2010

Norway #3 Transistor Modeling

Page 140: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Advantages of Adjoint ANN over contour Integration

• More uniform approximation of terminal charges than implementations of contour integration

• Applies to scattered data. No gridding necessary.

• Results in infinitely differentiable charge function rather than finite-order spline representation

• More easily deals with complicated boundary of data domain

• More easily generalizes to higher number of terminals

© Copyright Agilent Technologies 2010

Page 30Page 30 D. E. RootD. E. RootMay 7, 2010

Norway #3 Transistor Modeling

Page 141: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Presentation Outline

• Introduction• I-V modeling• Nonlinear Charge Modeling and Related Issues• Non Quasi-Static Effects & Dispersion Modeling• Electro-Thermal Modeling• Advanced Measurements for

Experiment Design & Model IdentificationExperiment Design & Model Identification• Symmetry Considerations • Summary & ConclusionsSummary & Conclusions

Artificial Neural Network applications given throughout© Copyright Agilent Technologies 2010

Page 31Page 31 D. E. RootD. E. Root

Artificial Neural Network applications given throughout

May 7, 2010

Norway #3 Transistor Modeling

Page 142: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Dynamic electro-thermal (self-heating) model

( ) ( ( ) ( ), ( ), )d d dI t I V t V T tt=( ) ( ( ) ( ), ( ), )d d ds gsI t I V t V T tt( ) ( ( ) ( ), ( ), )g g ds gsQ t Q V t V T tt=

( )( ) ( ) ( ) ( )dT T R I t V t I t V tτ + Δ +

Temperature evolution equation based on dissipated power

( )( ) ( ) ( ) ( )TH D DS G GST R I t V t I t V tdt

τ + Δ = +

This example is a simplified to 1st order ODEp pHeat propagates via diffusion Eqn. (PDE)

. Alternatively estimate T(t) as linear filter in frequency domain [34]

© Copyright Agilent Technologies 2010

Page 32Page 32 D. E. RootD. E. Root

Trade off “fractional pole” response for nonlinearity

May 7, 2010

Norway #3 Transistor Modeling

Page 143: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Dynamic electro-thermal (self-heating) model

Currents, Voltages, and Temperature calculated by the simulator self-consistently using coupled electrical and thermal equivalent circuits

G D

T T deltaT= +Thermal Equivalent CircuitS S

ambT T deltaT= +

( ( ), ( ), ( ))G GS DSQ V t V t T t( ( ), ( ), ( ))D GS DSI V t V t T t( ( ), ( ), ( ))D GS DSQ V t V t T t

( ( ), ( ), ( ))G GS DSI V t V t T tCan approximate distributednature of heat propagation

T=device junction temperatureT =device ambient (backside) temperature

Electrical Equivalent Circuit

atu e o eat p opagat oby many sections

External node allows coupling

© Copyright Agilent Technologies 2010

Page 33Page 33 D. E. RootD. E. Root

Tamb=device ambient (backside) temperature to other heat sources

May 7, 2010

Norway #3 Transistor Modeling

Page 144: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

ANN T-dependent constitutive relations

0 07

Ids

Blue: T =25 constant ambient temp

Given measured non-isothermal ambient temp. (T0 – dependence), one constructs isothermal (T – dependent) constitutive relations

