+ All Categories
Home > Documents > Nozzle FEA Calculation

Nozzle FEA Calculation

Date post: 02-Jun-2018
Category:
Upload: berylqz
View: 223 times
Download: 0 times
Share this document with a friend

of 64

Transcript
  • 8/11/2019 Nozzle FEA Calculation

    1/64

    Model Notes (80 NB Shell, 32NB Nozzle)

    Input Echo:

    Model Type : Cylindrical Shell

    Parent Outside Diameter : 88.900 mm.

    Thickness : 5.490 mm.

    Fillet Along Shell : 5.000 mm.

    Parent Properties:

    Material DB # 1068318.

    (See Output Reports for Allowables.)

    Elastic Modulus (Amb) : 195100.0 MPa

    Poissons Ratio : 0.300

    Expansion Coefficient : 0.1707E-04 mm./mm./deg.

    Weight Density : 0.0000E+00 N /cu.mm.(NOT USED)

    Nozzle Outside Diameter : 42.100 mm.

    Thickness : 3.680 mm.

    Length : 150.000 mm.

    Nozzle Weld Length : 5.000 mm.

    Nozzle Tilt Angle : 0.000 deg.

    Distance from Top : 0.000 mm.

    Distance from Bottom : 500.000 mm.

    Nozzle PropertiesMaterial DB # 1064818.

    (See Output Reports for Allowables.)

    Elastic Modulus (Amb) : 195100.0 MPa

    Poissons Ratio : 0.300

    Expansion Coefficient : 0.1707E-04 mm./mm./deg.

    Weight Density : 0.0000E+00 N /cu.mm. (NOT USED)

    Design Operating Cycles : 7000.

    Ambient Temperature (Deg.) : 21.10

    The following temperatures have been specified for the analysis:

    Nozzle Inside Temperature : 200.00 deg.

    Nozzle Outside Temperature : 200.00 deg.

    Vessel Inside Temperature : 200.00 deg.

    Vessel Outside Temperature : 200.00 deg.

    Nozzle Pressure : 2.800 MPa

    Vessel Pressure : 2.800 MPa

    User Defined Load Input Echo:

    Loads are given at the Nozzle/Header Junction

    Loads are defined in Local Coordinatesc

    Forces( N ) Moments (N-m)

    Load Case FX FY FZ MX MY MZ

    ---------------------------------------------------------------------------

    OPER: 1200.0 1200.0 1200.0 350.0 350.0 350.0

    FEA Model Loads:

    These are the actual loads applied to the FEA model.

    These are the User Defined Loads translated to the

    end of the nozzle and reported in global coordinates.

    Forces( N ) Moments (N-m)

    Load Case FX FY FZ MX MY MZ

    ---------------------------------------------------------------------------

    OPER: 1200.0 1200.0 1200.0 350.0 530.0 170.0

    The "top" or "positive" end of this model is "free" in

    the axial and translational directions.

    Stresses ARE nodally AVERAGED.

    Vessel Centerline Vector : 0.000 1.000 0.000

    Nozzle Orientation Vector : 1.000 0.000 0.000

    Table of Contents

    Load Case Report

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    2/64

  • 8/11/2019 Nozzle FEA Calculation

    3/64

    3 672. 16509. 1200.

    4 353202. 0. 0.

    5 0. 0. 0.

    6 0. 0. 0.

    7 0. 0. 0.

    8 -528. 15309. 0.

    Table of Contents

    ASME Code Stress Output Plots

    1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    2) Qb < SPS (SUS,Bending) Case 1

    3) S1+S2+S3 < 4S (SUS,S1+S2+S3) Case 1

    4) Pl+Pb+Q < SPS (OPE,Inside) Case 3

    5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    6) Pl+Pb+Q+F < Sa (EXP,Inside) Case 3

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    8) Membrane < User (OPE,Membrane) Case 3

    9) Bending < User (OPE,Bending) Case 3

    10) Pl+Pb+Q+F < Sa (SIF,Outside) Case 4

    11) Pl+Pb+Q+F < Sa (SIF,Outside) Case 5

    12) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

    13) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

    14) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

    Table of Contents

    Region Data

    Header Next to Nozzle Weld

    Cold Allowable ........... 138. MPa

    Hot Allowable @ 200 deg .. 133. MPa

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 3

    Nominal Stress (M/Z) ... 237. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 4

    Nominal Stress (M/Z) ... 795. MPaPressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 90. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 90. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 90. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 23. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 3.680 mm.

