+ All Categories
Home > Documents > Northern Barents Sea passive margin

Northern Barents Sea passive margin

Date post: 07-Aug-2015
Category:
Upload: alexander-minakov
View: 289 times
Download: 3 times
Share this document with a friend
Popular Tags:
1
D D D D LAPTEV SEA C24 (53 Ma) AMERASIAN BASIN AMERASIAN BASIN GREENLAND GREENLAND ALPHA RIDGE ALPHA RIDGE D D D D LAPTEV SEA C24 (53 Ma) AMERASIAN BASIN AMERASIAN BASIN GREENLAND GREENLAND ALPHA RIDGE ALPHA RIDGE D D D D LAPTEV SEA C24 (53 Ma) AMERASIAN BASIN AMERASIAN BASIN GREENLAND GREENLAND ALPHA RIDGE ALPHA RIDGE 1. DATA 3. CRUSTAL STRUCTURE 4. BREAK-UP SETTING 5. CENOZOIC SEDIMENTATION 1 3 4 5 2 -80 -60 -40 -20 0 20 40 60 80 100 120 mGal FREE-AIR GRAVITY 1 3 4 5 2 Barents sea Amunsen Basin Nansen Basin Gakkel Ridge Yermak Plateau Svalbard Franz Josef Land Severnaya Zemlya m Novaya Ze lya ara s K ea N g G nl n si orwe ian- ree a d Ba n g St. Anna trou h V oni r ug or n t o h Franz-Victoria trough Barents sea Amunsen Basin Nansen Basin Gakkel Ridge Yermak Plateau Svalbard Franz Josef Land Severnaya Zemlya a m a Nov ya Ze ly Kara sea N g Gr nl nd si orwe ian- ee a Ba n n trough St. An a V oni r ug or n t o h anz ic o r g Fr- V t ria t ou h a1 a2 a3 a4 a5 a6 a10 a11 a12 a13 a14 a i2 w 001 b c d e f g g COT BATHYMETRY A series of crustal-scale geotransects illustrating the architecture of the continental margin were constructed using seismic reflection profiles and both inverse and forward gravity modeling. The applied method includes solution of the inverse gravimetric problem with respect to the gravity effect of a thermally differentiated mantle. An iterative grid-based gravity inversion for Moho depth and stretching factors was applied. Two-dimensional gravity inversion for Moho depths was carried out along synthetic profiles taking into consideration the distribution of sedimentary cover from sparse seismic profiles and depth to magnetic source estimates. The crustal transects reveal a narrow and steep continent-ocean transition which is characteristic of sheared more than rifted margins. This may reflect a short-lived phase of shear during breakup prior to the opening of the Eurasia Basin which was initiated at the Paleocene-Eocene transition. The free-air gravity field shows large positive anomalies associated with Plio-Pleistocene glacial fans deposited in front of the Franz-Victoria and St. Anna troughs, which are prominent bathymetric features in the northern Barents-Kara Sea. These sediments were derived from uplifted and eroded areas in the Barents-Kara Sea region. Authors: Alexander Minakov (Department of Earth Science, University of Bergen, ); Jan Inge Faleide (Department of Geosciences, University of Oslo); Vladimir Yu. Glebovsky, (VNIIOkeangeologia, Saint-Petersburg, Russia); Rolf Mjelde (Department of Earth Science, University of Bergen) [email protected] Continental crust Oceanic crust Pre-Cenozoic sediments Cenozoic sediments -35 -30 -25 -20 -15 -10 -5 0 km 0 100 200 300 400 500 600 700 800 Franz Josef Land Western Nansen Basin -35 -30 -25 -20 -15 -10 -5 0 km 0 100 200 300 400 500 600 700 800 Franz Josef Land Central Nansen Basin North Barents Basin 0 100 200 300 400 500 600 700 