0.06

0.07 Blue: T0=25 constant ambient tempRed: T=70 constant junction tempNeuroFET

T-dependent

0.04

0.05

Ids

dc I-V curves

0.02

0.03

0

0.01

© Copyright Agilent Technologies 2010

Page 34Page 34 D. E. RootD. E. Root

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5Vds

May 7, 2010

Norway #3 Transistor Modeling

Page 145: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

NeuroFET dynamic self-heating resultsFixed Vg

-2

0

2Ig

4

5

6Vd

-10

-8

-6

-4

-2

Ig.i,

uA

0

1

2

3

Vd,

V

1 2 3 40 5

-12

time, usec

1 2 3 40 5

-1

time, usec

Id 140

30

40

50

60

i, m

A

Id

80

100

120

140

T, V

1 2 3 40 5

0

10

20

-10

Id.i

1 2 3 40 5

40

60

20

T

© Copyright Agilent Technologies 2010

Page 35Page 35 D. E. RootD. E. Root

time, usec1 2 3 40 5

time, usec

May 7, 2010

Norway #3 Transistor Modeling

Page 146: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

NeuroFET static self-heatingIds

0 06

0.07

O : Data __ : Model

pHEMT

0.05

0.06 T0: -65T0: -25T0: -5T0: 25

0 03

0.04

Ids

T0: 25T0: 55T0: 85T0: 115

0.02

0.03

0

0.01

© Copyright Agilent Technologies 2010

Page 36Page 36 D. E. RootD. E. Root

0 1 2 3 4 5

0

Vds

May 7, 2010

Norway #3 Transistor Modeling

Page 147: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Presentation Outline

• Introduction• I-V modeling• Nonlinear Charge Modeling and Related Issues• Non Quasi-Static Effects & Dispersion Modeling• Electro-Thermal Modeling• Advanced Measurements for

Experiment Design & Model IdentificationExperiment Design & Model Identification• Symmetry Considerations • Summary & ConclusionsSummary & Conclusions

Artificial Neural Network applications given throughout© Copyright Agilent Technologies 2010

Page 37Page 37 D. E. RootD. E. Root

Artificial Neural Network applications given throughout

May 7, 2010

Norway #3 Transistor Modeling

Page 148: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Need for Advanced Characterization for empirical Modeling [21]Modeling [21]

True for neural network model too if built from dc + S-paramdatadata

© Copyright Agilent Technologies 2010

Page 38Page 38 D. E. RootD. E. RootMay 7, 2010

Norway #3 Transistor Modeling

Page 149: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

GaN Devices

1 mm 10 fingers

GaN on SiGaN on Si

fT ~ 30GHz

Pulse width 2usPulse width 2us

Slide courtesy J. Scott

Pulsed measurements provide much more datathan can be measured under static (DC) conditions

© Copyright Agilent Technologies 2010

Page 39Page 39 D. E. RootD. E. Root

than can be measured under static (DC) conditions

May 7, 2010

Norway #3 Transistor Modeling

Page 150: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Pulsed I-V characteristics at different quiescent points vs DC [1 21]points vs DC [1,21]

pHEMT device

© Copyright Agilent Technologies 2010

Page 40Page 40 D. E. RootD. E. RootMay 7, 2010

Norway #3 Transistor Modeling

Page 151: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Nonlinear Vector Network Analyzer (NVNA) Measurements for Transistor Modeling:Measurements for Transistor Modeling:

• These measurements will compliment and eventually totally replace small-signal measurements for large-signal device model experiment design and model identification [36-38].Such systems are also useful for model validation.Such systems are also useful for model validation.• Stimulates device with more realistic signals• Reduce degradation of device characteristics from static

measurements• Less reliance on inferring large-signal dynamic behavior from

linear small- signal measurementsg• Some device properties may very different (breakdown, Ig, …)• Use to identify parametric (empirical) models or even train (generate)

data based models directly

© Copyright Agilent Technologies 2010

Page 41Page 41 D. E. RootD. E. Root

data-based models directly

May 7, 2010

Norway #3 Transistor Modeling

Page 152: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

(1a) NVNA data for compact model validation

measuredsimulated

measuredsimulated

BSIM3 2 modelBSIM3.2 model

•Parameters extracted from DC and S-parameters (or CV)•BSIM3 model simulated in Harmonic balance (HB) analysis

© Copyright Agilent Technologies 2010

Page 42Page 42 D. E. RootD. E. RootNorway #3 Transistor Modeling

May 7, 2010

Slide courtesy of Franz Sischka, data from [51]•Results compared with NVNA data

Page 153: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

(1b) Model parameter extraction from NVNA Data [51]

NVNA data vs HB simulationusing initial parameter values extracted from DC + CV

Modify parameter values (optimize) to better fit large-signal NVNA data

• Get optimal parameter• Get optimal parameterset for given model

• trade-off DC, SP, fornonlinear performance

• App-dependent tuning

© Copyright Agilent Technologies 2010

Page 43Page 43 D. E. RootD. E. RootNorway #3 Transistor Modeling

May 7, 2010

• App-dependent tuning• Explore model limits

Page 154: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Parameter extraction from NVNA data

