+ All Categories
Home > Documents > November 2016 TU Dresden Juergen Garche

November 2016 TU Dresden Juergen Garche

Date post: 07-Nov-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
115
FCBAT FCBAT Li-Battery SAFETY November 2016 TU Dresden Juergen Garche www.fcbat.eu FCBAT
Transcript
Page 1: November 2016 TU Dresden Juergen Garche

FCBAT

FCBAT

Li-Battery SAFETYNovember 2016

TU Dresden

Juergen Garche

www.fcbat.eu

FCBAT

Page 2: November 2016 TU Dresden Juergen Garche

FCBAT

Historischer Rückblick –Elektrochemie

1828 Technische Bildungsanstalt Dresden

1890 Königlich Sächsische Technische Hochschule

Page 3: November 2016 TU Dresden Juergen Garche

FCBAT

Erstes Elektrochemische Institut Deutschlands1900 - Prof. Dr. Fritz Förster

Page 4: November 2016 TU Dresden Juergen Garche

FCBAT

Prof. Dr. Kurt Schwabe (1905 – 1983)Professor für Physikalische und Elektrochemie,

Rektor TU Dresden

Page 5: November 2016 TU Dresden Juergen Garche

FCBAT

1965

5 kW Brennstoffzellen(Hydrazin-Luft) Gabelstapler

TUD - BAE

Page 6: November 2016 TU Dresden Juergen Garche

FCBAT

Li-Primärzellen Fertigung Pirna(Herzschrittmacher)

Start 1980er

Page 7: November 2016 TU Dresden Juergen Garche

FCBAT

Content

Introduction Safety Risks

Li-Battery Systems and their Risks– Li-Metalic Systems– Li-Ion Systems

Main Safety Problems (electrical, kinetical, chemical, thermal)

Page 8: November 2016 TU Dresden Juergen Garche

FCBAT

Production and Storage

Fire at HELLA in Bockum‐Hövel (Germany) 24.11.2007, 18:47 h

Page 9: November 2016 TU Dresden Juergen Garche

FCBAT

EV-Use - EV under Water (Storm Tide)

Page 10: November 2016 TU Dresden Juergen Garche

FCBAT

Fire even under Water

Fire of a 11.5 Ah LFP cell under salt water (3.5. % NaCl)

Source: Tsinghua University

Page 11: November 2016 TU Dresden Juergen Garche

FCBAT

Boeing 747-400 Cargo3rd September 2010 Dubai Li-Battery overheating

Page 12: November 2016 TU Dresden Juergen Garche

FCBAT

Boeing Dreamliner B 787

Page 13: November 2016 TU Dresden Juergen Garche

FCBAT

BOEING Dreamliner – Fire Reasons

Thermal propagation

Page 14: November 2016 TU Dresden Juergen Garche

FCBAT

Cell/Battery Recalls

Page 15: November 2016 TU Dresden Juergen Garche

FCBAT

https://www.americandisposal.com/blog/lithium-ion-batteries

Disposal

Page 16: November 2016 TU Dresden Juergen Garche

FCBAT

TESLA-S - e.g. 6th November 2013

Page 17: November 2016 TU Dresden Juergen Garche

FCBAT

Failures

Page 18: November 2016 TU Dresden Juergen Garche

FCBAT

Tesla Fire in France – August 2016

Page 19: November 2016 TU Dresden Juergen Garche

FCBAT

BUTICE-Cars

Page 20: November 2016 TU Dresden Juergen Garche

FCBAT

ICE-Vehicle Fire - Germany

Source:  JP Wiaux, Recharge, Amsterdam 13th September 2012 

~ 70 ICE-car fires per day in Germany

Page 21: November 2016 TU Dresden Juergen Garche

FCBAT

ICE-Vehicle Fire - USA

Every 2…3 minutes there is a ICE-car fire – USA

Page 22: November 2016 TU Dresden Juergen Garche

FCBAT

We put more and more energy into a given volume

Page 23: November 2016 TU Dresden Juergen Garche

FCBAT

We put more and more energy into a given volume

- Is the Li-Battery a controlled Bomb?

Page 24: November 2016 TU Dresden Juergen Garche

FCBAT -

Li-Battery – The controlled bomb?

Energy density of TNT6.7 kJ/cm3

Energy density of advanced batteries3.3 kJ/cm3

Page 25: November 2016 TU Dresden Juergen Garche

FCBAT -

Li-Battery – The controled bomb?