    Stress Concentration ..... 1.350

    Branch Next to Header Weld

    Cold Allowable ........... 115. MPa

    Hot Allowable @ 200 deg .. 109. MPa

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    4/64

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 3

    Nominal Stress (M/Z) ... 237. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 4

    Nominal Stress (M/Z) ... 795. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 90. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 90. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 90. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 23. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 3.680 mm.

    Stress Concentration ..... 1.350

    Branch Transition

    Cold Allowable ........... 115. MPaHot Allowable @ 200 deg .. 109. MPa

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 3

    Nominal Stress (M/Z) ... 237. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 4

    Nominal Stress (M/Z) ... 795. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 90. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 90. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 90. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 23. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 3.680 mm.

    Stress Concentration ..... 1.350

    Header away from Junction

    Cold Allowable ........... 138. MPa

    Hot Allowable @ 200 deg .. 133. MPa

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 3

    Nominal Stress (M/Z) ... 237. MPa

    Pressure Stress (Pd/2t) .. 23. MPaCase 4

    Nominal Stress (M/Z) ... 795. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 90. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 90. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 90. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 23. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 3.680 mm.

    Stress Concentration ..... 1.000

    Branch away from Junction

  • 8/11/2019 Nozzle FEA Calculation

    5/64

    Cold Allowable ........... 115. MPa

    Hot Allowable @ 200 deg .. 109. MPa

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 3

    Nominal Stress (M/Z) ... 237. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 4

    Nominal Stress (M/Z) ... 795. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 90. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 90. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 90. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 23. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 3.680 mm.

    Stress Concentration ..... 1.000

    Table of Contents

    Stress Results - Notes

    - Results in this analysis were generated using the finite

    element solution method.

    - Using post 07 ASME Section VIII Division 2

    - Use Polished Bar fatigue curve.

    - Ratio between Operating and Design Pressure = 0.9000000

    Assume pressure increases all other stresses.

    Use operating pressure for occasional load cases.

    - Assume free end displacements of attached pipe are

    secondary loads within limits of nozzle reinforcement.

    - Use Equivalent Stress (Von Mises).

    - S1+S2+S3 evaluation omitted from operating stress.

    Include S1+S2+S3 evaluation in primary case evaluation.

    Assume bending stress not local primary for S1+S2+S3.

    Table of Contents

    ASME Overstressed Areas

    *** NO OVERSTRESSED NODES IN THIS MODEL ***

    Table of Contents

    Highest Primary Stress Ratios

    Header Next to Nozzle Weld

    Pl (1.5)(S) Primary Membrane Load Case 1

    24 200 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    12%

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    6/64

    Branch Next to Header Weld

    Pl (1.5)(S) Primary Membrane Load Case 1

    15 163 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    9%

    Branch Transition

    Pl (1.5)(S) Primary Membrane Load Case 1

    14 163 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    8%

    Header away from Junction

    Pl (1.5)(S) Primary Membrane Load Case 1

    22 200 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    10%

    Branch away from Junction

    Pl (1.5)(S) Primary Membrane Load Case 1

    14 163 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    8%

    Table of Contents

    Highest Secondary Stress Ratios

    Header Next to Nozzle Weld

    Pl+Pb+Q SPS Primary+Secondary (Outer) Load Case 3

    290 407 Plot Reference:

    MPa MPa 5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    71%

    Branch Next to Header Weld

    Pl+Pb+Q SPS Primary+Secondary (Outer) Load Case 3

    312 336 Plot Reference:

    MPa MPa 5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    92%

    Branch Transition

    Pl+Pb+Q SPS Primary+Secondary (Outer) Load Case 3

    193 336 Plot Reference:

    MPa MPa 5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    57%

    Header away from Junction

    Pl+Pb+Q SPS Primary+Secondary (Inner) Load Case 3

    106 407 Plot Reference:

    MPa MPa 4) Pl+Pb+Q < SPS (OPE,Inside) Case 3

    26%

    Branch away from Junction

    Pl+Pb+Q SPS Primary+Secondary (Outer) Load Case 3

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    7/64

    147 336 Plot Reference:

    MPa MPa 5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    43%

    Table of Contents

    Highest Fatigue Stress Ratios

    Header Next to Nozzle Weld

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Outer) Load Case 3

    196 0.007 Life Stress Concentration Factor = 1.350

    MPa 0.406 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 944,526.

    Allowable "B31" Fatigue Stress Allowable = 339.2

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 317,661.

    WRC 474 99% Probability Cycles = 73,796.

    40% WRC 474 95% Probability Cycles = 102,456.

    BS5500 Allowed Cycles(Curve F) = 31,790.

    Membrane-to-Bending Ratio = 0.602

    Bending-to-PL+PB+Q Ratio = 0.624Plot Reference:

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    Branch Next to Header Weld

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Outer) Load Case 3

    211 0.013 Life Stress Concentration Factor = 1.350

    MPa 0.437 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 552,854.

    Allowable "B31" Fatigue Stress Allowable = 279.9

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 319,984.

    WRC 474 99% Probability Cycles = 74,335.

    43% WRC 474 95% Probability Cycles = 103,205.

    BS5500 Allowed Cycles(Curve F) = 18,610.

    Membrane-to-Bending Ratio = 0.783

    Bending-to-PL+PB+Q Ratio = 0.561

    Plot Reference:

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    Branch Transition

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Outer) Load Case 3

    130 0.002 Life Stress Concentration Factor = 1.350

    MPa 0.270 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 4,505,958.

    Allowable "B31" Fatigue Stress Allowable = 279.9

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 1,368,181.

    WRC 474 99% Probability Cycles = 317,841.

    26% WRC 474 95% Probability Cycles = 441,282.

    BS5500 Allowed Cycles(Curve F) = 108,897.

    Membrane-to-Bending Ratio = 2.063Bending-to-PL+PB+Q Ratio = 0.327

    Plot Reference:

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    Header away from Junction

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Inner) Load Case 3

    53 0.000 Life Stress Concentration Factor = 1.000

    MPa 0.110 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 1.0000E11

    Allowable "B31" Fatigue Stress Allowable = 339.2

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 7,399,607.

    WRC 474 99% Probability Cycles = 1,718,996.

    11% WRC 474 95% Probability Cycles = 2,386,610.

    BS5500 Allowed Cycles(Curve F) = 644,618.

    Membrane-to-Bending Ratio = 0.330

    Bending-to-PL+PB+Q Ratio = 0.752

    Plot Reference:

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    8/64

    6) Pl+Pb+Q+F < Sa (EXP,Inside) Case 3

    Branch away from Junction

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Outer) Load Case 3

    73 0.000 Life Stress Concentration Factor = 1.000

    MPa 0.152 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 1.0000E11

    Allowable "B31" Fatigue Stress Allowable = 279.9

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 3,121,431.

    WRC 474 99% Probability Cycles = 725,137.

    15% WRC 474 95% Probability Cycles = 1,006,761.

    BS5500 Allowed Cycles(Curve F) = 245,942.

    Membrane-to-Bending Ratio = 22.788

    Bending-to-PL+PB+Q Ratio = 0.042

    Plot Reference:

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    Table of Contents

    Stress Intensification Factors

    Branch/Nozzle Sif Summary

    Peak Primary Secondary

    Axial : 3.289 1.835 4.873

    Inplane : 1.144 0.926 1.695

    Outplane: 1.934 1.097 2.866

    Torsion : 0.816 0.985 1.209

    Pressure: 0.879 1.069 1.303

    The above stress intensification factors are to be used

    in a beam-type analysis of the piping system. Inplane,

    Outplane and Torsional sif's should be used with the

    matching branch pipe whose diameter and thickness is given

    below. The axial sif should be used to intensify the

    axial stress in the branch pipe calculated by F/A. The

    pressure sif should be used to intensify the nominal

    pressure stress in the PARENT or HEADER, calculated

    from PD/2T.