© Copyright Agilent Technologies 2010

Page 44Page 44 D. E. RootD. E. RootNorway #3 Transistor Modeling

May 7, 2010

Slide courtesy Franz Sischka

Page 155: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Examples of measured dynamic load-lines using NVNA for advanced FET model constructionNVNA for advanced FET model construction

Root et al INMMiC2010 [52]Xu et al IMS2010 [53]

• Entire operating range coveredp g g• Can measure into limiting operating regions• Get data under realistic operating conditions

© Copyright Agilent Technologies 2010

Page 45Page 45 D. E. RootD. E. RootNorway #3 Transistor Modeling

May 7, 2010

Page 156: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Model I-V characteristics at different trap-statesI V t V t T ϕ ϕ( ( ) ( ) )

Ids (mA)

D gs ds j 1 2I V t , V t , T , , ϕ ϕ( ( ) ( ) )

Ids (mA) Ids (mA)

Xu et al IMS2010 [53]

120

140

160

180

120

140

160

180Ids (mA)

Ids

40

60

80

100

120

40

60

80

100

120(mA)

Vds (V) Vds (V)0 1 2 3 4 5 6

0

20

40

0 1 2 3 4 5 60

20

40

Vds (V)

Corresponds to drain-lag (knee walk-out) (intrinsic)Trap state

Static “Iso-thermal” intrinsic I-V

Measured and simulated extrinsic DC - IV

1 2 2 8ϕ ϕ= − = 1 2 65jVgs Vds Tϕ ϕ= = =

© Copyright Agilent Technologies 2010

Page 46Page 46 D. E. RootD. E. RootNorway #3 Transistor Modeling

May 7, 2010

Bias-dependent small-signal admittances fit better everywhere

Page 157: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Nonlinear validation of advanced GaAs FET model(using NVNA data) X t l IMS2010 [53](using NVNA data) Xu et al IMS2010 [53]

Simulated (___ ) Measured data (symbols)

With NVNA, Nonlinear validation comes for free

© Copyright Agilent Technologies 2010

Page 47Page 47 D. E. RootD. E. RootNorway #3 Transistor Modeling

May 7, 2010

Page 158: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Tradeoffs

Physical I i htInsight

Physics based

Physical TCADDevice Model

Abilit t

TableM d l

Physics-basedCircuit Model

Ability toGeneralize

ModelX-parameterBehavioral

Ease of Use / extraction

Accuracy

© Copyright Agilent Technologies 2010

Page 48Page 48 D. E. RootD. E. RootNorway #3 Transistor Modeling

May 7, 2010

Page 159: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

Conclusions

• Physical, Empirical, Table-based, and Behavioral models (e.g. X-parameters) of transistors all have their place in device p ) pmodeling

• Advanced characterization techniques and instruments (e.g. NVNA) will change the paradigm for nonlinear device modeling and validation. This is a key industry trend.

M d li i i d l G d lt• Modeling is a rigorous and complex process. Good results take time, expertise, good measurements, and care.

© Copyright Agilent Technologies 2010

Page 49Page 49 D. E. RootD. E. RootNorway #3 Transistor Modeling

May 7, 2010

Page 160: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

References

[1] A.E.Paker and D.E.Root “Pulse Measurements Quantify Dispersion in PHEMTs,” 1998 IRSI Symposium on Signals, Systems, and Electronics, Pisa, Italy, Sept. 29 - Oct. 2, 1998, URSI and IEEE, pp. 444-449.[2] Pirola,M., Root,D.E., Ghione,G., “Large-signal performance of measurement-based diode models for nonlinear circuit simula­tion: a comparison, 1995 European Microwave Conf. Technical Digest, Italy,[3] Root, D.E., Fan, S., Meyer, J. “Technology Independent Non Quasi-Static FET Models by Direct Construction from Automati­cally Characterized Device Data” 21st European Microwave Conf.Proceedings, Stuttgart,

Germany, Sept 1991, pp 927-932.[4] J. Staudinger, M.C. De Baca, R. Vaitkus, “An examination of several large signal capacitance models to predict GaAs HEMT linear power amplifier performance,” Radio and Wireless Conference, Aug. 1998 pp343-