Energy density of TNT6.7 kJ/cm3

Energy density of advanced batteries3.3 kJ/cm3

Energy density of chocolate22 kJ/cm³

Page 26: November 2016 TU Dresden Juergen Garche

FCBAT -

Li-Battery – The controled bomb?

Energy density of TNT6.7 kJ/cm3

Energy density of advanced batteries3.3 kJ/cm3

Energy density of chocolate22 kJ/cm³

Page 27: November 2016 TU Dresden Juergen Garche

FCBAT -

High energy densities pose no inherent risk

Explosion risk is given by the Berthelot-Roth Product (BRP)BRP ~ Vgas products * ΔHreaction

1 : Li / anorg. Elektrolyt / LiCoO22 : LiC / org. Elektrolyt / LiCoO23 : Li / SO2/ (C)4 : Li/ org. Elektrolyt / MnO25 : Schwarzpulver ( KNO3, C, S )

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5

BR

P [1

0exp

6 kJ

/m³]

Explosions-limit

Source: G. Hambitzer, FORTU

Page 28: November 2016 TU Dresden Juergen Garche

FCBAT

Li-Ion Cell Safety

Li-Ion Cells are produced in a quantity of ~ 5 Bill per year(2014)

- The insident rate is in the low ppm area

Page 29: November 2016 TU Dresden Juergen Garche

FCBAT

Li-Ion Cell Safety

Li-Ion Cells are produced in a quantity of ~ 5 Bill per year(2014)

- The insident rate is in the low ppm area 1 ppm

BUT1 Tesla S => 7,200 cells

100 Tesla S => 720,000 cells

139 Tesla S => 1,000,000 cells (1 ppm)

„Each 140th Tesla S will burn“

Page 30: November 2016 TU Dresden Juergen Garche

FCBAT

Li- Battery Systems

Page 31: November 2016 TU Dresden Juergen Garche

FCBAT -

Li-Systems

Metallic LithiumLi reacts with the electrolyte (El) => Protective Layer (SEI) + Heat

Protective LayerSolid Electrolyte Interphase - SEI

SEI

Page 32: November 2016 TU Dresden Juergen Garche

FCBAT

-

Li-Systems

Metallic LithiumLi reacts with the electrolyte (El) => Protective Layer (SEI) + Heat

Problem: Dendrites growth through the electrolyte

Source: Russ Chianelli -Exxon

Page 33: November 2016 TU Dresden Juergen Garche

FCBAT

MOLI 1979: First functional Li‐MoS2  Battery – 6V 

MOLI 1988: First commercial Li‐MoS2  AA‐Cell

First Rechargeable Li-Metall MoO2 Cell – MOLI 1988

Page 34: November 2016 TU Dresden Juergen Garche

FCBAT -

A – Using of more inert electrolytes: Solid electrolytes

==> Li All-Solid SystemsA1 – Solid electrolyte: polymer electrolytes => Li-Polymer Systems

A2 – Solid electrolyte: inorganic crystaline materials/glasses

mitigate

SEI

Page 35: November 2016 TU Dresden Juergen Garche

FCBAT -

A – Using of more inert electrolytes: solid electrolytes

==> Li All-Solid Systems, Li-Polymer Systems

B – Using of more inert Li-electrodes: Li-intercalation electrodes(carbon, alloys - aLi < 1)

==> Li-Ion Systems

mitigate

SEI

Page 36: November 2016 TU Dresden Juergen Garche

FCBAT -

A – Using of more inert electrolytes: solid electrolytes

==> Li All-Solid Systems, Li-Polymer Systems

B – Using of more inert Li-electrodes: Non-metallic Li- intercalationelectrodes (carbon, alloys - aLi < 1)

==> Li-Ion Systems

C – Using of more inert electrolytes (Polymer electrolytes) and more inert Li-electrodes (Li-intercalation electrodes)

==> Li-Ion Polymer Systems

mitigate

SEI

Page 37: November 2016 TU Dresden Juergen Garche

FCBAT -

A – Using of more inert electrolytes: Polymer electrolytes

==> Li-Polymer Systems

B – Using of more inert Li-electrodes: Non-metallic Li-electrodes(carbon, alloys - aLi < 1)

==> Li-Ion Systems

C – Using of more inert electrolytes (Polymer electrolytes) andmore inert Li-electrodes (Non-metallic Li-electrodes)