800 Western Nansen Basin Svalbard Platform Kong Karls Land -35 -30 -25 -20 -15 -10 -5 0 km 1 2 3 -35 -30 -25 -20 -15 -10 -5 0 km 0 100 200 300 400 500 600 700 800 Eastern Nansen Basin St. Anna Basin St. Anna Trough -35 -30 -25 -20 -15 -10 -5 0 km 0 100 200 300 400 500 600 700 800 North Kara Rise Voronin Trough Eastern Nansen Basin 4 5 2 Accumulation (km ) 100 - 200 200 - 500 500 - 1000 > 1000 FVF StAF VF SF BjF a k R i g G k e l d e o e L o m n o s o v R i d g s B i Amund en as n o B n Makar v asi n Ca ada n Basi Knipovi h Rid c ge Mohn Ridge a nt n r S i A na t . Fran to z Vic ria tr. roni t Vo n r. Nansen Basin ende eev idg M l R e lp a R ge A h id k Yerma P t la eau Svalbard Gre na d eln Ele m re s e an Isl d Franz f Jose L nd a Se e n ya vra m ya Ze l Novaya Zemlya or M r is p Jesu ise R N rs trait aeS Lat p ev Sea Eurasian Basin Labrador Sea w ga Nor ein Ge l d r en an B n asi Barents Sea Kar a a Se Amerasian Basin Bjørnaya tr. The northern Barents Sea continental margin has remained the least investigated province of the Barents Sea because of very limited seismic data due to a largely permanent ice cover. An understanding of the structure and the evolution of the continental margin is essential to figure out the history of geological development and the hydrocarbon potential of the northern Barents Sea region. ABSTRACT 2. METHOD grain density -3 Density (g/cm ) Depth (km) -1 Compaction: 0.65 km Porosity at sea bottom: 0.52 -3 Grain density: 2.7 g/cm -3 Density at sea bottom: 1.82 g/cm ns f we at De ity rom ll d a -300 -240 -180 -120 -60 0 60 120 180 240 300 360 420 mGal -80 -60 -40 -20 0 20 0 4 60 80 10 0 ° 30 0 60° 60° 90° 90° 80° 80° 5 85° BOUGUER GRAVITY 30˚ 30˚ 60˚ 60˚ 90˚ 90˚ 80˚ 0 85˚ 5 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 mln. yr. CRUSTAL AGE -300 -240 -180 -120 -60 0 60 120 180 240 300 360 420 mGal 0 0 2 0 4 0 30° 60° 60° 90° 0 80° 80° 85° 85° THERMAL GRAVITY CORRECTION -300 -240 -180 -120 -60 0 60 120 180 240 300 360 420 mGal 0 -1 0 0 -8 -60 4 -0 -20 0 20 40 60 80 100 120 140 0 30° 60° 60° 90° 0 80° 80° 85° 85° MANTLE RESIDUAL ANOMALY 8 12 16 20 24 28 32 36 40 km 12 14 16 18 20 22 24 26 28 30 2 3 2 3 32 34 34 34 0 30° 60° 60° 0 0 80° 80° 5 85° 1 2 3 4 5 MOHO DEPTH AND CRUSTAL THICKNESS ESTIMATIONS STRETCHING FACTORS . 11 1.1 1.1 1.3 1.7 5 2. 9 2. 3.3 3.5 3.5 3.7 . 41 30˚ 30˚ 60˚ 60˚ 0 0 80˚ 0 85˚ 5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1000 0 100 200 300 400 500 600 700 800 -35 -30 -25 -20 -15 -10 -5 0 km 0 100 200 300 400 500 600 700 800 -300 -200 -100 0 100 200 300 Mantle residual anomaly (mGal) Distance (km) 300 Ma 58 Ma < 54 Ma 3 0 100 200 300 400 500 600 700 800 -300 -200 -100 0 100 200 300 Mantle residual anomaly (mGal) Distance (km) 0 100 200 300 400 500 600 700 800 -35 -30 -25 -20 -15 -10 -5 0 km 300 Ma 58 Ma < 54 Ma 1 input residual gravity anomaly calculated anomaly from inverted Moho calculated anomaly from isostatic Moho depth to magnetic sources estimates Moho inverted from gravity Moho according to local isostasy Moho according to regional isostasy theoretical subsidence corrected for sedimentary load -4 -6 -8 -10 -12 -14 -16 -18 -20 14 16 18 20 22 24 26 0.8754 3.322 14.82 0.0681 0.1595 