346346.[5] V. Cuoco, M.P. van den Heijden, L.C.N de Vreede, “The ‘Smoothie’ data base model for the correct modeling of non-linear distortion in FET devices,” International Microwave Symposium Digest, 2002, Vol. 3, pp2149

– 2152[6] HP NMDG Group[7] Aarts, A.C.T.; van der Hout, R.; Paasschens, J.C.J.; Scholten, A.J.; Willemsen, M.; Klaassen, D.B.M.; “Capacitance modeling of laterally non-uniform MOS devices,” 2004 IEEE IEDM Technical Digest, 13-15 Dec. 2004

Page(s):751 - 754 [8] D.J.McGinty and D.E.Root, and J.Perdomo, “A Production FET Modeling and Library Generation System,” in IEEE GaAs MANTECH Conference Technical Digest, San Francisco, CA, July, 1997 pp. 145-148[9] Root, D.E. and Fan, S., “Experimental Evaluation of Large-Signal Modeling Assumptions Based On Vector Analysis of Bias-Dependent S-Parameter Data from MESFETs and HEMTs”, 1992 IEEE MTT-S International [9] Root, D.E. and Fan, S., Experimental Evaluation of Large Signal Modeling Assumptions Based On Vector Analysis of Bias Dependent S Parameter Data from MESFETs and HEMTs , 1992 IEEE MTT S International

Microwave Symposium Technical Digest, pp.255-259 [10] Agilent ADS manual[11] Parker & Rathmell IEEE Intl. Microwave Symp. Dig. 2004[12] Curtice, W.R.; Ettenberg, M.; “A Nonlinear GaAs FET Model for Use in the Design of Output Circuits for Power Amplifiers” IEEE Transactions on Microwave Theory and Techniques, Volume 33, Issue 12, Dec 1985

Page(s):1383 - 1394[13] Agilent ADS manual [14] S. Maas, “Ill conditioning in self-heating FET models,” IEEE Microwave & Wireless Comp. Let. 12, 3 Mar. 02 pp 88-89[15] A. Parker, Comments on" ill conditioning in self-heating FET models"., IEEE Microwave and Wireless Components Letters 12:99, 351-352, 2002[16] D.E.Root, “Nonlinear Charge Modeling for FET Large-signal Simulation and its Importance for IP3 and ACPR in Communica­tion Circuits,” Proc. of the 44th IEEE Midwest Symposium on Circuits and Systems, Dayton

OH, August, 2001, pp 768 - 772 (contact author for corrected version)[17] D.E. Root “Overview of Microwave FET Modeling for MMIC Design, Charge Modeling and Conservation Laws, and Advanced Topics,” 1999 Asia Pacific Microwave Conference Workshop Short Course on Modeling

and Characterization of Microwave Devices and Packages, Singapore, November, 1999[18] AE Parker and JG Rathmell, “Bias and Frequency Dependence of FET Characteristics, IEEE Transactions on Microwave Theory and Techniques vol. 51, no. 2, pp. 588--592, Feb. 2003. [19] Ouarch, Z.; Collantes, J.M.; Teyssier, J.P.; Quere, R.;

Measurement based nonlinear electro thermal modeling of GaAs FET with dynamical trapping effects 1998 IEEE MTT S International Microwave Symposium Digest Volume 2 7 12 June 1998 pp :599 602Measurement- based nonlinear electro-thermal modeling of GaAs FET with dynamical trapping effects, 1998 IEEE MTT-S International Microwave Symposium Digest Volume 2, 7-12 June 1998 pp :599 - 602[20] Webster, D.; Darvishzadeh, M.; Haigh, D.;“Total charge capacitor model for short-channel MESFETs,” IEEE Microwave and Guided Wave Letters, Volume 6, Issue 10, Oct. 1996 Page(s):351 - 353 [21] D.E.Root, 2001International Symposium on Circuits and Systems Tutorial/Short-Course and Special Session on High-Speed Devices and Modeling, Sydney, Australia, May, 2001, pp 2.3_1 - 2.3_7 and 2.7_1 - 2.7_8 [22] Schreurs, D.; Verspecht, J.; Vandenberghe, S.; Carchon, G.; van der Zanden, K.; Nauwelaers, B.; Easy and accurate empirical transistor model parameter estimation from vectorial large-signal measurements,” IEEE Intl