    Pipe OD : 42.100 mm.

    Pipe Thk: 3.680 mm.

    Z approx: 4266.306 cu.mm.

    Z exact : 3929.104 cu.mm.

    B31.3 Branch Pressure i-factor = 2.490

    Header Pressure i-factor = 1.759

    The B31.3 pressure i-factors should be used with with

    F/A, where F is the axial force due to pressure, and

    A is the area of the pipe wall. This is equivalent to

    finding the pressure stress from (ip)(PD/4T).

    B31.3

    Peak Stress Sif .... 0.000 Axial1.916 Inplane

    2.331 Outplane

    1.000 Torsional

    B31.1

    Peak Stress Sif .... 0.000 Axial

    2.407 Inplane

    2.407 Outplane

    2.407 Torsional

    WRC 330

    Peak Stress Sif .... 0.000 Axial

    1.488 Inplane

    1.624 Outplane

    1.000 Torsional

    Table of Contents

    Allowable Loads

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    9/64

    SECONDARY Maximum Conservative Realistic

    Load Type (Range): Individual Simultaneous Simultaneous

    Occuring Occuring Occuring

    Axial Force ( N ) 30620. 9666. 14499.

    Inplane Moment (mm. N ) 778910. 173873. 368839.

    Outplane Moment (mm. N ) 460549. 102806. 218085.

    Torsional Moment (mm. N ) 1091422. 344549. 516824.

    Pressure (MPa ) 36.82 2.80 2.80

    PRIMARY Maximum Conservative Realistic

    Load Type: Individual Simultaneous Simultaneous

    Occuring Occuring Occuring

    Axial Force ( N ) 39515. 11979. 17969.

    Inplane Moment (mm. N ) 692745. 149258. 316625.

    Outplane Moment (mm. N ) 584368. 125267. 265732.

    Torsional Moment (mm. N ) 651047. 197369. 296054.

    Pressure (MPa ) 23.13 2.80 2.80

    NOTES:

    1) Maximum Individual Occuring Loads are the maximum

    allowed values of the respective loads if all other

    load components are zero, i.e. the listed axial force

    may be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

    2) The Conservative Allowable Simultaneous loads are

    the maximum loads that can be applied simultaneously.

    A conservative stress combination equation is used

    that typically produces stresses within 50-70% of the

    allowable stress.

    3) The Realistic Allowable Simultaneous loads are the

    maximum loads that can be applied simultaneously. A

    more realistic stress combination equation is used

    based on experience at Paulin Research. Stresses are

    typically produced within 80-105% of the allowable.

    4) Secondary allowable loads are limits for expansion

    and operating piping loads.

    5) Primary allowable loads are limits for weight,

    primary and sustained type piping loads.

    Table of Contents

    Flexibilities

    The following stiffnesses should be used in a piping,

    "beam-type" analysis of the intersection. The stiff-

    nesses should be inserted at the surface of the

    branch/header or nozzle/vessel junction. The general

    characteristics used for the branch pipe should be:

    Outside Diameter = 42.100 mm.

    Wall Thickness = 3.680 mm.

    Axial Translational Stiffness = 328869. N /mm.

    Inplane Rotational Stiffness = 5227770. mm. N /deg

    Outplane Rotational Stiffness = 2134740. mm. N /deg

    Torsional Rotational Stiffness = 17393708. mm. N /deg

    Intersection Flexibility Factors for

    Branch/Nozzle :

    Find axial stiffness: K = 3EI/(kd)^3 N /mm.

    Find bending and torsional stiffnesses: K = EI/(kd) mm. N per radian.

    The EI product is 0.16128E+11 N mm.^2

    The value of (d) to use is: 38.420 mm..

    The resulting bending stiffness is in units of force x length per radian.

