+ All Categories
Home > Documents > Normative values of clinical measurements around the ...

Normative values of clinical measurements around the ...

Date post: 27-Oct-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
55
Normative values of clinical measurements around the scapula: assessment of the length of the pectoralis minor, scapular inclination and glenohumeral rotational range of motion Thomas Duyts Daan De Langhe Simon Dedecker Promotor: PT, PhD, Birgit Castelein PT, PhD, Ann Cools Master thesis submitted to achieve masters degree in rehabilitation sciences and physiotherapy Academic year: 2018-2019
Transcript

Normative values of clinical

measurements around the scapula:

assessment of the length of the

pectoralis minor, scapular inclination

and glenohumeral rotational range of

motion

Thomas Duyts Daan De Langhe Simon Dedecker

Promotor: PT, PhD, Birgit Castelein PT, PhD, Ann Cools

Master thesis submitted to achieve masters degree in rehabilitation sciences and physiotherapy

Academic year: 2018-2019

Normative values of clinical

measurements around the scapula:

assessment of the length of the

pectoralis minor, scapular inclination

and glenohumeral rotational range of

motion

Thomas Duyts Daan De Langhe Simon Dedecker

Promotor: PT, PhD, Birgit Castelein PT, PhD, Ann Cools

Master thesis submitted to achieve masters degree in rehabilitation sciences and physiotherapy

Academic year: 2018-2019

Acknowledgements The following words are an appreciation for the support we have received over the past two years in

accomplishing this study.

First, we would like to thank the University of Ghent for giving us the opportunity to do this research

and for providing all the necessary equipment. Secondly, our promotors PhD. Castelein Birgit and

PhD. Cools Ann should be acknowledged for the excellent guidance during this thesis. Their

knowledge and management of the whole process was an enormous contribution to the research

and its quality.

One last thing which cannot be forgotten in this acknowledgment, are the participants of the study.

They were a crucial factor in the research, without them doing what we did today would not have

been possible. Therefore, we would like to thank every single person who agreed to take part in the

testing procedure.

To end, thank you to everyone who made any contribution to this thesis, including ourselves.

Without the daily teamwork, patience and commitment finishing this work would not have been

conceivable.

Daan, Thomas and Simon

TABLE OF CONTENTS

ABSTRACT (English) .............................................................................................................................. 8

ABSTRACT (Dutch)................................................................................................................................ 9

1. INTRODUCTION ......................................................................................................................... 10

2. METHODS .................................................................................................................................. 12

2.1. Participants......................................................................................................................... 12

2.2. Testing Procedure .............................................................................................................. 13

2.2.1. Scapular dyskinesis .................................................................................................... 14

2.2.2. ROM ER/IR .................................................................................................................. 14

2.2.3. Length of the pectoralis minor ................................................................................... 15

2.2.4. Scapular inclination ................................................................................................... 16

2.3. Statistical analyses............................................................................................................. 16

3. RESULTS ..................................................................................................................................... 18

3.1. Reliability ............................................................................................................................ 18

3.2. Synthesis of results............................................................................................................. 18

3.2.1. PMI ............................................................................................................................. 18

3.2.2. ROM............................................................................................................................ 18

3.2.3. Scapular dyskinesis ..................................................................................................... 19

3.2.4. Inclination ................................................................................................................... 19

4. DISCUSSION ............................................................................................................................... 25

4.1. Summary of results ............................................................................................................ 25

4.1.1. Range of motion (IR ROM, ER ROM, TOT ROM) ........................................................ 25

4.1.2. Scapular dyskinesis ..................................................................................................... 28

4.1.3. Pectoralis minor muscle length .................................................................................. 29

4.1.4. Inclination .................................................................................................................. 30

4.2. Limitations .......................................................................................................................... 30

4.3. Conclusion .......................................................................................................................... 31

5. REFERENCES .............................................................................................................................. 32

6. Leken abstract ........................................................................................................................... 36

7. APPENDIX .................................................................................................................................. 46

7.1. Scapular normative values ................................................................................................. 46

7.2. Questionnaire .................................................................................................................... 48

7.3. Scapula measurement protocol ......................................................................................... 51

7.3.1. Strength protocol ....................................................................................................... 51

7.3.2. ROM ER/IR protocol ................................................................................................... 53

7.3.3. Length of the pectoralis minor protocol .................................................................... 54

7.3.4. Scapular dyskinesis protocol ..................................................................................... 54

7.3.5. Scapular inclination protocol .................................................................................... 55

LIST OF PICTURES AND TABLES

TABLES

Table 1 Population characteristics P 12

Table 2 Testing reliability P 18

Table 3.1 Descriptive statistics for men: PMI, ROM IR, ROM ER, Total ROM,

Inclination

P 20

Table 3.2 Descriptive statistics for women: PMI, ROM IR, ROM ER, Total ROM,

Inclination

P 21

Table 4.1 Descriptive statistics for men: scapular dyskinesis P 22

Table 4.2 Scapular dyskinesis for women: scapular dyskinesis P 22

Table 5 Statistical analysis P 23

Table 6 Significant results post hoc tests P 24

FIGURES

Figure 1 Scapular testing protocol P 13

Figure 2 Measurement of ER with digital inclinometer P 15

Figure 3 Measurement of IR with digital inclinometer P 15

Figure 4 Measurement of length of the pectoralis minor muscle with Digital Caliper P 15

Figure 5 Measurement of inclination of the scapula with digital inclinometer P 16

LIST OF ABBREVIATIONS

ROM Range Of Motion ER External Rotation IR Internal Rotation MT Middle trapezius LT Lower trapezius UT Upper trapezius SS Supraspinatus Kg Kilograms BMI Body Mass Index cm centimeter m2 square meter VAS Visual Analogue Scale HHD Handheld Dynamometer Dom Dominant NDom Non-dominant M Men or male F Female or women MD Mean Difference ICC Intraclass correlation coefficient SEM Standard error of the measurement SD Standard deviation MDC Minimal detectable change CI Confidence interval SAT Scapular Assistance Test SRT Scapular Retraction Test

8

ABSTRACT (English) Background: Shoulder pain is a prevalent symptom in the population. As the scapula is the central link

between the shoulder and the spine it forms the base of this functional unit. Within this unit the

balance between mobility and stability is easily disturbed. Optimal functioning of the scapula is

necessary to control this delicate balance. Normative values based on a good measurement protocol

are very useful for a critical evaluation of this function. In literature no normative values for clinical

evaluation of the shoulder-scapula unit are present neither is their consistency in the testing methods

to obtain these values.

Objectives: This study wants to offer a benchmark and easy to perform testing procedures for

clinicians. Four outcome parameters were measured, shoulder range of motion, length of the

pectoralis minor, scapular inclination and the presence of scapular dyskinesis.

Study design: Cross-sectional study.

Methods: 400 healthy (201 men, 199 women), non-overhead athletes, between 18 and 60 years of age

were recruited. All participants underwent measurements, for the four parameters, on both shoulders.

Scapular dyskinesis was assessed with the yes/no method. The length of the pectoralis minor was

measured with a caliper. A digital inclinometer was used for external/internal ROM and scapular

inclination. The data were then analyzed with linear mixed models, in order to find significant (p < 0.05)

interactions or significant main effects. Significant differences were further analyzed using post hoc

pairwise comparisons (Bonferroni). Normative values for age, side dominance, gender and presence

of dyskinesis were obtained this way.

Results: This study shows that the factors: age, gender, side dominance and presence of dyskinesis

have significant influence on the parameters. For the PMI, it was shown that the dominant side was

statistically shorter than the non-dominant side. Female have consequently greater ROM than male.

The same thing is noticed for the youngest age categories compared to the older. For IR the dominant

side has less ROM than the non-dominant, the opposite applies for ER. For Inclination, women without

scapular dyskinesis showed more upward rotation of the scapula compared to the same age categories

with dyskinesis. Scapular dyskinesis is present in almost half of the population.

Conclusion: This study created representative normative data, that can be used in a clinical setting to

evaluate the condition of the scapula in various populations. For further research in this topic, the

researchers advocate for consistency in the use of measurement protocols and the recruitment of a

representative population.

Keywords: Scapula, shoulder, normative values, measurement protocol, scapular dyskinesis

9

ABSTRACT (Dutch) Achtergrond: Schouderpijn is een veel voorkomend fenomeen in de populatie. De scapula is de

centrale link tussen de schouder en de wervelzuil en vormt de basis van deze functionele eenheid.

Binnen deze functionele eenheid is de balans tussen mobiliteit en stabiliteit eenvoudig verstoord.

Optimaal functioneren van de scapula is noodzakelijk om deze delicate balans te bewaren. Normatieve

waarden gebaseerd op metingen met een goed protocol zijn zeer interessant voor een kritische

evaluatie van deze functie. In de literatuur zijn geen normatieve waarden voor evaluatie van het

schouder-scapula complex aanwezig alsook is er geen consistentie in de test methoden om deze

waarden te bekomen. Doelstellingen: Deze studie wenst een benchmark en eenvoudig uit te voeren

meetprocedures aan te bieden aan clinici. Vier outcome parameters werden gemeten, schouder ROM,

lengte van de pectoralis minor, scapulaire inclinatie en de aanwezigheid van scapulaire dyskinesie.

Onderzoeksdesign: Cross-sectionele studie. Methode: 400 gezonde (201 mannen, 199 vrouwen), niet-

bovenhandse atleten, tussen 18 en 60 jaar oud werden gerekruteerd. Alle deelnemers ondergingen

metingen, voor de vier parameters, op beide schouders. Scapulaire dyskinesie werd geëvalueerd

a.d.h.v. de ja/nee methode. De lengte van de pectoralis minor werd gemeten met een caliper. Een

digitale inclinometer werd gebruikt voor externe/interne ROM en scapulaire inclinatie. De gegevens

werden dan geanalyseerd a.d.h.v. linear mixed models, met de bedoeling significante (p<0.05)

interacties of significante main effects te vinden. Significante verschillen werden vervolgens verder

geanalyseerd a.d.h.v. post hoc pairwise comparison (Bonferroni). Normatieve waarden voor leeftijd,

armdominantie, geslacht en aanwezigheid van dyskinesie werden op deze manier verkregen.