Microwave Symp. Digest, Volume 2, 13-19 June 1999 Page(s):753 - 756 vol.2 [23] Schreurs et al “Direct Extraction Of The Non-linear Model For Two-port Devices From Vectorial Non-linear Network Analyzer Measurements,” 27th European Microwave Conf. Sept ’97 921-926

[24] Curras Francos M C ; Tasker P J ; Fernandez Barciela M ; Campos Roca Y ; Sanchez E ; “Direct extraction of nonlinear FET Q V functions from time domain large signal

© Copyright Agilent Technologies 2010

Page 50Page 50 D. E. RootD. E. Root

[24] Curras-Francos, M.C.; Tasker, P.J.; Fernandez-Barciela, M.; Campos-Roca, Y.; Sanchez, E.; “Direct extraction of nonlinear FET Q-V functions from time domain large signal measurements,” IEEE Microwave and Guided Wave Letters Volume 10, Issue 12, Dec. 2000 Page(s):531 - 533

Norway #3 Transistor Modeling

May 7, 2010

Page 161: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

References (2)[25] S. Haykin, Neural Networks: A Comprehensive Foundation (2nd Ed. ) Prentice Hall; 1998[26] Q.J.Zhang &.K.C.Gupta, Neural Networks for RF and Microwave Design, Artech House, 2000[27] Xu et al “Exact adjoint sensitivity analysis for neural-based microwave modeling and design,” IEEE Transactions on Microwave Theory and Techniques Volume 51, Issue 1, Part 1, Jan.

2003 Page(s):226 – 237[28] J. Verspecht & D. Schreurs, “Measuring transistor dynamic loadlines and breakdown currents under large-signal high-frequency operating conditions,” in IEEE Microwave Symposium

Digest, 1998 Vol 3, 7-12 June 1998 pages 1495-1498 vol. 3[29] Aarts, A.C.T.; van der Hout, R.; Paasschens, J.C.J.; Scholten, A.J.; Willemsen, M.B.; Klaassen, D.B.M.; “New fundamental insights into capacitance modeling of laterally nonuniform MOS

devices,”IEEE Transactions on Electron Devices, Volume 53, Issue 2, Feb. 2006 Page(s):270 - 278

[30] S. Maas, “Fixing the Curtice FET Model” Microwave Journal, March 2001[31] Parker, A.E.; Skellern, D.J.; “A realistic large-signal MESFET model for SPICE,” IEEE Transactions on Microwave Theory and Techniques Volume 45, Issue 9, Sept. 1997 Page(s):1563 -

1571 [32] D.E.Root, in 1999 Asia-Pacific Microwave Conference Workshop (WS2) Modeling and Characterization of Microwave Devices and Packages, Singapore, 1999[33] D.E.Root “Elements of Measurement-Based Large-Signal Device Modeling,” in 1998 IEEE Radio and Wireless Conference (RAWCON) Workshop on Modeling and Simulation of Devices

and Circuits for Wireless Communication Systems, Colorado Springs, August, 1998[34] AE Parker and JG Rathmell, “Broad-band Characterization of FET Self-Heating” IEEE Transactions on

Microwave Theory and Techniques, vol. 53, no. 7, pp. 2424--2429, Jul. 2005. [35] Filicori, F.; Vannini, G.; Monaco, V.A.; “A nonlinear integral model of electron devices for HB circuit analysis,” IEEE Transactions on Microwave Theory and Techniques, Volume 40, Issue [ ] , ; , ; , ; g y , y q , ,