    Axial Flexibility Factor (k) = 1.374

    Inplane Flexibility Factor (k) = 1.401

    Outplane Flexibility Factor (k) = 3.432

    Torsional Flexibility Factor (k) = 0.421

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    10/64

    Model Notes (80NB Shell, 25NB nozzle)

    Input Echo:

    Model Type : Cylindrical Shell

    Parent Outside Diameter : 88.900 mm.

    Thickness : 5.490 mm.

    Fillet Along Shell : 5.000 mm.

    Parent Properties:

    Material DB # 1068318.

    (See Output Reports for Allowables.)

    Elastic Modulus (Amb) : 195100.0 MPa

    Poissons Ratio : 0.300

    Expansion Coefficient : 0.1707E-04 mm./mm./deg.

    Weight Density : 0.0000E+00 N /cu.mm.(NOT USED)

    Nozzle Outside Diameter : 33.500 mm.

    Thickness : 3.380 mm.

    Length : 150.000 mm.

    Nozzle Weld Length : 5.000 mm.

    Nozzle Tilt Angle : 0.000 deg.

    Distance from Top : 0.000 mm.

    Distance from Bottom : 500.000 mm.

    Nozzle PropertiesMaterial DB # 1064818.

    (See Output Reports for Allowables.)

    Elastic Modulus (Amb) : 195100.0 MPa

    Poissons Ratio : 0.300

    Expansion Coefficient : 0.1707E-04 mm./mm./deg.

    Weight Density : 0.0000E+00 N /cu.mm. (NOT USED)

    Design Operating Cycles : 7000.

    Ambient Temperature (Deg.) : 21.10

    The following temperatures have been specified for the analysis:

    Nozzle Inside Temperature : 200.00 deg.

    Nozzle Outside Temperature : 200.00 deg.

    Vessel Inside Temperature : 200.00 deg.

    Vessel Outside Temperature : 200.00 deg.

    Nozzle Pressure : 2.800 MPa

    Vessel Pressure : 2.800 MPa

    User Defined Load Input Echo:

    Loads are given at the Nozzle/Header Junction

    Loads are defined in Local Coordinatesc

    Forces( N ) Moments (N-m)

    Load Case FX FY FZ MX MY MZ

    ---------------------------------------------------------------------------

    OPER: 1100.0 1100.0 1100.0 250.0 250.0 250.0

    FEA Model Loads:

    These are the actual loads applied to the FEA model.

    These are the User Defined Loads translated to the

    end of the nozzle and reported in global coordinates.

    Forces( N ) Moments (N-m)

    Load Case FX FY FZ MX MY MZ

    ---------------------------------------------------------------------------

    OPER: 1100.0 1100.0 1100.0 250.0 415.0 85.0

    The "top" or "positive" end of this model is "free" in

    the axial and translational directions.

    Stresses ARE nodally AVERAGED.

    Vessel Centerline Vector : 0.000 1.000 0.000

    Nozzle Orientation Vector : 1.000 0.000 0.000

    Table of Contents

    Load Case Report

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    11/64

    Inner and outer element temperatures are the same

    throughout the model. No thermal ratcheting

    calculations will be performed.

    THE 8 LOAD CASES ANALYZED ARE:

    1 SUSTAINED (Pr Only)

    Sustained case run to satisfy local primary

    membrane and bending stress limits.

    /-------- Loads in Case 1

    Pressure Case 1

    2 Thermal ONLY

    Thermal ONLY case run in the event expansion

    stresses exceed the secondary stress allowable.

    /-------- Loads in Case 2

    Temperature Case 1

    3 OPERATING (Fatigue Calc Performed)

    Case run to compute the operating stresses used in

    secondary, peak and range calculations as needed.

    /-------- Loads in Case 3

    Pressure Case 1

    Temperature Case 1

    Loads from (Operating)

    4 Program Generated -- Force Only

    Case run to compute sif's and flexibilities.

    /-------- Loads in Case 4

    Loads from (Axial)

    5 Program Generated -- Force Only

    Case run to compute sif's and flexibilities.

    /-------- Loads in Case 5

    Loads from (Inplane)

    6 Program Generated -- Force Only

    Case run to compute sif's and flexibilities.

    /-------- Loads in Case 6

    Loads from (Outplane)

    7 Program Generated -- Force Only

    Case run to compute sif's and flexibilities.