Resultaten: Deze studie toont aan dat de factoren: leeftijd, geslacht, armdominantie en de

aanwezigheid van dyskinesie een significante invloed hebben op de parameters. Voor de PMI, werd

aangetoond dat de dominante zijde significant korter was dan de niet-dominante zijde. Vrouwen

hebben consequent meer ROM dan mannen. Hetzelfde geldt voor de jongste leeftijdscategorieën in

vergelijking met de oudere leeftijdscategorieën. Voor IR heeft de dominante zijde minder ROM dan de

niet-dominante zijde, het omgekeerde geldt voor ER. Voor inclinatie toonden vrouwen zonder

scapulaire dyskinesie meer opwaartse rotatie van de scapula in vergelijking met dezelfde

leeftijdscategorie met scapulaire dyskinesie. Scapulaire dyskinesie is aanwezig in bijna de helft van de

populatie. Conclusie: Deze studie formuleerde representatieve normatieve data die gebruikt kunnen

worden in een klinische setting om de status van de scapula te evalueren in verschillende populaties.

Voor verder onderzoek rond dit onderwerp raden de onderzoekers consistentie, in het gebruik van

meetprocedures en het rekruteren van een representatieve populatie, aan.

Keywords: schouderblad, schouder, normatieve waarden, meetprotocol, scapulaire dyskinesie

10

1. INTRODUCTION Shoulder pain is a prevalent symptom that affects 22.3% of the people and has a lifetime prevalence

of up to 66,7% (15, 16). This symptom can have a major impact on health-related quality of life, physical

functioning, psychological distress and sleep quality. Populations particularly vulnerable to shoulder

pain are the elderly and those in manual working environments (1). For the treatment of shoulder pain

clinicians can focus on the local structures, but also more distant structures can influence or cause the

pain (12 – 13). The scapula is one of these structures and is the central link between the shoulder and

the spine. It articulates with the humeral head, to form the glenohumeral joint, and with the clavicle

forming the acromioclavicular joint. The discrepancy between the size of the humeral head and the

glenoid fossa, allows a broad range of motion in the shoulder, but calls for effective stabilizers to

control its natural position and movement. This combined action between mobility and stability is

easily disturbed. Disturbance of the scapular function and position is often described as

scapulothoracic dysfunction or scapular dyskinesis. This altered scapular position and motion is linked

with various musculoskeletal disorders (10, 17 – 19). Burkhart et al. (2003) referred with the acronym

SICK to the syndrome associated with scapular dyskinesis (2). The causal relation between shoulder

pathology and scapulothoracic dysfunction is not clear. Does shoulder pain affect the function of the

shoulder complex or is scapulothoracic dysfunction a predestination for shoulder complaints?

Nevertheless, it is clear that the scapula plays a major role in the function of the upper kinetic chain

and that clinical examination of the shoulder cannot be performed without evaluating the condition

of the scapula.

Different methods exist to obtain an accurate overview of the scapula and/or shoulder function.

Different investigators have tried to describe reliable protocols to standardize evaluation of the

scapula. Tools as biodex, 3D measurements, etc. can be found in university settings or hospitals, but

are usually not affordable for self-employed therapists. The best evaluation methods for clinicians are

those that can be easily performed with affordable tools, such as an inclinometer, goniometer, digital

caliper, etc. or even by visual observation and surface palpation (20, 21). These clinical devices and

methods have a good inter- and intra-rater reliability which makes their results acceptable to use as

an outcome measure (4 – 9). The classification system following Kibler et al. (2002) is a widely spread

evaluation method (3). Based on this classification a clinician can link different structural/functional

impairments to a ‘type’ of scapular dysfunction. For example, a type-1 scapular dysfunction can be

caused by shortness of the pectoralis minor muscle and strength imbalance in the lower part of the

trapezius muscle (59, 60). Despite the widespread use of this classification there is still discussion if

presence of scapular dyskinesis is per definition aberrant. It is clear that a proper examination of the

scapula requires more than only the parameter dyskinesis. Therefore, this study will not only focus on

11

scapular dyskinesis to define normative values, but three other parameters will also be included:

muscle length, inclination, ROM (Range of motion). (As this study is part of a greater investigation

another team of researchers will describe a fifth important parameter, strength of the scapular

muscles).

Muscle tightness is one of the potential mechanisms that influences the scapular position and motion

(21). There is sufficient evidence that length of the pectoralis minor muscle is an important

biomechanical parameter to affect shoulder posture which potentially can result in shoulder pain (21

– 23). As mentioned above the caliper is a reliable device to measure the distance between the bony

landmarks associated with the pectoralis minor length (8).

Objectivating scapular inclination in resting position or in higher humeral elevation angles, with a

digital inclinometer, is an easy, reliable and valid way to measure the position of the scapula (24 – 25).

Based on the outcome of the scapular inclination measurements, assumptions can be made about

different musculoskeletal factors influencing this outcome. A review by Struyf et al. (2011) described

the average scapular inclination between +5° upward rotation and -5° downward rotation (26).

The final parameter is range of motion. This parameter is widely documented in research and is

commonly used by clinicians to objectivate the clinical status and progression of the patient (28). In

different disciplines of healthcare this parameter has great clinical relevance (sports medicine, burns

center, …). As mentioned above the digital inclinometer is a reliable device to measure the ROM of the

shoulder (4, 27).

The combination of these four biomechanical parameters (dyskinesis, muscle tightness, inclination and

ROM) into one measurement protocol can aid clinicians towards a more holistic evaluation of the

scapula. In order to properly use this measurement protocol in clinical practice, it is of great value to

compare the outcome values with age, dominance and gender related reference values. A systematic

review of the literature was conducted, in order to withdraw normative values for these scapular

biomechanical parameters (28). To date, there are different reliable clinical measurements that can be

used by practitioners, but no study that described reference values, to benchmark a subject’s outcome

value to. It was also impossible to combine the different studies, in order to create normative values.

Between the studies there was lack of consistency in populations and testing procedures.

In conclusion, based upon literature search, there is lack of reference data subdivided in age, gender

and dominance for healthy subjects. Therefore, the primary goal of this study is to provide normative

values (divided by age, gender and side dominance) for the pectoralis minor length, the ROM of the

shoulder, the inclination of the scapula and the presence of scapular dyskinesis in a population of

healthy, non-overhead athletes. A second aim was to discuss possible age, gender and side dominance

12

differences for these parameters and to investigate the influence of scapular dyskinesis on these

parameters.

2. METHODS

2.1. Participants For this study, 400 healthy subjects (201 men, 199 women), were recruited over a period of two years

(2017 – 2019), by 4 groups of Master Students Physiotherapy. Advertisement on social media and

within the student’s social environment were used for recruiting subjects. The population was divided

into four age-categories: [18 – 29y], [30 – 39y], [40 – 49y], [50 – 60y]. Each student research group

recruited 25 subjects for every age category equally divided by gender. The overall mean (± standard

deviation (SD)) of the population’s height was 173.3 ± 9.68 cm, mean weight was 73.7 ± 15.61 kg, and

the mean body mass index (BMI) was 24.7 ± 8.75 kg/m². The mean (± SD) age, length, weight and BMI

for each age-category can be found in “Table 1 - Population characteristics/age-category”. Exclusion

criteria for participation in the study were, history of shoulder or cervical spine disorders, systemic

disorders, overhead athletes (> 4 hours/week). Subjects with pain in the shoulder/neck region were

excluded with a score 4/10 on the Visual Analogue Scale. To verify that every subject met these

inclusion and exclusion criteria, they were asked to fill in a questionnaire before the start of the testing

procedure (Appendix 7.2. Questionnaire). Also, an informed consent was obtained from all the

included participants. The study was approved by the Ethical Committee of Ghent University.

Table 1 – Population characteristics

[18y-30y[ [30y-40y[ [40y-50y[ [50y-60y[

Age 22.5 ± 2.68 34.3 ± 2.85 45.3 ± 3.01 54.4 ± 2.99

Length 174.0 ± 8.31 174.2 ± 12.34 172.6 ± 8.95 172.4 ± 8.60

Weight 69.7 ± 14.27 75.0 ± 17.53 76.5 ± 14.41 73.4 ± 15.41

BMI 22.9 ± 3.67 25.6 ± 16.16 25.5 ± 3.44 24.6 ± 4.19

Units: Age = years; Length = centimeters (cm); Weight = Kilograms (Kg); BMI = Body Mass Index (Kg/m2) Mean ± SD

13

2.2. Testing Procedure As mentioned earlier, this study is part of an investigation which ran over two years. Last year 2 groups

of master students physiotherapy collected the first data. In this final year two groups of master

students physiotherapy are set to finish the study. Each of the groups performed five measurements:

visual observation of scapular dyskinesis, length of pectoralis minor (PM Length), ROM

external/internal rotation (ROM ER/IR), strength of the shoulder muscles and scapular inclination. To

guarantee reliable measurements between the research-groups the measurement protocols were

strictly described in a video. Before testing the subjects, two days were planned to get familiar with

the material and the testing procedure. The parameters were divided, between the two final student

research groups, for data processing. The evaluation of the parameter ‘strength’ was allocated to the

other group and will therefore not be further discussed in this paper. The testing procedure used for

‘strength’ can be found in the appendix (7.3.1.).

For the measurements in this study two devices were used: caliper (Digital Caliper, Mitutoyo BeNeLux)

& inclinometer (Acumar digital inclinometer: Lafayette Instrument Co, Lafayette, IN, USA). The caliper

was used to measure the length of the pectoralis minor, the inclinometer was used for measuring the

shoulder ROM and inclination of the scapula. All the measurements were performed in a fixed order:

1) Scapular dyskinesis, 2) PM Length, 3) ROM ER/IR, 4) Strength and 5) Inclination. Before each test,

the examiner explained the protocol, focusing on compensations to avoid. Before starting the

measurements, each participant performed a warm-up which consisted of three exercises: coronal

plane arm swings, sagittal plane arm swings and wall push-ups. For all the parameters dominant (Dom)

and non-dominant (NDom) side were alternately measured two times, apart from scapular dyskinesis.

Afterwards the mean value was calculated for each side. For the testing there was opted that each

measurement was as consistently as possible performed by the same tester.

Figure 1 – Scapular testing protocol PMI=Pectoralis minor index; ER=External rotation; IR=Internal rotation; 0°/90° refer to the amount of shoulder abduction

14

2.2.1. Scapular dyskinesis This parameter was examined during an arm elevation in the scapular plane, which was defined as 30°

in front of the coronal plane, while holding weights. Two poles were used to guide the participants

movement. The subject was standing straight in a neutral position with the palms of the hands facing

forward. The weight of the halters depended on the body mass of the person, people weighing under

68 kg had to lift 1.5 kg and people weighing over 68 kg, 2 kg. The subject performed 5 arm elevations

in a row, in order to have a clear interpretation of possible dyskinesis. Each time this parameter was

evaluated by the agreement of two examiners. Based on Kibler’s classification (3), a number from 1 to

4 was assigned, distinguishing 4 types of scapular dyskinesis: ‘1’ = Inferior prominence, ‘2’ = Medial

prominence, ‘3’ = Superior prominence ‘4’ = no scapular dyskinesis. McClure et al. showed that the

method used for assessing scapular dyskinesis proved satisfactory reliability for clinical use (6).