7, July 1992 Page(s):1456 - 1465 [36] HPNMDG group[37] D.Schreurs, J.Verspecht, B.Nauwelaers, A.Van de Capelle, and M. Van Rossum, “Procedure to extract the nonlinear HEMT model from vectorial non-linear network analyzer

measurements,” International IEEE Workshop on Experimentally Based FET Device Modeling and Related Nonlinear Circuit Design, Kassel, Germany, pp. 20.1 - 20.7, July, 1997.[38] Martín-Guerrero et al “Frequency domain-based approach for nonlinear quasi-static FET model extraction from large-signal waveform measurements,” EuMICC Conf. 2006[39] V. Cuoco, “ Smoothie – A Model for Linearity Optimization of FET Devices in RF Applications,” Ph.D. Thesis Technical University of Delft, 2006[40] Lingquan Wang, “Investigation on High Frequency Terminal Current Non-conservation and its Physical Implications,” University of California at San Diego Class EE283 Final Project, 2005[41] Trew, R.J.; Yueying Liu; Bilbro, L.; Weiwei Kuang; Vetury, R.; Shealy, J.B.; “Nonlinear source resistance in high-voltage microwave AlGaN/GaN HFETs,” IEEE Transactions on Microwave

Theory and Techniques Volume 54, Issue 5, May 2006 Page(s):2061 - 2067 [42] A. Conway and P. Asbeck, To be published at IEEE 2007 International Microwave Symposium[43] Xu, J.; Gunyan, D.; Iwamoto, M.; Cognata, A.; Root, D.E.; “Measurement-Based Non-Quasi-Static Large-Signal FET Model Using Artificial Neural Networks,” IEEE MTT-S International

Microwave Symposium Digest June 2006 Page(s):469 - 472 [44] D.Root and J. Wood, “Simulator Requirements for Measurement and Simulation-based Black-Box Nonlinear Models,” 2004 IEEE International Microwave Symposium Workshop[45] Xu, J.; Gunyan, D.; Iwamoto, M, Horm, J,, Cognata, A.; Root, D.E.; “Drain-Source Symmetric Artificial Neural Network-Based FET Model with Robust Extrapolation Beyond Training Data,”

IEEE MTT-S International Microwave Symposium Digest June 2007IEEE MTT S International Microwave Symposium Digest June 2007 [46] Li, E.X.; Scheinberg, N.; Stofman, D.; Tompkins, W.; “An independently matched parameter SPICE model for GaAs MESFET's,” IEEE Journal of Solid-State Circuits, Volume 30, Issue

8, Aug. 1995 Page(s):872 - 880 [47] F.Filicori et al “Empirical Modeling of Low-Frequency Dispersive Effects Due to Traps and Thermal Phenomena in III-V FETs,” IEEE Trans. Microwave Theory Tech. Vol 43, No. 12, Dec.,

1995, pp.2972-2981[48] M. Iwamoto et al “Large-signal HBT model with improved collector transit time formulation for GaAs and InP technologies,” in 2003 IEEE MTT-S Int. Microwave Symp. Dig., Philadelphia,

PA, June 2003 pp.635-638[49] M. Iwamoto, D.E. Root, “Large-Signal III-V HBT Model with Improved Collector Transit Time Formulations, Dynamic Self-Heating, and Thermal Coupling,” 2004 International Workshop on

Nonlinear Microwave and Millimeter Wave Integrated Circuits (INMMIC) Rome Nov 2004

© Copyright Agilent Technologies 2010

Page 51Page 51 D. E. RootD. E. Root

Nonlinear Microwave and Millimeter Wave Integrated Circuits (INMMIC), Rome, Nov. 2004[50] Blockley et al 2005 IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA, USA, June 2005.

Norway #3 Transistor Modeling

May 7, 2010

Page 162: Nonlinear Analog Behavioral Modeling of Microwave Devices and … · 2011-03-15 · MEMS switches GaAs Agilent Measurement HW & SW IP external technology Collaborative Innovation

References (3)

[51] E. Vandamme et al, “Large-signal network analyzer measurements and their use in device modeling,” MIXDES 2002, Wroclaw, Poland.

[52] D. E. Root et al “Device Modeling with NVNAs and X-parameters,” IEEE INMMiC Conference, Gotenborg, Sweden, April, 2010

[53] J. Xu et al “Large-signal FET model with multiple time scale dynamics from nonlinear vector network analyzer data,” IEEE MTT-S International Microwave Symposium Digest, May, 2010

© Copyright Agilent Technologies 2010

Page 52Page 52 D. E. RootD. E. RootNorway #3 Transistor Modeling

May 7, 2010


Recommended