==> Li-Ion Polymer Systems

mitigate

SEI

Page 38: November 2016 TU Dresden Juergen Garche

FCBAT

Li - Battery Systems

Li-IonLi-Metal

Solid

Li All-solid

Page 39: November 2016 TU Dresden Juergen Garche

FCBAT

Li – Metal Systems

Li-Metal

Only few Li Metal system are under development (coin cells, Bolloré)

Page 40: November 2016 TU Dresden Juergen Garche

FCBAT

Li-Metal Polymer System

Source: K. Brandt

80 Ah, 48 V

Page 41: November 2016 TU Dresden Juergen Garche

FCBAT

Source: K. Brandt

Page 42: November 2016 TU Dresden Juergen Garche

FCBAT -

2.8 kWh, 31 V, 25 kg, 25 l, Pmax: 8 kW, 110 Wh/kg,

Bolloré (France)

Li-Metal Polymer System

Source: M. Armand, Munich, March 2014

Solid polymerelectrolyte

Page 43: November 2016 TU Dresden Juergen Garche

FCBAT -

Operating temperature: 80°C

Li-Metal Polymer SystemOperating Temperature

Source: M. Armand, Munich, March 2014

Melting Temperature Li : 180 °C

Page 44: November 2016 TU Dresden Juergen Garche

FCBAT

Li - Battery Systems

Li-MetalLi-Ion> 5 bill. cells/a

Page 45: November 2016 TU Dresden Juergen Garche

FCBAT

Source: Landrover- Jaguar

Where are the Main Safety Problems?

Page 46: November 2016 TU Dresden Juergen Garche

FCBAT

Source: Landrover- Jaguar

Where are the Main Safety Problems?

Up to 800 V

Page 47: November 2016 TU Dresden Juergen Garche

FCBAT

Source: Landrover- Jaguar

Where are the Main Safety Problems?

Page 48: November 2016 TU Dresden Juergen Garche

FCBAT

NASA Robot October 2016

Page 49: November 2016 TU Dresden Juergen Garche

FCBAT

Source: Landrover- Jaguar

What are the Main Safety Problems?

Page 50: November 2016 TU Dresden Juergen Garche

FCBAT

Gas Development (Pressure, Flammable, Toxic)

Chemical Risk - Main Source: Electrolyte

Electrolyte Leakage

Page 51: November 2016 TU Dresden Juergen Garche

FCBAT

Li-Salt - source of Li+, LiPF6 , LiPF6 => Li+ + PF6-

Solvent - helps to dissociate LiPF6 => Li+ + PF6-

Mixtures of organic polycarbonats as EC, PC, EMC, or DMC

Electrolyte1-1.5 m LiPF6 (Salt) in Polycarbonats (Solvent)

Page 52: November 2016 TU Dresden Juergen Garche

FCBAT

Electrolyte Materials - Safety Significance

Solvent: Solvent BurningLiPF6: HF and other Fluorid Compounds Formation

Page 53: November 2016 TU Dresden Juergen Garche

FCBAT

Solvent

Page 54: November 2016 TU Dresden Juergen Garche

FCBAT

Electrolyte - Leakage

Li-Salt (source of Li+): 1-1.5 molar solution of LiPF6

Flammability

Health(toxic)

Instability/Reactivity

HF Hazard related to NFPA 704

low 0 … high 4

MAK-Wert: 1mg/m3. IDLH –Wert 25 mg/m3. (Immediately Dangerous to Life or Health)

Page 55: November 2016 TU Dresden Juergen Garche

FCBAT

Fire heating (15 kW burner)35 Ah pouch LFPSource: F. Larsson et al., J. Power Sources 271 (2014) 414

IR heating (~350 °C) 2.9 Ah pouch LMOSource: P. Ribiere et. al. Energy Environ. Sci., 5 (2012) 5271

Experimental Measurement of HF underThermal Runaway Conditions (Fire) - Cells

40 – 120 g HF/kWh 40 – 90 g HF/kWh RESULTS

Page 56: November 2016 TU Dresden Juergen Garche

FCBAT

m (HFBatt) = m (HFEV) - m (HFICE)

Experimental Measurement of HF underThermal Runaway Conditions (Fire) - Cars

Source: INERIS

Results

EV with LFP 23.5 kWh28 g HF/kWh

EV with LFP 16.5 kWh56 g HF/kWh

Page 57: November 2016 TU Dresden Juergen Garche

FCBAT

HF-Measurement Resultsunder Thermal Runaway Conditions (Fire)

Cell 1 – LMO 2.9 Ah pouch 40 – 90 g HF/kWhSource: P. Ribiere et. al. Energy Environ. Sci., 5 (2012) 5271