2.2.2. ROM ER/IR For determining the glenohumeral range of motion (ROM), external (ER) and internal rotation (IR) were

measured using the procedure described by Cools et al (5). The subject was placed in a relaxed supine

position, with the shoulder in 90°abduction, the elbow in 90° flexion and a neutral wrist position. The

inclinometer was aligned with two marks (Figure 2 and 3) using an additional ruler. The first mark was

placed on the olecranon indicated by a semicircle crossed by a line through the middle. The second

mark was placed two centimeters proximally from the styloid process of the ulna. Before each

measurement the Inclinometer was calibrated. Two examiners were needed to perform the protocol,

one examiner moved the subject’s arm from the starting position to IR or ER, the second examiner

performed the calibration of the inclinometer and measured the range of motion.

15

External rotation: The first researcher placed one hand on the

anterior part of the shoulder and held with the other hand the

distal part of the radius, so that the mark at the ulnar side of the

wrist was clear for measurement. (Figure 2) The external

rotation was executed until maximal tension was perceived by

the researcher or when the patient felt a light stretching pain.

The second investigator aligned the ruler between the two

marks, with the inclinometer placed on the mark at the

olecranon. After measuring, the outcome was than expressed in

degrees without decimals.

Internal rotation: The first researcher palpated the coracoid process

with one hand and held the distal part of the radius bone with the other

hand, so that the mark at the ulnar side of the wrist was clear for

measurement. (Figure 3) Internal rotation was performed until the

researcher noticed movement of the coracoid process. This indicated

the end of the glenohumeral rotation. The second investigator aligned

the ruler between the two marks with the inclinometer placed on the

mark at the distal ulnar side of the wrist. After measuring the outcome

was than expressed in degrees without decimals.

2.2.3. Length of the Pectoralis Minor The assessment of the length of the pectoralis minor muscle was

based on the protocol described by Borstad et al. (29), which showed

to be reliable. The subject was placed in a relaxed, neutral and supine

position with his upper body uncovered. Two marks were placed on

each side of the chest, directly distal of the coracoid process and the

distal part of the sternocostal articulation of the 4th rib. A second

investigator controlled the place of the marks, to make sure it was

linked with the right bony reference point. Subsequently the distance

between these two marking points was measured, with a caliper

(Figure 4). The results were expressed in millimeters and rounded to

one decimal. The whole protocol (placing the marks + measuring with the Caliper) was performed two

times on each side after which a mean value for each side was calculated.

Figure 4. Measurement of length of the pectoralis minor

muscle with Digital Caliper.

Figure 3. Measurement of IR with digital inclinometer.

Figure 2. Measurement of ER with digital inclinometer.

16

2.2.4. Scapular inclination The fourth parameter, scapular upward rotation, was measured

following a reliable method described by Watson et al. (32). The

measurement was performed in a neutral standing position with the

arms relaxed. Two marks were placed on the spine of the scapula, one

near the posterior angle of the acromion, the other directly lateral to

the broad base of the scapular spine. (Figure 5) After defining these

marks, the inclinometer was placed on a ruler connecting the two

marks. A second investigator looked sideways at the inclinometer to

make sure it was positioned in the frontal plane. Data was collected,

in degrees without decimals. A ‘-’ (minus) was added if the scapula was

rotated downward and a ‘+’ (plus sign) was added for upward rotation.

2.3. Statistical analyses

For all statistical analyses IBM SPSS Statistics, version 25 (IBM Corporation, Armonk, NY, USA) was

used. For every parameter, outliers were analyzed and excluded if necessary. The data was analyzed

with linear mixed models, in order to find significant (p < 0.05) interactions or significant main effects.

When significant differences were found, further analysis was performed using post hoc pairwise

comparisons (Bonferroni). After analysis, normality for each outcome parameter was evaluated. This

procedure was performed to create “Table 3.1 - Descriptive statistics for men: PMI (pectoralis minor

index), ROM IR, ROM ER, Total ROM, Inclination”, “Table 3.2 - Descriptive statistics for women: PMI,

ROM IR, ROM ER, Total ROM, Inclination”, “Table 5 - Statistical analysis”, “Table 6 - Significant results

post hoc tests”.

“Table 2 - Testing reliability” shows the ICC, SD, SEM and MDC of the performed measurements. The

ICC (Intraclass correlation coefficient: 2-way random, absolute agreement) was calculated to show the

reliability of the measurement (trial-to-trial reliability, within day, intra-rater). The 95% confidence

interval (CI) is present between parentheses. SEM (standard error of the measurement) and MDC

(minimal detectable change) show the accuracy of the measurements.

Table 3.1. shows results of the male population divided by age and by side dominance. The same thing

was done for the female population, presented in table 3.2. . Mean and SD (standard deviation) can

be found for each dependent variable (PMI, ROM IR, ROM ER, total ROM, inclination). The PMI was

calculated by dividing the length of the pectoralis minor (cm) by the length of the subject (cm)

Figure 5. Measurement of inclination of the scapula with

digital inclinometer.

17

multiplied by 100. The ROM for IR, ER, total ROM and inclination are all expressed in degrees. The total

ROM is the sum from the IR and ER ROM. In table 4.1. and 4.2. descriptive statistics for scapular

dyskinesis are shown. It shows the distribution of dyskinesis in the population divided by

dominant/non-dominant side, age, gender and type of dyskinesis. Scapular dyskinesis was also

introduced as a population factor to evaluate the interaction, with other population factors, on a

certain parameter.

Nine significant main-effects and one three-way interaction was found, using the procedure described

above. The goal for each outcome parameter was to find the highest form of interaction between the

factors: dominance, gender, age-category and dyskinesis. For example, if a four-way interaction was

absent, three-way interactions were analyzed. This process was continued with as last step the

analyzation of main effects. Table 5. is an overview of these interactions/main effects for each

parameter. From the significant factors, presented in table 5., information from the post-hoc tests

were extracted and combined in table 6.

18

3. RESULTS

3.1. Reliability In table 2, ICC (2-way random, absolute agreement), SD, SEM and MDC are present. Following Koo et

al. (2016) the ICC for all parameters showed excellent reliability as they are all over 0.90 (34).

Table 2 – Testing reliability

ICC SD SEM MDC

Pm Length (mm) 0.997 (0.995-0.998) 17.20 0.942 2.611

PMI 0.995 (0.993-0.997) 0.813 0.058 0.159

Rom Internal Rotation (°) 0.914 (0.879-0.939) 6.016 1.764 4.890

Rom External Rotation (°) 0.988 (0.983-0.991) 13.744 1.506 4.173

F Middle trapezius (N) 0.954 (0.935-0.967) 36.391 7.805 21.600

F Lower trapezius (N) 0.968 (0.955-0.977) 29.197 5.220 14.471

Inclination (°) 0.965 (0.950-0.975) 8.374 1.567 4.354

Pm = Pectoralis minor; PMI = Pectoralis minor index; F = Force; Rom=Range of Motion; mm = millimeter; ° = Degrees; N = Newton; ICC = Intraclass correlation coefficient; SD = standard deviation; SEM = standard error of the measurement;

MDC = Minimal detectable change; SEM = SD √1 − 𝐼𝐶𝐶, MDC = 1.96 * SEM * √2

3.2. Synthesis of results Tables 3.1. and 3.2. show descriptive data (mean ± SD) for all measurements divided by sex, dominance

and age category. Results of statistical analysis of variance and post hoc Bonferroni analysis are

respectively represented in table 5. and 6.

3.2.1. PMI Statistical analysis showed no significant interactions but showed that the main effect “dominance”

had a significant (p = 0.004) influence on the PMI. Post-hoc tests showed that the PMI of the dominant

side is shorter than the non-dominant side. (p = 0.004; Mean difference (MD) Dom-NDom = -0.102)

3.2.2. ROM

• Internal rotation:

For internal rotation, it was shown that gender (p = 0.001), age (p < 0.001) and dominance (p < 0.001)

had significant main effects. Post-hoc tests showed that males have less IR than females (p = 0.001,

MD men-women = -4.015°) and age category 1 has the greatest mobility towards IR compared to the

19

other 3 age groups (1-2: p < 0.001, MD = 8.217°; 1-3: p > 0.001, MD = 7.898°; 1-4: p = 0.007, MD =

5.651°). ROM at the dominant side is less than on the non-dominant side (p < 0.001, MD Dom-NDom

= -3.990°).

• External rotation:

For external rotation, gender (p < 0.001), age (p < 0.001) and dominance (p < 0.001) are significant

main effects. Male have less ER than women (p < 0.001, MD men-women = -8.598°) and age category

1 has the greatest mobility towards ER compared to the other 3 age groups (1-2: p < 0.519, MD =

3.017°; 1-3: p < 0.001, MD = 8.259°; 1-4: p < 0.001, MD = 12.863°). ROM at the dominant side is greater

than on the non-dominant side (p < 0.001, MD = 4.055°).

• Total range of motion:

Gender (p < 0.001) and age (p < 0.001) are the significant main effects for total range of motion. Males

have less ROM than females (p < 0.001, MD men-women = -12.687°) and age category 1 has the

greatest mobility compared to the other 3 age groups (1-2: p = 0.001, MD = 11.254°; 1-3: p < 0.001,

MD = 16.164°; 1-4: p < 0.001, MD = 18.372°).

3.2.3. Scapular dyskinesis The descriptive results for scapular dyskinesis were separated for men and women into two tables,

represented by “Table 4.1 – Descriptive statistics for men: scapular dyskinesis” and “Table 4.2. –

Scapular dyskinesis for women: scapular dyskinesis”. In these two tables the population’s ratio for the

three different types of scapular dyskinesis and non-scapular dyskinesis were represented according

to the four different age categories. A differentiation between the dominant and non-dominant side

was created.

3.2.4. Inclination The results represent a three-way interaction between the factors age, gender and scapular dyskinesis

(P = 0.002) for the parameter inclination (Table 5.). Women in age-category one and three, without

scapular dyskinesis had a significantly more upward rotated scapula, compared to women in the same

age-categories with scapular dyskinesis (C1: p < 0.001, MD = 6.12; C3: p = 0.022, MD = 4.74).

