+ All Categories
Home > Documents > Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J....

Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J....

Date post: 22-Dec-2015
Category:
Upload: joel-lee
View: 214 times
Download: 0 times
Share this document with a friend
Popular Tags:
30
Nonlinear Optics in Silicon Core Fibers POEM:2012 Nov 2012 1 Optoelectronics Research Centre, University of Southampton, UK 2 Department of Chemistry and Materials Research Institute, Pennsylvania State University, Pennsylvania, USA
Transcript
Page 1: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

Nonlinear Optics in Silicon Core Fibers

POEM:2012 Nov 20121 Optoelectronics Research Centre, University of Southampton, UK2 Department of Chemistry and Materials Research Institute, Pennsylvania State University, Pennsylvania, USA

Page 2: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

2

Outline

• Silicon fibers and their fabrication

• Nonlinear propagation equations

• Nonlinear properties of silicon fibers– Absorption (TPA)– Spectral broadening (SPM)– Optical modulation via TPA– Comparison of different core sizes

• Tapered silicon core fibers– Nonlinear pulse shaping

Page 3: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

Nonlinear Silicon Photonics- on chip….

• Raman amplifiers/lasers (Claps et al., Opt. Express, v.11, 2003)

• Wavelength conversion: FWM/XPM/THG

• All-optical control: TPA, FCD

• Supercontinuum: SPM

• And much more…

3

WOK Publication Data

Breakthroughs in Nonlinear Si Photonics 2011

Y. Okawachi et al., IEEE Photon. J. 4, 601 (2011)

Page 4: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

Why Fiberize Silicon?

4

• Fibers are the backbone of telecommunications industry

• Silicon waveguides largely used as a nonlinear element

• Incorporation inside the fiber geometry negates some of the coupling issues

• Allow for the construction of cheap/robust devices

• Exploit wide variety of fiber templates for novel designs

• New fiber materials extend applications to medicine, imaging, sensing, and security

Page 5: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

Penn State & ORC1

Clemson Univ.2

Virginia Tech.3

5

A Brief History of Silicon Fibers

10

8

6

4

2

0

Mar

06

Oct

07

Nov

08

Jan 1

0

Oct

09

Jul 1

0

Jun 1

1

Jan 1

2

dB

/cm

1. P. Sazio et al., Science 311,1583 (2006)2. J. Ballato et al., Opt. Express 16, 18675 (2008)3. B. Scott et al., IEEE Photon. Techn. Lett. 21 1798 (2009)

Page 6: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

6

A Brief History of Silicon Fibers

10

8

6

4

2

0

Mar

06

Oct

07

Nov

08

Jan 1

0

Oct

09

Jul 1

0

Jun 1

1

Jan 1

2

dB

/cm

1. L. Lagonigro et al., Appl. Phys. Lett. 96, 041105 (2010)2. P. Mehta et al., Opt. Express 18, 16826 (2010)3. P. Mehta et al., CLEO 2012, CTh1C.2

Penn State & ORC1-3

Clemson Univ.

Virginia Tech.

Page 7: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

7

Chemical Deposition

• High Pressure Chemical Fluid Deposition

• Pressure

– 35MPa

• Precursor

– SiH4+Hydrogen

• Temperature

– low (<400 oC) for a-Si

– high (>500 oC) for p-Si

Page 8: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

Silicon Optical Fibers

8

1. N. Healy et al., Opt. Express 17, 18076 (2009)

2. N. Healy et al., Opt. Express 19, 10979 (2011)

3. J. R. Sparks et al., JLT 29, 2005 (2011)4. N. Healy et al., Opt. Express 18, 7596

(2010)

1 2

3 4

Page 9: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

Hydrogenated Amorphous Silicon

• High nonlinear refractive index

• n~3.6

• Bandgap ~1.7eV

• Transparent from ~800nm-6m

• Hydrogen can passivate dangling bonds for optical low loss

• Lowest loss to date at

– 0.8 dB/cm (1.55m)

– 0.7 dB/cm (2.8m)

9

D=5.7m

Page 10: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

10

Nonlinear Propagation in Silicon

Page 11: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

11

Nonlinear Propagation in Si Fibers

Page 12: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

12

Nonlinear Loss

1. P. Mehta et al., Opt. Express 16, 16826 (2010).

Hyperbolic secant input

Page 13: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

Self-Phase Modulation

131. P. Mehta et al., Opt. Express16, 16826 (2010)2. A. C. Peacock et al., Opt. Lett. 37, 3351 (2012)

Page 14: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

• High power pump induces an absorption dip on weak probe

• One photon from the pump and one photon from the probe

– Total energy must be greater than the bandgap Eg

• Makes use of the imaginary component of the third order nonlinearity Im[(3)] – ultrafast! 1