    /-------- Loads in Case 7

    Loads from (Torsion)

    8 Program Generated -- Force Only

    Case run to compute sif's and flexibilities.

    /-------- Loads in Case 8

    Pressure Case 1

    Table of Contents

    Solution Data

    Maximum Solution Row Size = 870

    Number of Nodes = 2256

    Number of Elements = 744

    Number of Solution Cases = 8

    Summation of Loads per Case

    Case # FX FY FZ

    1 -455. 15299. 0.

    2 0. 0. 0.

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    12/64

    3 645. 16399. 1100.

    4 205408. 0. 0.

    5 0. 0. 0.

    6 0. 0. 0.

    7 0. 0. 0.

    8 -455. 15299. 0.

    Table of Contents

    ASME Code Stress Output Plots

    1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    2) Qb < SPS (SUS,Bending) Case 1

    3) S1+S2+S3 < 4S (SUS,S1+S2+S3) Case 1

    4) Pl+Pb+Q < SPS (OPE,Inside) Case 3

    5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    6) Pl+Pb+Q+F < Sa (EXP,Inside) Case 3

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    8) Membrane < User (OPE,Membrane) Case 3

    9) Bending < User (OPE,Bending) Case 3

    10) Pl+Pb+Q+F < Sa (SIF,Outside) Case 4

    11) Pl+Pb+Q+F < Sa (SIF,Outside) Case 5

    12) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

    13) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

    14) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

    Table of Contents

    Region Data

    Header Next to Nozzle Weld

    Cold Allowable ........... 138. MPa

    Hot Allowable @ 200 deg .. 133. MPa

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 3

    Nominal Stress (M/Z) ... 337. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 4

    Nominal Stress (M/Z) ... 642. MPaPressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 94. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 94. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 94. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 23. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 3.380 mm.

    Stress Concentration ..... 1.350

    Branch Next to Header Weld

    Cold Allowable ........... 115. MPa

    Hot Allowable @ 200 deg .. 109. MPa

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    13/64

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 3

    Nominal Stress (M/Z) ... 337. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 4

    Nominal Stress (M/Z) ... 642. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 94. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 94. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 94. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 23. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 3.380 mm.

    Stress Concentration ..... 1.350

    Branch Transition

    Cold Allowable ........... 115. MPaHot Allowable @ 200 deg .. 109. MPa

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 3

    Nominal Stress (M/Z) ... 337. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 4

    Nominal Stress (M/Z) ... 642. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 94. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 94. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 94. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 23. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 3.380 mm.

    Stress Concentration ..... 1.350

    Header away from Junction

    Cold Allowable ........... 138. MPa

    Hot Allowable @ 200 deg .. 133. MPa

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 3

    Nominal Stress (M/Z) ... 337. MPa

    Pressure Stress (Pd/2t) .. 23. MPaCase 4

    Nominal Stress (M/Z) ... 642. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 94. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 94. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 94. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 23. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 3.380 mm.

    Stress Concentration ..... 1.000

    Branch away from Junction

  • 8/11/2019 Nozzle FEA Calculation

    14/64

    Cold Allowable ........... 115. MPa

    Hot Allowable @ 200 deg .. 109. MPa

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 3

    Nominal Stress (M/Z) ... 337. MPa

    Pressure Stress (Pd/2t) .. 23. MPa

    Case 4

    Nominal Stress (M/Z) ... 642. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 94. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 94. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 94. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 23. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 3.380 mm.

    Stress Concentration ..... 1.000

    Table of Contents

    Stress Results - Notes

    - Results in this analysis were generated using the finite

    element solution method.

    - Using post 07 ASME Section VIII Division 2

    - Use Polished Bar fatigue curve.

    - Ratio between Operating and Design Pressure = 0.9000000

    Assume pressure increases all other stresses.

    Use operating pressure for occasional load cases.

    - Assume free end displacements of attached pipe are

    secondary loads within limits of nozzle reinforcement.

    - Use Equivalent Stress (Von Mises).

    - S1+S2+S3 evaluation omitted from operating stress.