20

Table 3.1. – Descriptive statistics for men: PMI, ROM IR, ROM ER, Total ROM, Inclination

MEN

[18y-30y[ [30y-40y[ [40y-50y[ [50y-60y[

Dominant Non-dominant Dominant Non-dominant Dominant Non-dominant Dominant Non-dominant

PMI 10.4 ± 1.50 10.6 ± 1.55 10.7 ± 2.86 10.8 ± 3.13

10.9 ± 1.30

11.0 ± 1.48 10.7 ± 1.40 10.9 ± 1.30

ROM IR (°) 48.2 ± 23.03 53.6 ± 27.11 40.6 ± 22.48 44.4 ± 24.43 40.1 ± 22.64 44.5 ± 26.90 45.1 ± 24.39 48.0 ± 24.47

ROM ER (°) 104.0 ± 27.00 100.4 ± 26.46 102.4 ± 23.94 97.3 ± 24.09 97.5 ± 24.34 93.9 ± 21.94 92.6 ± 29.22 88.1 ± 27.57

TOTAL ROM (°) 152.1 ± 39.63 154.0 ± 41.92 142.9 ± 37.27 141.7 ± 36.90 137.6 ± 40.02 138.4 ± 40.01 137.6 ± 41.59 136.1 ± 41.10

INCLINATION (°) -5.7 ± 17.70 -7.6 ± 20.33 -7.3 ± 22.32 -7.4 ± 21.06 -5.1 ± 17.74 -5.9 ± 18.19 -5.8 ± 22.38 -5.3 ± 22.07

PMI = Pectoralis minor Index; IR = Internal Rotation; ER = External rotation; ROM = Range Of Motion; ° = Degrees; Y = Years Mean ± 2SD

21

Table 3.2. – Descriptive statistics for women: PMI, ROM IR, ROM ER, Total ROM, Inclination

WOMEN

[18y-30y[ [30y-40y[ [40y-50y[ [50y-60y[

Dominant Non-dominant Dominant Non-dominant Dominant Non-dominant Dominant Non-dominant

PMI 10.6 ± 1.30 10.8 ± 1.32 10.5 ± 1.36 10.6 ± 1.23 10.7 ± 1.46 10.8 ± 1.37 10.6 ± 1.38 10.8 ± 1.37

ROM IR (°) 52.6 ± 24.36 57.6 ± 25.87 44.5 ± 21.72 49.7 ± 26.36 46.3 ± 30.90 49.5 ± 31.60 47.1 ± 25.03 49.1 ± 25.76

ROM ER (°) 115.1 ± 24.14 110.0 ± 26.03 111.2 ± 25.09 106.5 ± 25.99 103.4 ± 27.19 101.6 ± 26.63 100.8 ± 31.54 96.5 ± 32.80

TOTAL ROM (°)

20.1 ± 40.23 19.5 ± 38.91 18.6 ± 37.25 21.3 ± 42.60 25.0 ± 50.06 24.8 ± 49.58 21.6 ± 43.26 24.4 ± 48.71

INCLINATION (°)

-0.2 ± 16.42 -3.6 ± 18.61 -4.9 ± 17.58 -4.5 ± 18.35 -4.6 ± 22.41 -4.1 ± 20.40 -5.0 ± 18.69 -6.2 ± 19.33

PMI = Pectoralis minor Index; IR = Internal Rotation; ER = External Rotation; ROM = Range Of Motion; ° = Degrees; Y = Years Mean ± 2SD

22

Table 4.1 – Descriptive statistics for men: scapular dyskinesis

Scapular Dyskinesis MEN

Dominant Non-Dominant

Type 1 Type 2 Type 3 No ScD Type 1 Type 2 Type 3 No ScD

[18y-30y[ 17/49 8/49 0/49 24/49 15/49 9/49 1/49 24/49

34.7 % 16.3 % 0 % 49 % 30.6 % 18.8 % 1.3 % 49 %

[30y-40y[ 19/51 11/51 0/51 21/51 11/51 13/51 0/51 27/51

37.3 % 21.7 % 0 % 41.2 % 21.6 % 25.5 % 0 % 52.9 %

[40y-50y[ 14/51 11/51 0/51 26/51 7/51 14/51 1/51 29/51

27.5 % 21.6 % 0 % 51% 13.7 % 27.5 % 2 % 56.9 %

[50y-60y[ 15/49 6/49 1/49 27/49 11/49 4/49 0/49 34/49

30.6 % 12.2 % 2 % 55.1 % 22.4 % 8.2 % 0 % 69.4 %

TOTAL 65/200 36/200 1/200 98/200 44/200 40/200 2/200 114/200

32.4 % 18 % 0,5 % 49 % 22 % 20 % 1 % 57 % No ScD = Absence of scapular dyskinesis; Type 1 = Inferior dysfunction; Type 2 = Medial dysfunction; Type 3 = Superior dysfunction (Kibler et al.)

Table 4.2 – Scapular dyskinesis for women: scapular dyskinesis

Scapular Dyskinesis WOMEN

Dominant Non-Dominant

Type 1 Type 2 Type 3 No ScD Type 1 Type 2 Type 3 No ScD

[18y-30y[ 10/51 11/51 2/51 28/51 6/51 25/51 2/51 18/51

19.6 % 21.6 % 3.9 % 54.9 % 11.8 % 49 % 3.9 % 35.3 %

[30y-40y[ 9/49 4/49 2/49 34/49 7/49 9/49 1/49 32/49

18.4 % 8.2 % 4.1 % 69.4 % 14.3 % 18.4 % 2 % 65.3 %

[40y-50y[ 4/50 11/50 2/50 33/50 5/50 12/50 2/50 31/50

8 % 22 % 4 % 66 % 10 % 24 % 4 % 62 %

[50y-60y[ 14/49 7/49 1/49 27/49 12/49 9/49 1/49 27/49

28.6 % 14.3 % 2 % 55.1 % 24.5 % 18.4 % 2 % 55.1 %

TOTAL 37/199 33/199 7/199 122/199 30/199 55/199 6/199 108/199

18.6 % 16.6 % 3.5 % 61.3 % 15.1 % 27.6 % 3 % 54.3 % No ScD = Absence of scapular dyskinesis; Type 1 = Inferior dysfunction; Type 2 = Medial dysfunction; Type 3 = Superior dysfunction (Kibler et al.)

23

Table 5 – Statistical analysis

INTERACTION PMI ROM IR ROM ER TOTAL ROM INCLINATION

FOUR-WAY INTERACTION Age x Dominance x Gender x ScD

NS NS NS NS NS

THREE-WAY INTERACTION

Age x Dominance x Gender

NS NS NS NS NS

Age x Gender x ScD

NS NS NS NS p = 0.002

Age x Dominance x ScD

NS NS NS NS NS

Dominance x Gender x ScD

NS NS NS NS NS

TWO-WAY INTERACTION

Gender x Age NS NS NS NS NA

Gender x Dominance

NS NS NS NS NA

Age x Dominance NS NS NS NS NA

Dominance x ScD NS NS NS NS NA

Age x ScD NS NS NS NS NA

Gender x ScD NS NS NS NS NA

MAIN EFFECTS

Gender NS p = 0.001 p < 0.001 p < 0.001 NA

Age NS p < 0.001 P < 0.001 p < 0.001 NA

Dominance p = 0.004 p < 0.001 p < 0.001 NS NA

ScD NS NS NS NS NA NS = not significant; NA = not applicable; PMI = Pectoralis Minor index; ROM = Range of motion; ER = External rotation; IR = Internal rotation; ScD = scapular dyskinesis.

24

Table 6 – Significant results post hoc tests

Dependent Variables FACTORS

ROM ER ROM IR TOTAL ROM PMI INCLINATION

Gender M < F (p < 0,001)

M < F (p = 0,001)

M < F (p = 0,001)

/ /

Age C1 > C3 & 4 (p < 0,001) C2 > C3 & 4 (p < 0,001)

C1 > C2 & 3 (p < 0,001) C1 > C4 (p = 0,007)

C1 > C3 & 4 (p < 0,001) C1 > C2 (p = 0,001)

/ /

Dominance Dom > NDom (p < 0,001)

Dom < NDom (p < 0,001)

/ Dom < NDom (p = 0,004)

/

Gender x Age x ScD

/ / / / F & C1 or C3: No ScD > ScD (C1: p < 0.001; C3: p = 0.022)

C1, C2, C3, C4 = Age-Category 1-4; M = Men; F = Women; PMI = Pectoralis minor Index; Rom = Range Of Motion; ER = External Rotation; IR = Internal Rotation; ScD = Scapular Dyskinesis; No ScD = Absence Of Scapular Dyskinesis; Dom = Dominant Side; NDom = Non-Dominant Side.

25

4. DISCUSSION The provided normative reference values for scapular evaluation are attained using the previous

described measurement protocols. The four evaluated parameters were scapular dyskinesis, muscle

length, ROM and inclination. The collected data is retrieved from 400 subjects, who were all tested as

reliable and homogeneous as possible, with cost-effective and practical devices. According to the work

from Cools et al. (2014), a constant subject position was kept for practical utility and to reveal

reproducible results (5). The reference values were benchmarked for the following population

factors: age, gender and side dominance (Table 3.1. & 3.2.). In the following part every parameter was

discussed based on the population factors and findings of previous research.

4.1. Summary of results

4.1.1. Range of motion (IR ROM, ER ROM, TOT ROM) According to the statistical analysis for the parameters IR ROM and ER ROM (table 5), statistically

significant differences within each of the three population factors were found. After comparison with

the MDC of 4.89° for IR and 4.17° for ER (Table 2), it turns out that for internal rotation the factor age

and for external rotation the factors gender and age (except for C1 - C2 comparison) were clinically

significant main effects. Based on the results from the post hoc tests, there could be assumed that

people younger than 30 years have a significant greater internal and external rotation mobility than

the older subjects. External rotation has an inversely proportional pattern, in which an increase in age

is accompanied by a decrease in ER ROM. For IR ROM the pattern was not fully clear. IR ROM showed,

apart from the first age category, a proportional pattern. Despite the opposite pattern in IR and ER

ROM, the distinctive decrease of ER ROM defined the pattern of TOT ROM.

IR ROM

The study by Cools et al. (2014) showed ROM differences based on the used equipment and position,

particularly for the measurement of IR in 90° abduction (5). Therefore, we should be careful in

comparing the results with other studies.