0.3697 0.017 0.0193 0.0346 Dr=0 .4 g/cm 3 Dr=0 .6 g/cm 3 Dr=0 .5 g/cm 3 RMS increases Thickening of the continental crust Oceanic Moho depth estimates (km) Downward continuation depth (km) RMS increases GRAVITY ISOSTASY 2 2 1 > Crustal density 1 2 1 SENSITIVITY TO CRUSTAL DENSITY CHANGE AND DOWNWARD CONTINUATION DEPTH 3D GRAVITY INVERSION INCORPORATING LITHOSPHERE THERMAL GRAVITY ANOMALY 2D GRAVITY INVERSION INCORPORATING LITHOSPHERE THERMAL GRAVITY CORRECTION, EXPONENTIAL DENSITY-DEPTH FUNCTION IN SEDIMENTS AND ISOSTATIC CONSTRAINTS -2 0 0 -100 -100 -100 0 -1 0 0 -1 0 -100 -100 -100 0 -1 0 -100 -100 -100 -100 1 - 00 10 -0 -100 - 00 1 -1 0 0 -100 -100 -50 -50 -50 -50 -50 -50 50 - -50 -50 -50 -50 5 -0 -50 5 -0 -50 -50 -50 -50 -50 -50 0 -5 -50 -50 -0 5 -50 -50 0 -5 -50 -50 5 -0 -50 0 -5 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50 -25 -25 -25 -25 -25 2 -5 -25 5 -2 5 -2 2 -5 -25 -25 -25 -5 2 -5 2 -25 -25 -25 -25 -25 2 -5 -25 -25 5 -2 -25 5 -2 -25 2 -5 -25 -25 5 -2 -25 -25 -25 -25 5 -2 -25 -25 -25 -25 -25 2 -5 -25 2 -5 -25 -25 2 -5 -25 -25 -25 -5 2 -25 -25 -25 25 - -25 2 -5 -25 -25 -25 -25 25 - -25 5 -2 -25 -25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 5 2 5 2 5 2 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 5 2 25 25 5 2 25 50 50 50 50 50 50 50 50 0 5 50 50 50 50 50 50 50 0 5 50 50 50 50 0 5 50 0 5 50 50 50 50 50 50 50 50 0 5 50 50 50 100 100 100 0 10 0 10 100 10 0 0 10 100 10 0 0 10 100 100 0 10 100 100 100 100 100 100 0 10 100 100 0 10 0 10 100 100 100 200 200 200 200 200 20 0 200 200 0 20 200 0 40 400 30° 0 60° 90° 120° ° 120 -3 ° 0 ° 70 70° 5 75° 8 80° 85° 85° 24n (53) 24n (53) 20n (43) 20n (43) 18n (40) 18n (40) 13n (33) 13n (33) 6n (20) 6n (20) 5n (11) 5n (11) 2an (3.5) 2an (3.5) 1 2 3 4 5 MAGNETIC ANOMALIES 0 200 400 600 800 nT S N SOME CONSTRAINTS FOR SCENARIOS OF THE NORTHERN BARENTS SEA MARGIN EVOLUTION -The sedimentary cover in the Nansen Basin was influenced by three large fans (Franz Victoria, Saint Anna and Voronin) which are well pronounced in the modern sea floor topography and free air gravity; -The sedimentary thickness in the Nansen Basin was estimated as about 2-4 km; -It is believed that the one third of that thickness was created during Late Cenozoic due to Pliocene-Pleistocene uplift and glacial erosion events; -It is predicted 3-4 km stronger lithified sediments below the upper unit in front of St. Anna Trough. - The Northern Barents/Kara continental margin is characterized by narrow continent ocean transition (50 - 80 km); - Crustal thickness increases from the inner part of the northern Barents Sea area to the periphery constituting 20-27 km and 30 - 34 km of the crystalline crust, respectively; - North Kara Sea area was modeled with 30 km of the crystalline crust throughout; - The oceanic crust is thinned to around 5 km in the Nansen Basin; - Sediment thickness decreases from 6-13 km to 1-4 km from the inner shelf towards the continent ocean transition; It is believed that the most probable mechanism for the formation of the narrow northern Barents/Kara Sea margin was a short-lived episode of shear/transtension connected to Labrador Sea/Baffin Bay spreading system 56-69 Ma
Transcript
  • D