Cell 2 – LFP 35 Ah pouch 40 – 120 g HF/kWhSource: F. Larsson et al., J. Power Sources 271 (2014) 414

EV with Battery 1 56 g HF/kWhLFP 16.5 kWh EV with Battery 2 28g HF/kWhLFP 23.5 kWh Source: INERIS (http://hal-ineris.ccsd.cnrs.fr/ineris-00973680/document)

=> 28 – 120 g HF/kWh

Page 58: November 2016 TU Dresden Juergen Garche

FCBAT

Incomplete Combustion

Page 59: November 2016 TU Dresden Juergen Garche

FCBAT

Results:

HF concentration was below the detection limit at all sampling

positions.

CO concentration was at a distance of 1 m from the vehicle,

less than 100 ppm

JapaneseResults

No HF!!!

Page 60: November 2016 TU Dresden Juergen Garche

FCBAT

Source: Landrover- Jaguar

What are the Main Safety Problems?

Page 61: November 2016 TU Dresden Juergen Garche

FCBAT

What contributs to the Li-Ion Cell Energy(3.3 kJ/kg)?

Page 62: November 2016 TU Dresden Juergen Garche

FCBAT

Electrochemical and Thermal Energy

Source: Stringfellow, R.; Ofer, D.; Sriramulu, S.; Barnett, Brian., TIAX Las Vegas, NV, Oct. 12, 2010 (Abstract #582).

(only above 120C)

18650 cellLCO

Page 63: November 2016 TU Dresden Juergen Garche

FCBAT

18650 LCO Cell

ElectricalEnergy

ThermalEnergy

Page 64: November 2016 TU Dresden Juergen Garche

FCBAT

100 % SOC

„Electro“chemical Energy(Active mass - EC activ)Source for heating up

Chemical Energy(mostly Electrolyte –

EC non-activ)Source for burning

10 Wh

30 Wh

Energy of 18650 Cell (LCO)

Page 65: November 2016 TU Dresden Juergen Garche

FCBAT

Electrochemical Energy=> Temperature Increase

Spec. heat capacity C: ~ 1,000 kJ/kg KSpec. energy E: ~ 200 Wh/kg

E/C = 720 K

1 % SOC increases the cell temperature by 7.2 K (adiabatic)

100 % DOD increases the cell temperatureby 720 K (adiabatic)

Source: TUM - EES

Page 66: November 2016 TU Dresden Juergen Garche

FCBAT

100 % SOC

10 Wh

30 Wh

The cell should be safe, if SOC = 0 and no outside thermal trigger

To be safer –We need incombustible electrolytes

SOC = 00 Wh

30 Wh

Page 67: November 2016 TU Dresden Juergen Garche

FCBAT

Safety – SOC dependency

Thermal runaway

Self-heating area(>0.05 °C)

Non-self-heating area(< 0.05 °C)

LCO 18650 Panasonic

Page 68: November 2016 TU Dresden Juergen Garche

FCBAT

SOC = 00 Wh

30 Wh

Storage and Transport at SOC=0 ?

Page 69: November 2016 TU Dresden Juergen Garche

FCBAT

Overdischarge

Discharge/Overdischarge

Page 70: November 2016 TU Dresden Juergen Garche

FCBAT

Overdischarge

Page 71: November 2016 TU Dresden Juergen Garche

FCBAT

Overdischarge

Page 72: November 2016 TU Dresden Juergen Garche

FCBAT

Voltage Reversal

-3

-2

-1

0

1

2

3

4

5

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 time[h]

I[A]

U[V

] Strom geht nicht mehr zurück

Kurze Umpolung der Zelle

I/AU

/V

very short voltage reversal

Current doesn‘t go backCu short circuit

U=4.2 V

I

U

Cu dendrite

Source: TUM, EES

Page 73: November 2016 TU Dresden Juergen Garche

FCBAT

Storage and Transport at SOC ≈ 33 %

Page 74: November 2016 TU Dresden Juergen Garche

FCBAT

Max. Operating T70 °C

T

tThermal Input(physical)

Temperature increase of Cell by Thermal Input

Page 75: November 2016 TU Dresden Juergen Garche

FCBAT

Externalshort circuitInternal

short circuit

Over-charge

Deepdischarge

Externalheating

Over-load

CrashParticle Dendrites

Temperature increase

Externalshort circuitInternal

short circuit

Over-charge

Deepdischarge Over-

load

Externalheating

Reasons for Temperature Increase

Operating parameter

Page 76: November 2016 TU Dresden Juergen Garche

FCBAT

Max. Operating T70 °C

T

tThermal Input(physical)