Dominance: The results from the statistical analyses, for IR ROM, showed a difference of

approximately 4° between the dominant and non-dominant side (3.99°, Dom < NDom). This side

difference is also reported in previous studies (35-38, 44). Garcia et al. (2013) reported a mean

difference of 4.7° (Dom < NDom), the subjects were measured in a side lying position (35). The testing

protocols by Myers et al. (2009) and Conte et al. (2009) were similar to the one used in this study which

made these protocols more relevant for comparison. They reported respectively a mean difference of

4.7° and 3.5° (Dom < NDom) (36, 38). These three studies (Garcia et al. (2013), Myers et al. (2009) and

26

Conte et al. (2009)) tested a young population, that varied between 20 and 29 years. The results were

pretty similar to those of the first age-category described in this study (35, 36, 38). Dover et al. (2003)

reported conflicting results in which the dominant side had slightly greater IR ROM compared to the

non-dominant side. Despite a similar testing procedure, the study reported divergently greater results

(Dom = 92.1°, NDom = 91.5°). An explanation could be that the measurement was actively performed,

and no external fixation/palpation was used. This means that movement performed was not an

isolated glenohumeral IR (37). Based on the findings of this study and of previous research, an

assumption could be made that the younger population ([18-30[) has 4° less mobility at dominant side

compared to the non-dominant side. For the other age categories more research is necessary.

Gender: Conflicting evidence is present for the gender based, 4° ROM difference this study found

(4.02°, M < F). Cools et al. (2014) and Garcia et al. (2013) reported no gender-based main effect (5, 35).

and used college aged participants. The studies by McKay et al. (2017) and Barnes et al. (2001) used a

broader age range. (39, 41). McKay et al. reported a similar difference of approximately 5°.

Unfortunately, McKay et al. did not describe the used measurement method in detail, but it was

mentioned that the measurement was performed actively (39). Barnes et al. used a similar testing

protocol, as this study, but a different device (goniometer). Barnes et al. reported that IR and ER ROM

showed a large difference in ROM, based on gender (41).

Age: The tendency that younger subjects have less internal rotation than older subjects was already

reported in 1985 by Murray et al. (42). In this study the same tendency was present. There was an

increase of 2.6° based on the mean values (C2 → C4). This was also shown by Roy et al. (2009) and

Barnes et al. (2001) who, despite the use of a goniometer, used a very similar study design compared

to this study (40,41).

ER ROM

Dominance: ER ROM presented an opposite pattern, with a similar side difference of approximately 4°

in favor of the dominant side, compared to IR ROM (4.06°, Dom > NDom). This finding was seen in

previous researches which compared the dominant side with the non-dominant (36-38, 40, 41, 44).

Myers et al. (2009), Conte et al. (2009) and Dover et al. (2003) also described a similar dominance-

based difference of respectively: 5°, 5.1° (women) and 3.7° (women), based on the mean values (36-

38). This significant difference was also reported by Barnes et al. (2001), Boon et al. (2000) and Roy et

al (2009).

27

Gender: For ER ROM women have a greater ROM, compared to men (8.6°, M < F). Note that the

significant difference for ER ROM is approximately two times higher, than IR ROM. This result is

conflicted by Cools et al. (2014) who described that there was no significant gender-based main effect

(5). Roy et al. (2009) reported that women had significantly higher ER ROM than men, especially in the

40-59 age category (40). Boon et al. (2000) and Barnes et al. also observed that women had greater ER

ROM than men (44,41).

Age: The inversely proportional tendency for ER ROM was noticed by several studies which used a

study design focusing on age (39-41, 44). A decrease of 12.9° between the youngest age-category and

the oldest age-category is shown in the results of this study (C1 → C4).

TOT ROM

Internal rotation is greater at the non-dominant side and increases until the age of 60. External rotation

is greater at the dominant side and decreases with an increasing age (until 60y). Because of the

opposite dominance-based differences for IR and ER ROM, dominance is not a significant main effect

for the TOT ROM. Based on previous literature and the results in this study, it appears that a greater

ER ROM and a lower IR ROM at the dominant side is common in the general population. This states

that the commonly used method of using the contralateral side as a baseline for comparison is not

always relevant and should therefore be performed with care. This statement emphasizes the need

and importance for gender-, age- and dominance-based normative values (41, 44, 46).

It is not new that an increase in age is attended with a decrease in ROM of the shoulder. The significant

decrease in TOT ROM is mostly affected by the decrease in ER ROM (12.9°) and slightly limited by the

increase in IR ROM (2.6°). Macedo et al. (2009) emphasized the importance of age-related decrease in

ER ROM. They concluded that among 11 movements (F, [18-59]), passive shoulder ER was the only

movement wherefore a distribution of reference values, based on age, were absolutely necessary (41,

45).

Previous research also showed that in a student population woman were more flexible than men (52).

Bassey et al. (1989) discussed that women had poorer abduction flexibility compared to men in the

older population (+65) (53). Although there is a great gender-based TOT ROM difference of 12.69° (F >

M), this does not suggest that for every shoulder movement and for every age women are the most

flexible. Further research is necessary to describe the outcomes of different shoulder movements

based on gender and age.

28

Differences in rotational ROM is mostly attributed to a variation in stiffness of the muscles or joint

capsule (43, 51). Hung et al. (2010) showed that stiffness of the Posterior Deltoid muscle had the

highest correlation with reduced IR ROM. Two other muscles who correlated significantly with reduced

IR ROM were the infraspinatus and teres minor (43). Myers et al. (2009) described that the difference

in glenohumeral rotation ROM is highly influenced by the amount of humeral torsion. They claimed

that a lower IR ROM and a higher ER ROM on the dominant side could be explained by more humeral

torsion (13°) compared to the non-dominant side (36). At this point there is no clear explanation for

the differences in glenohumeral ROM, further research is needed.

4.1.2. Scapular dyskinesis A lot of studies about scapular dyskinesis have been focusing on populations with a shoulder

impairment or overhead athletes (54, 55). This study shows presence of scapular dyskinesis in a healthy

population with a broad age range (Table 4.1. & 4.2.). Results show that within the male population

almost half of the subjects have dyskinesis. Dyskinesis itself is more present at the dominant side (Dom:

51%, NDom: 43%). The female population shows a lower presence of scapular dyskinesis and it occurs

more at the non-dominant side (Dom: 38.7%, NDom: 45.7%). These results were confirmed by other

studies, although they had smaller populations (47 - 49). The control group in Castelein et al. (2016)

showed that from the 19 tested women, 8 showed scapular dyskinesis (42%) (47). A study from Hannah

et al. (2017) found that even the majority of their population, 27 out of 40 people, had dyskinesis (48).

Uga et al. (2016) used a male population where 21 out of 40 shoulders showed dyskinesis. These results

probably suggest that scapular dyskinesis should not always be seen as divergent (49) and may be

considered as a common phenomenon in the population. Because of the remarkable presence of

scapular dyskinesis in the healthy population, there was opted to use scapular dyskinesis in the

statistical analyses as a factor and no longer as a parameter. Adding dyskinesis as a factor did not

change anything in the outcome of the statistical results except for inclination. This is not surprising as

scapular dyskinesis has an influence on the positioning of the scapula.

Causes for scapular dyskinesis have been comprehensively described in literature. When shoulder

pathology is present and scapular dyskinesis is detected, the link with scapular muscle imbalances or

weaknesses is often made (56). Though today, evidence to possibly refute this statement is present in

literature (48-50). One of the investigations undermining this theory is the one by Hibberd et al. (2012)

(16). The researchers showed that a program to strengthen the shoulder complex does not resolve

shoulder dyskinesis (16). Other factors such as neuromuscular control may be contributing to this

problem (62,63). Because scapular dyskinesis is so common in the healthy population, another way of

thinking is that every individual positions its scapula in an optimal way to generate maximal power

outputs. Therefore, dyskinesis is just a manner of scapular functioning. But this does not immediately

29

rule out the role of scapular dyskinesis in the rehabilitation of shoulder dysfunctions. The SRT (Scapular

Retraction Test) and SAT (Scapular Assistance Test) are excellent tools to detect if scapular dyskinesis

is involved in pathology (57, 58).

4.1.3. Pectoralis minor muscle length

The pectoralis minor length itself is clinically not so relevant therefore the PMI was calculated. Initially,

there was opted to divide the PMI into three categories based on the study from Borstad et al. (2005)

(22). Using the cut offs mentioned in the article none of the present PMI were divided into the ‘short’

category (PMI 7.5). A reason here fore might be that these cut off values were based on a pilot study

consisting of 6 people. This small and non-representative population may show irrelevant results.

Another study including 51 participants experienced the same problem, where no individual matched

the ‘short PMI’ criteria (61). For this reason, there was decided to calculate the cut off values with data

presented in this study. Following the method by Borstad et al. (2005) the group inclusion cut point

values for the present analysis were then set at 1SD from the mean PMI found in this study (short

9.86, middle 9,86-11.54, long 11.54).

Dominance: As shown in the results, dominance was the only significant main effect. The dominant

side had a lower PMI compared to the non-dominant side, but this was not clinically significant (Dom

< NDom: 0.102, MDC = 0.159). This side difference was also described by Struyf et al. (2014) who found

a lower PMI on the dominant side (9). An explanation for this observation could be that the dominant

side is more stiffened due to increased use. No evidence for this statement could be found in literature.

Relation with dyskinesis: A hypothesis was premised which said that people with lower PMI were more

likely to have scapular dyskinesis, especially Type 1. This assumption could be endorsed by the findings

of Borstad et al. (2005) which said that shorter PM length could cause a dysfunction of scapular

kinematics (22). Also, Yesilyaprak et al. (2016) found that a decline in PMI was related to a higher

possibility of scapular dyskinesis (33). In this study, results showed some similarities with the two

studies mentioned above. The group with the lowest PMI contained the highest percentage of people

with scapular dyskinesis (51.1%). Although the group of patients with high PMI values had a higher

percentage of scapular dyskinesis compared to the ones with ‘middle’ PMI (High: 49.5%, Middle:

42.4%). Following Yesilyaprak et al. PMI plays a determinative role in the presence of scapular

dyskinesis. These findings seem reasonably as the pectoralis minor muscle attaches directly to the

scapula and accordingly influence it.

30

4.1.4. Inclination The present three-way interaction showed a clinically significant difference (MDC = 4.35) between

women with and without scapular dyskinesis, in the first ([18-30y[) and third ([40y-50y[) age-category.

There is no previous research that mentioned an interaction between these factors. For both genders

the mean value is negative, which insinuates that the average population has a downward rotated

scapula. The results in this study do not match with these of Struyf et al. (2011) (26).

4.2. Limitations Although this study was conducted under supervision of professionals by the university of Ghent and

was performed with reliable instruments and reliable measurements, it still had some limitations.

The raters were rather inexperienced, and they got more familiar with the measurements during the

testing period. This could cause the latest measurements to be more accurate than the ones in the

beginning. On the other hand, they had a two-day training session and the measurements used were

shown reliable or were based on protocols used by other investigators.