    D D

    D

    L A P T E V

    S E A

    C24 (53 Ma)

    A M E R A S I A N

    B A S I N

    A M E R A S I A N

    B A S I N

    GR

    EE

    NL

    AN

    DG

    RE

    EN

    LA

    ND

    ALPHA RIDGEALPHA RIDGE

    D

    D

    D

    D

    L A P T E V

    S E A

    C24 (53 Ma)

    A M E R A S I A N

    B A S I N

    A M E R A S I A N

    B A S I N

    GR

    EE

    NL

    AN

    DG

    RE

    EN

    LA

    ND

    ALPHA RIDGEALPHA RIDGE

    D D

    D D

    L A P T E V

    S E A

    C24 (53 Ma)

    A M E R A S I A N

    B A S I N

    A M E R A S I A N

    B A S I N

    GR

    EE

    NL

    AN

    DG

    RE

    EN

    LA

    ND

    ALPHA RIDGEALPHA RIDGE

    1. DATA 3. CRUSTAL STRUCTURE 4. BREAK-UP SETTING

    5. CENOZOIC SEDIMENTATION

    1

    3

    4 52

    -80 -60 -40 -20 0 20 40 60 80 100 120

    mGal

    FREE-AIR GRAVITY

    1

    3

    4 52

    Barents sea

    Amunsen Basin

    Nansen Basin

    Gakkel Ridge

    Yermak Plateau

    Svalbard Franz Josef Land

    Severnaya

    Zemlya

    m

    Novaya Z

    ely

    a

    ara

    s

    K

    ea

    N

    g

    G

    nl

    n

    si

    orw

    eia

    n-

    ree

    ad Ba

    n

    g

    St. A

    nna tr

    ou

    h

    V

    oni

    rug

    or

    n t

    o

    h

    Franz-Vic

    toria

    trough

    Greenland

    Barents sea

    Amunsen Basin

    Nansen Basin

    Gakkel Ridge

    Yermak Plateau

    Svalbard Franz Josef Land

    Severnaya

    Zemlya

    a

    ma

    Nov

    ya Z

    ely

    Kara

    sea

    N

    g

    Gr

    nl

    nd

    si

    orw

    eia

    n-

    ee

    a

    Ba

    n

    n

    trough

    St.

    An

    a

    V

    oni

    rug

    or

    n t

    o

    h

    anz

    ico

    rg

    Fr-

    Vt

    ria

    tou

    h

    Greenland

    a1

    a2

    a3

    a4 a5 a6

    a10

    a11

    a12

    a13

    a14

    ai2

    w001

    b

    c

    d

    e

    f

    g

    g

    COT

    BATHYMETRY

    A series of crustal-scale geotransects illustrating the

    architecture of the continental margin were constructed using

    seismic reflection profiles and both inverse and forward gravity

    modeling.

    The applied method includes solution of the inverse gravimetric

    problem with respect to the gravity effect of a thermally

    differentiated mantle. An iterative grid-based gravity inversion

    for Moho depth and stretching factors was applied.

    Two-dimensional gravity inversion for Moho depths was

    carried out along synthetic profiles taking into consideration the

    distribution of sedimentary cover from sparse seismic profiles

    and depth to magnetic source estimates.

    The crustal transects reveal a narrow and steep continent-ocean

    transition which is characteristic of sheared more than rifted

    margins. This may reflect a short-lived phase of shear during

    breakup prior to the opening of the Eurasia Basin which was

    initiated at the Paleocene-Eocene transition.