    Include S1+S2+S3 evaluation in primary case evaluation.

    Assume bending stress not local primary for S1+S2+S3.

    Table of Contents

    ASME Overstressed Areas

    *** NO OVERSTRESSED NODES IN THIS MODEL ***

    Table of Contents

    Highest Primary Stress Ratios

    Header Next to Nozzle Weld

    Pl (1.5)(S) Primary Membrane Load Case 1

    22 200 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    11%

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    15/64

    Branch Next to Header Weld

    Pl (1.5)(S) Primary Membrane Load Case 1

    11 163 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    6%

    Branch Transition

    Pl (1.5)(S) Primary Membrane Load Case 1

    12 163 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    7%

    Header away from Junction

    Pl (1.5)(S) Primary Membrane Load Case 1

    20 200 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    10%

    Branch away from Junction

    Pl (1.5)(S) Primary Membrane Load Case 1

    12 163 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    7%

    Table of Contents

    Highest Secondary Stress Ratios

    Header Next to Nozzle Weld

    Pl+Pb+Q SPS Primary+Secondary (Outer) Load Case 3

    286 407 Plot Reference:

    MPa MPa 5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    70%

    Branch Next to Header Weld

    Pl+Pb+Q SPS Primary+Secondary (Outer) Load Case 3

    322 336 Plot Reference:

    MPa MPa 5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    95%

    Branch Transition

    Pl+Pb+Q SPS Primary+Secondary (Outer) Load Case 3

    254 336 Plot Reference:

    MPa MPa 5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    75%

    Header away from Junction

    Pl+Pb+Q SPS Primary+Secondary (Inner) Load Case 3

    100 407 Plot Reference:

    MPa MPa 4) Pl+Pb+Q < SPS (OPE,Inside) Case 3

    24%

    Branch away from Junction

    Pl+Pb+Q SPS Primary+Secondary (Outer) Load Case 3

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    16/64

    182 336 Plot Reference:

    MPa MPa 5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    54%

    Table of Contents

    Highest Fatigue Stress Ratios

    Header Next to Nozzle Weld

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Outer) Load Case 3

    193 0.007 Life Stress Concentration Factor = 1.350

    MPa 0.400 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 1,026,306.

    Allowable "B31" Fatigue Stress Allowable = 339.2

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 335,511.

    WRC 474 99% Probability Cycles = 77,942.

    40% WRC 474 95% Probability Cycles = 108,213.

    BS5500 Allowed Cycles(Curve F) = 33,329.

    Membrane-to-Bending Ratio = 0.561

    Bending-to-PL+PB+Q Ratio = 0.640Plot Reference:

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    Branch Next to Header Weld

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Outer) Load Case 3

    218 0.016 Life Stress Concentration Factor = 1.350

    MPa 0.452 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 446,366.

    Allowable "B31" Fatigue Stress Allowable = 279.9

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 302,511.

    WRC 474 99% Probability Cycles = 70,276.

    45% WRC 474 95% Probability Cycles = 97,570.

    BS5500 Allowed Cycles(Curve F) = 15,731.

    Membrane-to-Bending Ratio = 0.920

    Bending-to-PL+PB+Q Ratio = 0.521

    Plot Reference:

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    Branch Transition

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Outer) Load Case 3

    172 0.005 Life Stress Concentration Factor = 1.350

    MPa 0.356 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 1,503,594.

    Allowable "B31" Fatigue Stress Allowable = 279.9

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 609,573.

    WRC 474 99% Probability Cycles = 141,609.

    35% WRC 474 95% Probability Cycles = 196,607.

    BS5500 Allowed Cycles(Curve F) = 47,359.

    Membrane-to-Bending Ratio = 2.060Bending-to-PL+PB+Q Ratio = 0.327

    Plot Reference:

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    Header away from Junction

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Inner) Load Case 3

    50 0.000 Life Stress Concentration Factor = 1.000

    MPa 0.103 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 1.0000E11

    Allowable "B31" Fatigue Stress Allowable = 339.2

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 9,028,427.

    WRC 474 99% Probability Cycles = 2,097,386.