A second limitation is that the measurements were performed by twelve raters in total. This could

cause different outcomes for different raters. To limit this margin of error every measurement was

clearly described in a video and every rater tried to reproduce the standardized measurement method

as accurate as possible. The measurements themselves showed good interrater reliability so this

should mitigate this remark.

As a third limitation, the exclusion criteria based on the hours of overhead sports performed is rather

lucratively chosen. The boundary was set with the intention to exclude competitive athletes, who could

have sport specific adaptations of the shoulder complex. In literature no consensus was found about

the hours of training necessary for those adaptations.

In the in- and exclusion criteria the professional activities of the subject were not kept in account. What

if they had very demanding professions for the shoulder complex (e.g. construction workers,

electricians, plasterers)? This was not seen as serious flaw as otherwise a great part of the general

healthy population would be excluded.

31

4.3. Conclusion This study emphasizes the importance of normative values as a base for clinical investigation of the

scapula and shoulder. For further research in this topic, the researchers advocate for consistency in

the use of measurement protocols and the recruitment of a representative population. Nevertheless,

this study created representative normative data, that can be used in a clinical setting to evaluate the

condition of the scapula in various populations. Abnormality’s compared to the reference values,

should be noticed and used as a guide for further investigation or evaluation. Further research is

necessary to link possible causes of pathology with marked deviations.

32

5. REFERENCES

1. Badcock, L. J., Lewis, M., Hay, E. M., McCarney, R., & Croft, P. R. (2002). Chronic shoulder pain in the community: a syndrome of disability or distress? Ann Rheum Dis, 61(2):128–31.

2. Burkhart, S.S., Morgan, C. D., & Kibler, W. B. (2003). The disabled throwing shoulder: spectrum of pathology Part III: The SICK scapula, scapular dyskinesis, the kinetic chain, and rehabilitation. Arthroscopy, 19(6):641-61.

3. Kibler, W. B., Uhl, T. L., Maddux, J. W., Brooks, P.V., Zeller, B., & McMullen, J. (2002). Qualitative clinical evaluation of scapular dysfunction: a reliability study. J Shoulder Elbow Surg, 11(6):550-6.

4. Dougherty, J., Walmsley, S., & Osmotherly, P. G. (2015). Passive range of movement of the shoulder: a standardized method for measurement and assessment of intrarater reliability. Journal of Manipulative and Physiological Therapeutics, 38(3):218-24.

5. Cools, A. M., De Wilde, L., Van Tongel, A., Ceyssens, C., Ryckewaert, R., & Cambier, D. C. (2014 Oct). Measuring shoulder external and internal rotation strength and range of motion: comprehensive intra-rater and inter-rater reliability study of several testing protocols. J Shoulder Elbow Surg, 23(10):1454-61.

6. McClure, P., Tate, A.R., Kareha, S., Irwin, D., & Zlupko, E. (2009). A Clinical Method for Identifying Scapular Dyskinesis, Part 1: Reliability. Journal of Athletic Training, 44(2):160-4.

7. Celik, D., Dirican, A., & Baltaci, G. (2012). Intrarater reliability of assessing strength of the shoulder and scapular muscles. J Sport Rehabil, 3:1-5.

8. Finley, M., Goodstadt, N., Soler, D., Somerville, K., Friedman, Z., & Ebaugh, D. (2017) Reliability and validity of active and passive pectoralis minor muscle length measures. Braz J Phys Ther, 21(3):212-8.

9. Struyf, F., Meeus, M., Fransen, E., Roussel, N., Jansen, N., Truijen, S., & Nijs, J. (2014 Aug) Interrater and intrarater reliability of the pectoralis minor muscle length measurement in subjects with and without shoulder impingement symptoms. Man Ther, 19(4):294-8

10. Cools, A. M., Witvrouw, E. E., Declercq, G. A., Danneels, L. A. & Cambier D. C. (2003 Jul-Aug) Scapular muscle recruitment patterns: trapezius muscle latency with and without impingement symptoms. Am J Sports Med, 31(4):542-9.

11. Huang, T. S., Huang, C. Y., Ou, H. L. & Lin, J. J. (2016 Dec) Scapular dyskinesis: Patterns, functional disability and associated factors in people with shoulder disorders. Man Ther, 26:165-171.

12. Ludewig, P. M. & Cook, T. M. (2000) Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther, 80(3):276-91.

13. Dickerson, C. R., Alenabi, T., Martin B. J. & Chaffin, D. B. (2018 Aug). Shoulder muscular activity in individuals with low back pain and spinal cord injury during seated manual load transfer tasks. Ergonomics, 61(8):1094-1101.

14. Michener, L. A., Sharma, S., Cools, A. M. & Timmons, M. K. (2016 Nov) Relative scapular muscle activity ratios are altered in subacromial pain syndrome. J Shoulder Elbow Surg, 25(11):1861-1867.

15. Hill, C. L., Gill, T. K., Shanahan, E. M. & Taylor, A. W. (2010 Aug) Prevalence and correlates of shoulder pain and stiffness in a population-based study: the North West Adelaide Health Study. Int J Rheum Dis, 13(3):215-22.

16. Luime, J. J., Koes, B. W., Hendriksen, I. J., Burdorf, A., Verhagen, A. P., Miedema, H. S. & Verhaar, J. A. (2004) Prevalence and incidence of shoulder pain in the general population; a systematic review. Scand J Rheumatol, 33(2):73-81.

17. Illyés, A. & Kiss, R. M. (2006) Kinematic and muscle activity characteristics of multidirectional shoulder joint instability during elevation. Knee Surg Sports Traumatol Arthrosc, 14:673–85.

33

18. Helgadottir, H., Kristjansson, E., Mottram, S., Karduna, A. R. & Jonsson, H. Jr. (2010) Altered scapular orientation during arm elevation in patients with insidious onset neck pain and whiplash associated disorder. J Orthop Sports Phys Ther, 40:784–91.

19. Ludewig, P. M. & Reynolds, J. F. (2009) The association of scapular kinematics and glenohumeral joint pathologies. J Orthop Sports Phys, 39:90–104.

20. Lewis, J., Green, A., Reichard, Z. & Wright, C. (2002 Feb) Scapular position: the validity of skin surface palpation. Man Ther, 7(1):26-30.

21. Struyf, F., Nijs, J., Mottram, S., Roussel, N. A., Cools, A. M. & Meeusen R. (2014 Jun) Clinical assessment of the scapula: a review of the literature. Br J Sports Med, 48(11):883-90.

22. Borstad, J. D. & Ludewig, P. M. (2005 Apr) The effect of long versus short pectoralis minor resting length on scapular kinematics in healthy individuals. J Orthop Sports Phys Ther, 35(4):227-38.

23. Borstad, J. D. (2006 Apr) Resting position variables at the shoulder: evidence to support a posture-impairment association. Phys Ther, 86(4):549-57.

24. Camargo, P. R., Phadke, V., Zanca, G. G. & Ludewig, P. M. (2018 Feb) Concurrent validity of inclinometer measures of scapular and clavicular positions in arm elevation. Physiother Theory Pract, 34(2):121-130.

25. Johnson, M. P., McClure, P. W. & Karduna, A. R. (2001 Feb) New method to assess scapular upward rotation in subjects with shoulder pathology. J Orthop Sports Phys Ther, 31(2):81-9.

26. Struyf, F., Nijs, J., Baeyens, J. P., Mottram, S. & Meeusen, R. (2011 Jun) Scapular positioning and movement in unimpaired shoulders, shoulder impingement syndrome, and glenohumeral instability. Scand J Med Sci Sports, 21(3):352-8.

27. Awan, R., Smith, J. & Boon, A. J. (2002 Sep) Measuring shoulder internal rotation range of motion: a comparison of 3 techniques. Arch Phys Med Rehabil, 83(9):1229-34.

28. Castelein, B., Dedecker, S., DeLanghe, D. & Duyts, T. (2018 May) Normative values of clinical measurements around the scapula: a systematic review. Ghent, Belgium: University of Ghent.

29. Borstad, J. D. (2008 Apr) Measurement of pectoralis minor muscle length: validation and clinical application. J Orthop Sports Phys Ther, 38(4):169-74.

30. Katoh M. (2015 Jun) Test-retest reliability of isometric shoulder muscle strength measurement with a handheld dynamometer and belt. J Phys Ther Sci, 27(6):1719-22.

31. Shahidi, B., Johnson, C. L., Curran-Everett, D. & Maluf, K.S. (2012) Reliability and group differences in quantitative cervicothoracic measures among individuals with and without chronic neck pain. BMC Musculoskelet Disord, 13:215.

32. Watson, L., Balster, S. M., Finch, C. & Dalziel, R. (2005) Measurement of scapula upward rotation: a reliable clinical procedure. Br J Sports Med, 39(9):599-603.

33. Yeşilyaprak S.S., Yüksel E. & Kalkan S. (2016) Influence of pectoralis minor and upper trapezius lengths on observable scapular dyskinesis. Phys Ther Sport., 19:7-13.

34. Koo, T. K. & Li, M. Y. (2016 Jun). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15 (2): 155–63.

35. Carcia, C. R., Cacolice, P. A. & Scibek, J. S. (2013) Sidelying glenohumeral passive internal rotation range of motion values in a healthy collegiate population. Int J Sports Phys Ther, 8(6):793-9.

36. Myers, J. B, Oyama, S., Goerger, B. M., Rucinski, T. J., Blackburn, J. T. & Creighton, R. A. (2009) Influence of Humeral Torsion on Interpretation of Posterior Shoulder Tightness Measures in Overhead Athletes. Clinical Journal of Sport Medicine, 19(5):366-71.

37. Dover, G. C., Kaminski, T. W., Meister, K., Powers, M. E. & Horodyski, M. (2003) Assessment of shoulder proprioception in the female softball athlete. Am J Sports Med, 31(3):431-7.

38. Conte, A. L. F., Marques, A. P., Casarotto, R. A. & Amado-Joao, S. M. (2009) HANDEDNESS INFLUENCES PASSIVE SHOULDER RANGE OF MOTION IN NONATHLETE ADULT WOMEN. Journal of Manipulative and Physiological Therapeutics, 32(2):149-53.

34

39. McKay, M. J., Baldwin, J. N., Ferreira, P., Simic, M., Vanicek, N. & Burns, J. (2017) Normative reference values for strength and flexibility of 1,000 children and adults. Neurology, 88(1):36-43.

40. Roy J. S., MacDermid, J. C., Boyd, J. U., Faber K. J., Drosdowech, D. & Athwal G. S. (2009) Rotational strength, range of motion, and function in people with unaffected shoulders from various stages of life. Sports Med Arthrosc Rehabil Ther Technol, 1:4.