Temperature increase of Cell by Thermal Input

Vent openEMC BP 107 °C

Page 77: November 2016 TU Dresden Juergen Garche

FCBAT

70 °CMax. operating T

T

t

120 °C Exothermic chemical reactionAnode SEI - electrolyte reaction

180 °C

simplified

Temperature increase of Cell byThermal Input and Chemical Reaction Heat

Thermal Input (physical)

~300 kJ/kg cell

Page 78: November 2016 TU Dresden Juergen Garche

FCBAT

70 °CMax. operating T

T

t

120 °C

180 °C

Thermal Input simplified

Exotermic chem. reactionCathode Thermal Decomposition

SEI - electrolyte reaction

Temperature increase of Cellby Thermal Input and Chemical Reaction Heat

LixCoO2

=> xLiCoO2 + (1 − x)/3Co3O4 + (1 − x)/3O2

~450 kJ/kg cell

Page 79: November 2016 TU Dresden Juergen Garche

FCBAT

Externalheating Temperature increase

LixCoO2 => xLiCoO2 + (1 − x)/3Co3O4 + (1 − x)/3O2

vent180 °C

Page 80: November 2016 TU Dresden Juergen Garche

FCBAT

70 °CMax. operating T

T

t

120 °C

180 °C

simplified

Cathode Thermal Decomposition

SEI - electrolyte reaction

LixCoO2 → xLiCoO2 + (1 − x)/3Co3O4 + (1 − x)/3O2

Thermal Runaway~1,700 kJ/kg cell

Thermal Runaway

Page 81: November 2016 TU Dresden Juergen Garche

FCBAT

t

What to do ?

A – Chemical Influence (AM, electrolyte)

B – Physical Influence (Active and Passive SafetyDevices)

Page 82: November 2016 TU Dresden Juergen Garche

FCBAT

t

What to do ?

A – Chemical Influence (AM, electrolyte)

B – Physical Influence (Active and Passive SafetyDevices)

Page 83: November 2016 TU Dresden Juergen Garche

FCBAT

70 °CMax. operating T

T

t

120 °C

180 °C

simplified

Cathode Thermal Decomposition (CTD)

SEI - electrolyte reaction

Thermal Input

What to do ? Increase CTD-Onset

LCO

NCM240 °C

Page 84: November 2016 TU Dresden Juergen Garche

FCBAT

Cathode Thermal Decomposition (CTD) – Onset T

CTD Onset T LCO NCA NMC LMO LFP ~180 °C ~220°C ~240°C ~ 280 °C(?) ~ 350 °C

LCO

NCA

NMC

Page 85: November 2016 TU Dresden Juergen Garche

FCBAT

LiNixCoyMnzO2 NCM - NxCyMz (x+y+z = 1)

Source: P. Rozier, JM Tarascon, JES 162 (2015) A2490

Page 86: November 2016 TU Dresden Juergen Garche

FCBAT

Core-Shell Concept (1/2)

Ni

MnCo

Distance from Particle Center

Concentration

Surface

Bulk

1. Y.-K. Sun, et al., Nat. Mater. 8, 320 (2009). Y.-K. Sun, et al., Adv. Funct. Mater. 20, 485 (2010).

Page 87: November 2016 TU Dresden Juergen Garche

FCBAT

Cathode Core-Shell Materials

Page 88: November 2016 TU Dresden Juergen Garche

FCBAT

incombustibleelectrolytes

Non-flammable electrolytes

Non-flammable– but not commercial

(conductivity, stability, costs …)

Page 89: November 2016 TU Dresden Juergen Garche

FCBAT

incombustibleelectrolytes

Non-flammable electrolytes

Non-flammable– but not commercial

(conductivity, stability, costs …)

Page 90: November 2016 TU Dresden Juergen Garche

FCBAT

Ceramic Solid Electrolyte Cells Li6.75La3Zr1.75Nb0.25O12 (LLZNO)

T. Inoue, K. Mukai, ACS Appl. Mater. Interfaces 2017, 9, 1507−1515

Material combinations Full cellAnode

LTO

C

Li

Li(cathode + KB)

Page 91: November 2016 TU Dresden Juergen Garche

FCBAT

t

What to do ?