– All-optical modulation

– Wavelength conversion

14

Modulation via TPA

1. D. J. Moss et al., Electron. Lett. 41, 2005

Page 15: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

15

Modulation via TPA

• Simplified pump-probe equations

• High power pump I1 at 1

• Weak probe A2 at 2

Page 16: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

16

Modulation via TPA

16

• Degenerate pump-probe technique

1. P. Mehta et al., Opt. Express, vol. 19, 19081 (2011).

Page 17: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

1717

Modulation via TPA• Non-degenerate pump-probe technique

• Highly Nonlinear Fibre (HNLF)

• Bandwidth Variable TuneableFilter (BVF)

Page 18: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

18

Modulation via TPA• Non-degenerate pump-probe technique

Page 19: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

19

Cross-Absorption Modulation• Extinction: ~ 3 dB

• Pulse width ~ 1 ps

~87ns Pump

Probe

Page 20: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

20

Cross-Phase Modulation

1. R. Dekker et al., Opt. Express 14, 8336, 20062. E. Tien et al., Appl. Phys. Lett. 95, 051101, 20093. H. Hsieh et al., Opt. Express 18, 9613, 2010

See next presentation: IF5B.4

• Real part of the third order nonlinearity Re[(3)]

• High power pump induces a phase shift on a weak probe due to intensity dependent refractive index change

– Optical switching1

– Gating2

– Regeneration3

Page 21: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

21

Towards smaller core fibers- Nonlinear Absorption

• 1.7µm core diameter

• Aeff = 1.24m2

• L = 6mm

Page 22: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

22

Towards smaller core fibers -Self-Phase Modulation

• 1.7µm core diameter

• Aeff = 1.24m2

• L = 6mm

Page 23: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

• Combine large nonlinearity with reduced for low power high-speed devices

Core Size Comparison

• Core sizes: 1.7m (green), 5.7m (red)

23

• Nonlinear parameter:

Page 24: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

Tapered Silicon Core Fibers

24

• BIT communications fusion splicer

• Arc current in the range: 8-15 mA

• Duration: 5.5 s – heat silicon above melting point 1410oC

• Pull distance selected for desired ratio

Page 25: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

Tailor Waveguide Parameters

25

• Decreasing dispersion is formally equivalent to dispersion and gain

– Pulse shaping

• Applications of tapered fibers

– Short pulse generation

– Phase matched four-wave mixing

– Supercontinuum generation

Page 26: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

26

Dispersion and Nonlinearity Tailoring

=1.55m

NormalAnomalous

• High core/cladding index contrast allows for tailoring of the waveguide dispersion

• Normal dispersion regime₋ decreasing dispersion₋ increasing nonlinearity₋ parabolic pulses?

• Anomalous dispersion regime₋ decreasing dispersion₋ decreasing nonlinearity₋ soliton solutions?

Page 27: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

Normal Dispersion - Parabolic Pulse Shaping

Silicon Taper ₋L = 2mm₋Din = 2.5m₋Dout = 1m

Input Pulse₋Gaussian₋Tin = 200fs₋P0 = 200W

271. A. Peacock , N. Healy, “Parabolic pulse generation in tapered silicon fibers,” Opt. Lett., vol. 35, 1780 (2010).

• Self-similar solutions for high power pulse propagation– strict linear chirp

Page 28: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

28

Anomalous Dispersion- Soliton Propagation

Silicon Taper ₋L = 10mm₋Din = 640nm₋Dout = 850nm

Input Pulse₋N = 1₋Tin = 170fs₋P0 = 1W

1. A. Peacock “Soliton propagation in tapered silicon core fibers,” Opt. Lett., vol. 35, 3697, 2010.

• Compensate for loss induced broadening of fundamental soliton

Page 29: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

Conclusions

• Demonstrated the smallest core silicon fibers

– losses comparable with on-chip technologies

• First nonlinear characterization of silicon fibers

– demonstrate device functionality

• Moving towards nanoscale waveguides

– low power operation and faster device speeds

• Exploit fiber geometry for novel nonlinear functionality

– tapered fibers29

Page 30: Nonlinear Optics in Silicon Core Fibers A. C. Peacock 1, P. Mehta 1, T. D. Day 2, J. R. Sparks 2, J. V. Badding 2, and N. Healy 1 POEM:2012 Nov 2012 1.

Thank [email protected]

Acknowledgments

• EPSRC (EP/G051755/1 and EP/J004863/1)

• Royal Academy of Engineering

• NSF (DMR-1107894 and DMR-0820404)


Recommended