41. Barnes, C. J., Van Steyn, S. J. & Fischer, R.A. (2001) The effects of age, sex, and shoulder dominance on range of motion of the shoulder. J Shoulder Elbow Surg, 10(3):242-6.

42. Murray, M. P., Gore, D. R., Gardner, G. M. & Mollinger, L. A. (1985) Shoulder motion and muscle strength of normal men and women in two age groups. Clin Orthop Relat Res, 268–273.

43. Hung, C. J., Hsieh, C. L., Yang, P. L. & Lin, J. J. (2010 Mar) Relationships between posterior shoulder muscle stiffness and rotation in patients with stiff shoulder. J Rehabil Med, 42(3):216-20.

44. Boon, A. J. & Smith, J. (2000) Manual scapular stabilization: its effect on shoulder rotational range of motion. Arch Phys Med Rehabil, 81(7):978-83.

45. Macedo, L. G. & Magee, D. J. (2009) Effects of age on passive range of motion of selected peripheral joints in healthy adult females. Physiother Theory Pract, 25(2):145-64.

46. Miller P. (1985) Assessment of joint motion. In: Rothstein J, editor. Measurement in physical therapy. New York: Churchill Livingstone.

47. Castelein, B., Cools, A., Parlevliet, T. & Cagnie, B. (2016 Dec) Are chronic neck pain, scapular dyskinesis and altered scapulothoracic muscle activity interrelated?: A case-control study with surface and fine-wire EMG. J Electromyogr Kinesiol, 31:136-143.

48. Hannah, D. C., Scibek, J. C. & Carcia, C. R. (2017 Jun) STRENGTH PROFILES IN HEALTHY INDIVIDUALS WITH AND WITHOUT SCAPULAR DYSKINESIS. Int J Sports Phys Ther, 12(3): 305–313.

49. Uga, D., Nakazawa, R. & Sakamoto, M. (2016 Apr) Strength and muscle activity of shoulder external rotation of subjects with and without scapular dyskinesis. J Phys Ther Sci, 28(4):1100-5.

50. Hibberd, E. E., Oyama, S. & Spang, J. T. (2012) Effect of a 6-week strengthening program on shoulder and scapular-stabilizer strength and scapular kinematics in division I collegiate swimmers. J Sport Rehabil, 21(3):253-265.

51. Clarke, G. R., Willis, L. A., Fish, W. W. & Nichols, P. J. (1975 Feb) Preliminary studies in measuring range of motion in normal and painful stiff shoulders. Rheumatol Rehabil, 14(1):39-46.

52. Schwartz, C., Croisier, J. L., Rigaux, E., Bruls, O., Denoel, V. & Forthomme, B. (2016) Gender effect on the scapular 3D posture and kinematic in healthy subjects. Clin Physiol Funct Imaging,36(3):188-96.

53. Bassey, E. J., Morgan, K., Dallosso, H. M. & Ebrahim, S. B. (1989) Flexibility of the shoulder joint measured as range of abduction in a large representative sample of men and women over 65 years of age. Eur J Appl Physiol Occup Physiol, 58(4):353-60.

54. Burn, M. B., McCulloch, P. C., Lintner, D. M., Liberman, S. R. & Harris, J. D. (2016) Prevalence of Scapular Dyskinesis in Overhead and Nonoverhead Athletes: A Systematic Review. Orthop J Sports Med, 17,4(2):2325967115627608.

55. Hickey, D., Solvig, V., Cavalheri, V., Harrold, M. & Mckenna, L. (2018 Jan) Scapular dyskinesis increases the risk of future shoulder pain by 43% in asymptomatic athletes: a systematic review and meta-analysis. Br J Sports Med, 52(2):102-110.

56. Dexel, J., Kopkow, C. & Kasten, P. (2014 Mar) Scapulothoracic dysbalance in overhead athletes. Causes and therapy strategies. Orthopade, 43(3):215-22.

57. Kibler, W. B., Sciascia, A. & Wilkes, T. (2012 Jun) Scapular dyskinesis and its relation to shoulder injury. J Am Acad Orthop Surg, 20(6):364-72.

35

58. Rabin, A., Chechik, O., Dolkart, O., Goldstein, Y. & Maman, E. (2018 Sep) A positive scapular assistance test is equally present in various shoulder disorders but more commonly found among patients with scapular dyskinesis. Phys Ther Sport, 34:129-135.

59. Yeşilyaprak, S. S., Yüksel, E. & Kalkan, S. (2016 May) Influence of pectoralis minor and upper trapezius lengths on observable scapular dyskinesis. Phys Ther Sport, 19:7-13.

60. Tsun-Shun Huang, Jiu-Jenq Lin, Hsiang-Ling Ou & Yu-Ting Chen (2017 Jul) Movement Pattern of Scapular Dyskinesis in Symptomatic Overhead Athletes. DSci Rep, 7: 6621.

61. Huang, T. S., Huang, C. Y., Ou, H. L. & Lin, J. J. (2016 Dec) Scapular dyskinesis: Patterns, functional disability and associated factors in people with shoulder disorders. Man Ther, 26:165-171.

62. Kim, S. H., Kwon, O. Y., Kim, S. J., Park, K. N., Choung, S. D., & Weon, J. H., (2014). Serratus anterior muscle activation during knee push-up plus exercise performed on static stable, static unstable, and oscillating unstable surfaces in healthy subjects. Physical Therapy in Sport, 15(1).

63. Park, S. Y., & Yoo, W. G. (2015). Activation of the serratus anterior and upper trapezius in a population with winged and tipped scapulae during push-up-plus and diagonal shoulder-elevation. Journal of Back and Musculoskeletal Rehabilitation, 28(1), 7–12.

36

6. Leken abstract Achtergrond: Binnen het schouder complex is de balans tussen mobiliteit en stabiliteit eenvoudig

verstoord. Optimaal functioneren van het schouderblad is noodzakelijk om deze delicate balans te

bewaren. Normatieve waarden gebaseerd op duidelijk omschreven metingen zijn interessant voor een

kritische evaluatie van deze functie.

Doelstellingen: Deze studie wenst een benchmark en eenvoudige meetprocedures aan te bieden. Het

betreft metingen van schouderbewegelijkheid, positie van het schouderblad, de lengte van de kleine

borstspier en eventuele bewegingsafwijkingen van het schouderblad.

Methode: In deze studie werden 400 gezonde personen, tussen de 18 en 60 jaar, die niet bovenhands

sporten, getest. Achteraf is een statistische analyse uitgevoerd om de invloed van leeftijd, geslacht en

armvoorkeur op de resultaten te onderzoeken.

Resultaten: Deze studie toont aan dat leeftijd, geslacht en armvoorkeur weldegelijk een invloed

hebben op de metingen. Zo heeft de voorkeursarm de kortste kleine borstspier. Hebben vrouwen en

jongere personen meer beweeglijkheid dan mannen en oudere individuen. Tenslotte is

bewegingsafwijking van het schouderblad aanwezig in bijna de helft van de populatie.

Conclusie: De studieresultaten kunnen door therapeuten gebruikt worden als basis voor hun

schouderonderzoek. Indien anderen rond dit onderwerp onderzoek wensen te verrichten is het

aangeraden om dezelfde test methodes en populatie te gebruiken.

37

38

39

40

41

42

43

44

45

46

7. APPENDIX 7.1. Scapular normative values

Scapular normative values (men): PMI, ROM IR, ROM ER, ROM Total, Inclination

MEN

[18y-30y[ [30y-40y[ [40y-50y[ [50y-60y[

Scapular Dyskinesis

No Scapular Dyskinesis

Scapular Dyskinesis

No Scapular Dyskinesis

Scapular Dyskinesis

No Scapular Dyskinesis

Scapular Dyskinesis

No Scapular Dyskinesis

Dom NDom Dom NDom Dom NDom Dom NDom Dom NDom Dom NDom Dom NDom Dom NDom

PMI 10.4 ± 1.51

10.7 ± 1.61

10.4 ± 1.52

10.5 ± 1.51

10.4 ± 1.35

11.0 ± 4.63

11.1 ± 3.77

10.6 ± 1.69

10.9 ± 1.58

11.1 ± 1.70

10.9 ± 0.93

10.9 ± 1.29

10.8 ± 1.49

10.9 ± 1.26

10.7 ± 1.36

10.8 ± 1.34

ROM IR (°) 46.8 ± 19.57

52.1 ± 25.93

49.6 ± 26.29

55.1 ± 28.52

41.1 ± 23.19

45.7 ± 29.50

39.8 ± 21.91

43.2 ± 9,5513

38.5 ± 19.10

42.8 ± 24.85

41.6 ± 24.83

45.7 ± 28.52

44.3 ± 22.33

46.4 ± 22.07

45.8 ± 26.37

48.7 ± 25.61

ROM ER (°) 100.5

± 26.09

99.0 ± 27.69

107.5 ±

26.48

102.0 ±

25.31

103.2 ±

25.41

97.8 ± 23.81

101.2 ±

22.08

97.0 ± 24.75

96.4 ± 22.25

94.6 ± 19.09

98.6 ± 26.45

93.4 ± 24.16

92.6 ± 31.24

87.3 ± 23.06

92.5 ± 27.99

88.4 ± 29.59

TOTAL ROM (°)

147.3 ±

37.71

151.0 ±

43.10

157.1 ±

39.88

157.1 ±

40.60

144.2 ±

39.77

143.5 ±

42.67

141.1 ±

33.97

140.1 ±

31.38

134.9 ±

33.80

137.4 ±

33.65

140.2 ±

45.26

139.2 ±

44.76

136.9 ±

40.96

133.8 ±

35.27

138.2 ±

42.86

137.1 ±

43.68

INCLINATION (°)

-5.3 ± 17.71

-8.2 ± 18.68

-6.1 ± 18.04

-6.9 ± 22.24

-7.3 ± 22.45

-9.9 ± 19.37

-7.3 ± 22.69

-5.2 ± 21.89

-4.6 ± 18.71

-7.9 ± 21.22

-5.5 ± 17.07

-4.5 ± 15.24

-7.6 ± 19.94

-2.6 ± 18.71

-4.3 ± 24.24

-6.4 ± 23.23

PMI = Pectoralis minor Index; IR = Internal Rotation; ER = External rotation; ROM = Range Of Motion; ° = Degrees; Y = Years; Dom = Dominant; NDom = Non-Dominant Mean ± 2SD