    The free-air gravity field shows large positive anomalies

    associated with Plio-Pleistocene glacial fans deposited in front

    of the Franz-Victoria and St. Anna troughs, which are

    prominent bathymetric features in the northern Barents-Kara

    Sea. These sediments were derived from uplifted and eroded

    areas in the Barents-Kara Sea region.

    Authors:

    Alexander Minakov (Department of Earth Science, University of Bergen,

    );

    Jan Inge Faleide (Department of Geosciences, University of Oslo);

    Vladimir Yu. Glebovsky, (VNIIOkeangeologia, Saint-Petersburg, Russia);

    Rolf Mjelde (Department of Earth Science, University of Bergen)

    [email protected]

    Continental crust

    Oceanic crust

    Pre-Cenozoic sediments

    Cenozoic sediments

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    km

    0 100 200 300 400 500 600 700 800

    Franz Josef Land Western Nansen Basin

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    km

    0 100 200 300 400 500 600 700 800

    Franz Josef Land Central Nansen BasinNorth Barents Basin

    0 100 200 300 400 500 600 700 800

    Western Nansen BasinSvalbard PlatformKong Karls Land

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    km1

    2

    3

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    km

    0 100 200 300 400 500 600 700 800

    Eastern Nansen BasinSt. Anna Basin St. Anna Trough

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    km

    0 100 200 300 400 500 600 700 800

    North Kara Rise Voronin Trough Eastern Nansen Basin

    4

    5

    2

    Accumulation (km )

    100 - 200

    200 - 500

    500 - 1000

    > 1000

    FVF

    StAFVF

    SF

    BjF

    a k R i g

    G k e l d e

    o eL o m n o s o v R i d g

    s B iAmund en asn

    o B nMakar v asi

    n Ca ada

    nBasi

    Knip

    ovi

    h R

    id

    c

    ge

    Mohn Ridge

    ant

    nr

    Si

    Ana t

    .

    Fra

    n

    to

    zV

    icria

    tr.

    roni

    t

    Vo

    n r.

    Nansen Basin

    ende

    eev

    idg

    M

    l

    R

    e

    lp a R geA h id

    kYerma

    P tla eau

    Svalbard

    Gre n a de l n

    Ele

    mre

    sean

    Isld

    Franz

    f Jos

    e

    L nda

    Se e n yav r a

    m yaZe l

    Novaya Z

    em

    lya

    o rM r is

    pJesu

    iseR

    Nrs

    tra

    it

    ae

    S

    Lat

    p

    ev

    SeaEurasian

    Basin

    Labrador Sea

    w g aNor e i n

    G e l dr en an

    B nasi

    Barents

    Sea

    Kar

    a

    a S

    e

    Amerasian

    Basin

    Bjrnaya tr.

    The northern Barents Sea

    continental margin has remained

    the least investigated province of

    the Barents Sea because of very

    limited seismic data due to a

    largely permanent ice cover. An

    understanding of the structure

    and the evolution of the

    continental margin is essential to

    figure out the history of

    geological development and the

    hydrocarbon potential of the

    northern Barents Sea region.

    ABSTRACT

    2. METHOD

    gra

    in d

    en

    sity

    -3

    Density (g/cm )D

    ep

    th (

    km

    )

    -1

    Compaction: 0.65 km

    Porosity at sea bottom: 0.52-3

    Grain density: 2.7 g/cm-3

    Density at sea bottom: 1.82 g/cm

    ns fwe at

    Deity rom

    ll d a

    -300 -240 -180 -120 -60 0 60 120 180 240 300 360 420

    mGal

    -80

    -60

    -40

    -20

    0

    2004

    60

    80

    100

    30

    30

    60

    60

    90

    90

    80

    80

    58

    85

    BOUGUER GRAVITY

    30

    30

    60

    60

    90

    90

    80

    08

    85

    58

    0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

    mln. yr.