A – Chemical Influence (AM, electrolyte)

B – Physical Influence (Active and Passive SafetyDevices)

Page 92: November 2016 TU Dresden Juergen Garche

FCBAT

Active and Passive Safety Devices

- Protection Circuit Board – PCB

- Positiv-T-Coefficient resistor (PTC)

- Circuit Interrupt Devices (CID)

- Fuses

- Shutdown separators

- BMS (increase cooling, reductionof current, switch-off, etc.)

Page 93: November 2016 TU Dresden Juergen Garche

FCBAT

Source: http://www.lygte-info.dk/info/battery%20protection%20UK.html

Protection Circuit Board - PCB

Page 94: November 2016 TU Dresden Juergen Garche

FCBAT

Positive Temperature Coefficient Resistor - PTC

Page 95: November 2016 TU Dresden Juergen Garche

FCBAT

Circuit Interrupt Devices - CID

CID closed CID opened

Page 96: November 2016 TU Dresden Juergen Garche

FCBAT Source: BAJ

Shutdown Separator

Page 97: November 2016 TU Dresden Juergen Garche

FCBAT

Active and Passive Devices lead to Safe Systems

Material Cell Module Pack Battery

Source: http://www.eco-aesc-lb.com/en/product/liion_hev/

Increasing Number of Safety Devices

burst membrane mechanical cover fuse BMSinternal cell fuse cell voltage + balancer battery caseprotection circuit T-sensor, etc. main switch, etc. cooling, etc.

etc.

Not all materails arethermal stable

Safety is a System Approach

Page 98: November 2016 TU Dresden Juergen Garche

FCBAT

Battery Fire

Fire preconditions

- Combustible material- Temperature- Oxygen

Page 99: November 2016 TU Dresden Juergen Garche

FCBAT

Battery Fire

For smaller firesMainly ABC Dry Extinguisher

For larger firesMainly H2O

- separated air from battery- cooled down the battery

Page 100: November 2016 TU Dresden Juergen Garche

FCBAT

Summary

Page 101: November 2016 TU Dresden Juergen Garche

FCBAT

Source: NTSB - Doughty, 11 Apr 2013

Anatomy of Cell Failures

Page 102: November 2016 TU Dresden Juergen Garche

FCBAT

Full Safety is Possible

Page 103: November 2016 TU Dresden Juergen Garche

FCBAT

Automotive Safety Integrity Level – ASIL (ISO 26262)

ASIL ratingbased on parameters- Exposure - Controllability- Severity

Increasing Safety Risk

Full Safety is Possible – but not free of Charge

Page 104: November 2016 TU Dresden Juergen Garche

FCBAT

Many information about Safety are to find in:

5 Volumes> 350 chapters

Mass: 12 kgCost: 100 €/kg

Page 105: November 2016 TU Dresden Juergen Garche

FCBAT

Safety of Lithium Batteries

Elsevier, 2018 (May)

510 pages

Page 106: November 2016 TU Dresden Juergen Garche

FCBAT

Ulm

Thank you for your Attention

Page 107: November 2016 TU Dresden Juergen Garche

FCBAT

Back-up

Page 108: November 2016 TU Dresden Juergen Garche

FCBAT

Fire Extinguishing Agents

LIB

Page 109: November 2016 TU Dresden Juergen Garche

FCBAT

Fire Tests

800 Wh NMC battery with 18650 cells in a 13s6p

6p cell cluster was ignited by overheating

Fire extinguisher: 6-8 litre of liquid, or 200 g powder, or 10 kg CO2.

1 2 3 4 5 6 7 8 9 10 11 12 13

Fire T measurement

Page 110: November 2016 TU Dresden Juergen Garche

FCBAT

No Extinguishing

Propagation: Yes

Page 111: November 2016 TU Dresden Juergen Garche

FCBAT

Powder Extinguisher

Propagation: YesFire Exting. : YesRe-ignition: Yes

Page 112: November 2016 TU Dresden Juergen Garche

FCBAT

CO2 Extinguisher

Propagation: YesFire Exting. : YesRe-ignition: Yes

Page 113: November 2016 TU Dresden Juergen Garche

FCBAT

High Pressure Water Extinguisher

Propagation: NoFire Exting. : YesRe-ignition: No

Page 114: November 2016 TU Dresden Juergen Garche

FCBAT

High Expanded Foam Extinguisher

Propagation: NoFire Exting. : YesRe-ignition: No

Page 115: November 2016 TU Dresden Juergen Garche

FCBAT

Fire Extinguising Summary

Water based agents are successful

Gaseous fire extinguishing agents and powders are able to extinguish the flames as well, but re-ignition and failure propagation cannot be avoided.


Recommended