47

Scapular normative values (women): PMI, ROM IR, ROM ER, Total ROM, Inclination

WOMEN

[18y-30y[ [30y-40y[ [40y-50y[ [50y-60y[

Scapular Dyskinesis

No Scapular Dyskinesis

Scapular Dyskinesis

No Scapular Dyskinesis

Scapular Dyskinesis

No Scapular Dyskinesis

Scapular Dyskinesis

No Scapular Dyskinesis

Dom NDom Dom NDom Dom NDom Dom NDom Dom NDom Dom NDom Dom NDom Dom NDom

PMI 10.5 ± 1.30

10.6 ± 1.45

10.7 ± 1.32

11.0 ± 0.93

10.5 ± 1.25

10.7 ± 1.07

10.4 ± 1.46

10.6 ± 1.35

10.7 ± 1.57

11.1 ± 1.57

10.7 ± 1.42

10.6 ± 1.37

10.5 ± 1.44

10.6 ± 1.33

10.7 ± 1.32

10.9 ± 1.40

ROM IR (°) 54.9 ± 30.21

54.8 ± 27.94

50.7 ± 18.00

62.8 ± 18.02

43.1 ± 22.13

51.3 ± 26.34

45.1 ± 21.74

48.8 ± 26.63

46.0 ± 26.24

53.3 ± 26.28

46.4 ± 33.43

47.3 ± 34.07

47.2 ± 24.63

47.9 ± 21.11

47.1 ± 25.81

50.0 ± 29.28

ROM ER (°) 114.0

± 30.66

109.5 ±

27.65

115.9 ±

17.52

110.9 ±

23.44

110.2 ±

30.80

108.3 ±

28.38

111.6 ±

22.60

105.5 ±

44.87

103.1 ±

27.63

105.0 ±

24.39

103.5 ±

27.39

99.4 ± 27.43

101.1 ±

34.89

98.9 ± 35.42

100.5 ±

29.11

94.5 ± 30.53

TOTAL ROM (°)

169.0 ±

53.03

164.3 ±

42.90

166.6 ±

26.37

173.6 ±

27.37

153.3 ±

46.44

159.6 ±

49.25

156.7 ±

32.99

154.3 ±

38.97

149.1 ±

49.19

158.2 ±

46.20

149.9 ±

51.25

146.7 ±

50.25

148.3 ±

44.66

146.8 ±

45.88

148.2 ±

42.93

145.1 ±

51.84

INCLINATION (°)

-2.2 ± 13.71

-5.7 ± 17.39

1.5 ± 17.98

0.2 ± 18.81

-3.8 ± 16.46

-2.6 ± 18.98

-5.4 ± 18.20

-5.6 ± 17.98

-8.3 ± 26.22

-7.8 ± 25.34

-2.8 ± 19.56

-1.8 ± 15.24

-5.2 ± 14.62

-5.3 ± 18.33

-4.9 ± 21.60

-6.9 ± 20.36

PMI = Pectoralis minor Index; IR = Internal Rotation; ER = External rotation; ROM = Range Of Motion; ° = Degrees; Y = Years; Dom = Dominant; NDom = Non-Dominant Mean ± 2SD

48

7.2. Questionnaire

49

50

51

7.3. Scapula measurement protocol

7.3.1. Strength protocol For objectivation of the isometric strength, an HHD (HHD: compuFET; Hoggan Health Industries Inc,

West Jordan, Utah, USA) was used. This measurement was performed for seven parameters: ER 0°, IR

0°, ER 90°, IR 90°, abduction, lower trapezius and middle trapezius. The instructions during the

measurement were standardized as follow “3, 2, 1... YES! 1, 2… Comon ay! 5, 4, 3, 2, 1.”. From the

indication “YES!” until the end, the subject performed a slowly progressed isometric contraction (for 2

seconds) to maximal force (held for 5 seconds) over a period of approximately seven seconds. Only the

peak force during these 5 seconds was registered. At the end of the measurement the subject slowly

released the maximal contraction. As mentioned before, this was repeated for each side two times,

which results in 28 single measurements for each patient. The results were expressed in Newton with

one decimal.

For positioning the HHD, two marks were placed on each arm. The first mark was drawn two

centimeters proximal from the styloid process. The second mark was drawn 5 cm proximal from the

lateral epicondyle of the humerus.

The initial posture, for the movements that include internal rotation (IR

0° & 90°) (Figure 6 and 7) and external rotation (ER 0° & 90°) (Figure 8

and 9), was a supine position with the elbow of the testing side in 90°

flexion and the wrist in a neutral position. The forearm of the non-

testing side was placed under the lower back of the subjects, so it could

not be used for assistance/compensation. The shoulder was placed in

a 90° or 0° abduction starting position for external and internal

Figure 8. Measurement of ER strength in 0° of abduction

with HHD.

Figure 9. Measurement of ER strength in 90° of abduction

with HHD.

Figure 6. Measurement of IR

strength in 0° of abduction with HHD.

Figure 7. Measurement of IR strength in 90° of abduction with HHD.

52

rotation. The HHD was placed on the level of the first mark so that

optimal resistance could be applied. This protocol was based on Cools

et al. (5).

For abduction the same initial posture as for IR and ER was used, with

the shoulder in 0° abduction. From this position the subject needed to

generate as much abduction force as possible, resisted by the examiner

with an HHD placed on the second mark (Figure 10). The protocol was

based on the method described by Katoh et al. (30).

Lower trapezius and middle trapezius were measured with an initial

posture in prone, extended elbow, wrist in pronation. The other arm of the subject was placed in a

relaxed position next to the body. It was forbidden to use this arm for assistance. The shoulder was

positioned in 130° abduction for measuring the LT (Figure 11.) and 90° abduction for measuring the

MT (Figure 12.). The subject needed to perform a retraction of the scapula within the direction of the

fibers. The HHD was placed at the same level as the second mark, in the opposite direction of the line

of movement. This protocol is based on Shahidi et al. (31).

The seven strength measurements were performed in a randomized order to avoid bias by systematic

fatigue during testing. Here for each subject picked a folded card with one of the seven tests.

Figure 10. Measurement of abduction strength with HHD.

Figure 12. Measurement of middle strength with HHD.

Figure 11. Measurement of lower trapezius strength with

HHD.

53

7.3.2. ROM ER/IR protocol For objectivation of IR and ER range of motion, an inclinometer (Acumar digital inclinometer: Lafayette

Instrument Co, Lafayette, IN, USA) was used. Determining the range of motion, ER and IR were

measured using the procedure described by Cools et al (5). The subject was placed in a relaxed supine

position, with the shoulder in 90°abduction, the elbow in 90° flexion and a neutral wrist position. The

inclinometer was aligned with two marks (Figure 2 and 3) using an additional ruler. The first mark was

placed on the Olecranon indicated by a semicircle crossed by a line through the middle. The second

mark was placed two centimeters proximally from the styloid process of the Ulna. Before each

measurement the Inclinometer was calibrated. Two examiners were needed to perform the protocol,

one examiner moved the subject’s arm from the starting position to IR or ER, the second examiner

performed the calibration of the inclinometer and measured the range of motion.

External rotation: The first researcher placed one hand on the

anterior part the shoulder and with the other hand holding the

distal part of the radius, so that the mark at the ulnar side of the

wrist was clear for measurement. (Figure 2) The external rotation

was executed until maximal tension was perceived by the

researcher or when the patient felt a light stretching pain. The

second investigator aligned the ruler between the two marks,

with the inclinometer placed on the mark at the Olecranon. After

measuring the outcome was than expressed in degrees without

decimals.

Internal rotation: The first researcher palpated with one hand the

coracoid process and held with the other hand the distal part of the

radius bone, so that the mark at the ulnar side of the wrist was clear for

measurement. (Figure 3) Internal rotation was performed until the

researcher noticed movement of the coracoid process. This indicated

the end of the glenohumeral rotation. The second investigator aligned

the ruler between the two marks with the inclinometer placed on the

mark at the distal ulnar side of the wrist. After measuring the outcome

was than expressed in degrees without decimals. Figure 3. Measurement of IR with digital inclinometer.

Figure 2. Measurement of ER with digital inclinometer.

54

7.3.3. Length of the pectoralis minor protocol For objectivation of the pectoralis minor muscle length, a caliper

(Digital Caliper, Mitutoyo BeNeLux,) was used. The assessment of

the length of the pectoralis minor muscle was based on the

protocol described by Borstad et al. (29), which showed to be

reliable. The subject was placed in a relaxed, neutral and supine

position with his upper body uncovered. Two marks were placed

on each side of the chest, directly distal of the coracoid process

and the distal part of the sternocostal articulation of the 4th rib. A

second investigator controlled the place of the marks, to make

sure it was linked with the right bony reference point.

Subsequently the distance between these two marking points was

measured, with a caliper (Figure 4). The results were expressed in millimeters and rounded to one

decimal. The whole protocol (placing the marks + measuring with the Caliper) was performed two

times on each side after which a mean value for each side was calculated.

7.3.4. Scapular dyskinesis protocol This parameter was examined during an arm elevation in the scapular plane, which was defined as 30°

in front of the coronal plane, while holding weights. Two poles were used to guide the participants

movement. The subject was standing straight in a neutral position with the palms of the hands facing

forward. The weight of the halters depended on the body mass of the person, people weighing under

68 kg had to lift 1.5 kg and people weighing over 68 kg, 2 kg. The subject performed 5 arm elevations

in a row, in order to have a clear interpretation of possible dyskinesis. Each time this parameter was

evaluated by the agreement of two examiners. Based on Kibler’s classification (3), a number from 1 to

4 was assigned, distinguishing 4 types of scapular dyskinesis: ‘1’ = Inferior prominence, ‘2’ = Medial

prominence, ‘3’ = Superior prominence ‘4’ = no scapular dyskinesis. McClure et al. showed that the

method used for assessing scapular dyskinesis proved satisfactory reliability for clinical use (6).

Figure 4. Measurement of length of the pectoralis minor muscle

with Digital Caliper.

55

7.3.5. Scapular inclination protocol For objectivation of scapular inclination, an inclinometer (Acumar digital

inclinometer: Lafayette Instrument Co, Lafayette, IN, USA) was used. The

Fourth parameter, scapular upward rotation, was measured following a

reliable method described by Watson et al. (32). The measurement was

performed in a neutral standing position with the arms relaxed. Two marks

were placed on the spine of the scapula, one near the posterior angle of the

acromion, the other directly lateral of the broad base of the scapular spine

(Figure 5.). After defining these marks, the inclinometer was placed on a

ruler connecting the two marks. A second investigator looked sideways at

the inclinometer to make sure it was positioned in the frontal plane. Data

was collected, in degrees without decimals. A ‘-’ (minus) was added if the scapula was rotated

downward and a ‘+’ (plus sign) for upward rotation.

Figure 5. Measurement of inclination of the scapula with

digital inclinometer.


Recommended