    CRUSTAL AGE

    -300 -240 -180 -120 -60 0 60 120 180 240 300 360 420

    mGal

    0

    02

    04

    30

    30

    60

    60

    90

    09

    80

    80

    85

    85

    THERMAL GRAVITY CORRECTION

    -300 -240 -180 -120 -60 0 60 120 180 240 300 360 420

    mGal

    0-1

    0

    0-8

    -60

    4-0

    -20

    0

    20

    406080

    100

    120

    140

    30

    30

    60

    60

    90

    09

    80

    80

    85

    85

    MANTLE RESIDUAL ANOMALY

    8 12 16 20 24 28 32 36 40

    km

    121416

    18202224262830

    23

    23

    32

    34

    34

    34

    30

    30

    60

    60

    09

    09

    80

    80

    58

    85

    1

    2

    34

    5

    MOHO DEPTH AND CRUSTAL

    THICKNESS ESTIMATIONS

    STRETCHING FACTORS

    .1 1

    1.1

    1.1

    1.3

    1.7

    52.

    92. 3

    .3

    3.5

    3.5

    3.7.4 1

    30

    30

    60

    60

    90

    90

    80

    08

    8558

    1.0 1.5 2.0 2.5 3.0 3.5 4.0 1000

    0 100 200 300 400 500 600 700 800

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    km

    0 100 200 300 400 500 600 700 800-300

    -200

    -100

    0

    100

    200

    300

    Ma

    ntle

    re

    sid

    ua

    l a

    no

    ma

    ly

    (m

    Ga

    l)

    Distance (km)

    300 Ma 58 Ma< 54 Ma

    3

    0 100 200 300 400 500 600 700 800-300

    -200

    -100

    0

    100

    200

    300

    Ma

    ntle

    re

    sid

    ua

    l a

    no

    ma

    ly

    (m

    Ga

    l)

    Distance (km)

    0 100 200 300 400 500 600 700 800

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    km

    300 Ma 58 Ma< 54 Ma

    1

    input residual

    gravity anomaly

    calculated anomaly

    from inverted Moho

    calculated anomaly

    from isostatic Moho

    depth to magnetic

    sources estimates

    Moho inverted

    from gravity

    Moho according to

    local isostasy

    Moho according to

    regional isostasy

    theoretical subsidence

    corrected for sedimentary

    load

    -4 -6 -8 -10 -12 -14 -16 -18 -20

    14

    16

    18

    20

    22

    24

    26

    0.8754

    3.322

    14.82

    0.0681

    0.1595

    0.3697

    0.017

    0.0193

    0.0346

    Dr=0.4

    g/c

    m3

    Dr=0.6

    g/c

    m3

    Dr=0.5

    g/c

    m3

    RMS increases

    Thickening of the continental crust

    Oceanic Moho depth estimates (km)

    Do

    wn

    wa

    rd c

    on

    tin

    ua

    tio

    n d

    ep

    th (

    km

    )

    RM

    S in

    cre

    ase

    s

    GRAVITY

    ISOSTASY

    2

    2

    1>Crustal density

    1

    2

    1

    SENSITIVITY TO CRUSTAL DENSITY CHANGE AND

    DOWNWARD CONTINUATION DEPTH

    3D GRAVITY INVERSION INCORPORATING LITHOSPHERE THERMAL GRAVITY ANOMALY

    2D GRAVITY INVERSION INCORPORATING LITHOSPHERE THERMAL GRAVITY CORRECTION,

    EXPONENTIAL DENSITY-DEPTH FUNCTION IN SEDIMENTS AND ISOSTATIC CONSTRAINTS

    -2 00

    -100

    -100

    -100

    0-1 0

    0-1 0

    -100

    -100 -1

    00

    0-1

    0

    -100

    -100

    -100

    -100

    1-00

    10

    -0

    -100- 001

    -100

    -100

    -100

    -50

    -50

    -50

    -50

    -50

    -50

    50

    -

    -50

    -50

    -50 -50

    5- 0

    -50

    5-0

    -50

    -50

    -50

    -50 -5

    0

    -50

    0-5

    -50

    -50

    - 05

    -50

    -50

    0-5

    -50

    -50

    5- 0

    -50

    0-5

    -50

    -50

    -50

    -50

    -50

    -50

    -50

    -50

    -50

    -50

    -50

    -50

    -50

    -25

    -25

    -25

    -25

    -25

    2-5

    -25

    5-2

    5-2

    2- 5

    -25

    -25-25

    - 52

    -52

    -25

    -25

    -25

    -25

    -25

    2- 5

    -25

    -25

    5-2

    -25

    5-2

    -25

    2-5

    -25

    -25

    5-2

    -25

    -25

    -25

    -25

    5-2

    -25

    -25

    -25 -25

    -25

    2-5-2

    5

    2- 5 -25

    -25

    2-5

    -25

    -25 -25

    -5

    2

    -25-25

    -25

    25-

    -25

    2- 5

    -25

    -25

    -25

    -25

    25

    -

    -25

    5-2

    -25

    -25

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0 0

    00

    0

    00

    0

    0

    0 0

    0

    0

    0

    0

    0

    0

    0

    00

    0

    0

    0

    00

    0

    0

    0

    0

    0

    0

    0

    0

    0

    00

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    25

    25

    25

    25

    25

    25

    25

    25

    25

    25

    2525

    25 25

    25

    52

    5252

    25

    25

    25

    25 25

    2525

    25

    2525

    25

    2525

    25

    25

    25

    25

    25

    25

    25

    25 25

    25

    25

    25

    25

    25

    25

    25

    25

    25

    25

    25

    25

    25

    25

    25

    25

    25

    25

    52

    25

    25

    52

    25

    50

    50

    50

    50

    50

    50

    50

    50

    05

    50

    50

    50

    50

    50

    50

    50

    05

    50

    5050

    50

    05

    50

    05

    50

    50

    50

    5050

    50

    50

    50

    05

    5050

    50

    100

    100

    100

    01

    0

    010

    100

    100

    010

    100

    1000

    10

    100

    100

    01 0

    100

    100

    100

    100

    100

    10001

    0

    100100

    010

    01

    0

    100

    100

    100

    20020

    0

    200

    200

    200

    20

    0

    200

    200

    020

    200

    040

    400

    0

    0

    30 6

    0

    60

    90

    120

    120

    -3 0

    70

    70

    75

    75

    0

    8

    80

    85

    85

    24n (53)

    24n (53)

    20n (43)

    20n (43)

    18n (40)

    18n (40)

    13n (33)

    13n (33)

    6n (20)

    6n (20)

    5n (11)

    5n (11)

    2an (3.5)

    2an (3.5)

    1

    2

    3

    45

    MAGNETIC ANOMALIES

    0 200 400 600 800

    nT

    S N

    SOME CONSTRAINTS FOR SCENARIOS OF THE NORTHERN BARENTS SEA MARGIN EVOLUTION

    -The sedimentary cover in the Nansen Basin was influenced bythree large fans (Franz Victoria, Saint Anna and Voronin) whichare well pronounced in the modern sea floor topography and freeair gravity;-The sedimentary thickness in the Nansen Basin was estimated asabout 2-4 km; -It is believed that the one third of that thickness was createdduring Late Cenozoic due to Pliocene-Pleistocene uplift andglacial erosion events;-It is predicted 3-4 km stronger lithified sediments below theupper unit in front of St. Anna Trough.

    - The Northern Barents/Kara continental margin is characterized by narrow continent ocean transition (50 - 80

    km);

    - Crustal thickness increases from the inner part of the northern Barents Sea area to the periphery constituting

    20-27 km and 30 - 34 km of the crystalline crust, respectively;

    - North Kara Sea area was modeled with 30 km of the crystalline crust throughout;

    - The oceanic crust is thinned to around 5 km in the Nansen Basin;

    - Sediment thickness decreases from 6-13 km to 1-4 km from the inner shelf towards the continent ocean

    transition;

    It is believed that the most probable mechanism for the formation of the

    narrow northern Barents/Kara Sea margin was a short-lived episode of

    shear/transtension connected to Labrador Sea/Baffin Bay spreading system

    56-69 Ma

    Page 1


Recommended