    10% WRC 474 95% Probability Cycles = 2,911,956.

    BS5500 Allowed Cycles(Curve F) = 783,499.

    Membrane-to-Bending Ratio = 0.349

    Bending-to-PL+PB+Q Ratio = 0.741

    Plot Reference:

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    17/64

    6) Pl+Pb+Q+F < Sa (EXP,Inside) Case 3

    Branch away from Junction

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Outer) Load Case 3

    91 0.000 Life Stress Concentration Factor = 1.000

    MPa 0.189 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 1.0000E11

    Allowable "B31" Fatigue Stress Allowable = 279.9

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 1,680,991.

    WRC 474 99% Probability Cycles = 390,510.

    18% WRC 474 95% Probability Cycles = 542,173.

    BS5500 Allowed Cycles(Curve F) = 128,176.

    Membrane-to-Bending Ratio = 15.094

    Bending-to-PL+PB+Q Ratio = 0.062

    Plot Reference:

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    Table of Contents

    Stress Intensification Factors

    Branch/Nozzle Sif Summary

    Peak Primary Secondary

    Axial : 2.772 1.656 4.107

    Inplane : 1.048 0.911 1.553

    Outplane: 1.480 0.921 2.192

    Torsion : 0.764 0.919 1.131

    Pressure: 0.799 0.980 1.184

    The above stress intensification factors are to be used

    in a beam-type analysis of the piping system. Inplane,

    Outplane and Torsional sif's should be used with the

    matching branch pipe whose diameter and thickness is given

    below. The axial sif should be used to intensify the

    axial stress in the branch pipe calculated by F/A. The

    pressure sif should be used to intensify the nominal

    pressure stress in the PARENT or HEADER, calculated

    from PD/2T.

    Pipe OD : 33.500 mm.

    Pipe Thk: 3.380 mm.

    Z approx: 2408.331 cu.mm.

    Z exact : 2192.609 cu.mm.

    B31.3 Branch Pressure i-factor = 2.611

    Header Pressure i-factor = 1.598

    The B31.3 pressure i-factors should be used with with

    F/A, where F is the axial force due to pressure, and

    A is the area of the pipe wall. This is equivalent to

    finding the pressure stress from (ip)(PD/4T).

    B31.3

    Peak Stress Sif .... 0.000 Axial1.760 Inplane

    2.141 Outplane

    1.000 Torsional

    B31.1

    Peak Stress Sif .... 0.000 Axial

    1.928 Inplane

    1.928 Outplane

    1.928 Torsional

    WRC 330

    Peak Stress Sif .... 0.000 Axial

    1.314 Inplane

    1.500 Outplane

    1.000 Torsional

    Table of Contents

    Allowable Loads

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    18/64

    SECONDARY Maximum Conservative Realistic

    Load Type (Range): Individual Simultaneous Simultaneous

    Occuring Occuring Occuring

    Axial Force ( N ) 26161. 8332. 12498.

    Inplane Moment (mm. N ) 474306. 106818. 226594.

    Outplane Moment (mm. N ) 336002. 75670. 160521.

    Torsional Moment (mm. N ) 651026. 207347. 311020.

    Pressure (MPa ) 42.47 2.80 2.80

    PRIMARY Maximum Conservative Realistic

    Load Type: Individual Simultaneous Simultaneous

    Occuring Occuring Occuring

    Axial Force ( N ) 31517. 9772. 14659.

    Inplane Moment (mm. N ) 392661. 85818. 182047.

    Outplane Moment (mm. N ) 388545. 84939. 180183.

    Torsional Moment (mm. N ) 389298. 120709. 181064.

    Pressure (MPa ) 25.22 2.80 2.80

    NOTES:

    1) Maximum Individual Occuring Loads are the maximum

    allowed values of the respective loads if all other

    load components are zero, i.e. the listed axial force

    may be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

    2) The Conservative Allowable Simultaneous loads are

    the maximum loads that can be applied simultaneously.

    A conservative stress combination equation is used

    that typically produces stresses within 50-70% of the

    allowable stress.

    3) The Realistic Allowable Simultaneous loads are the

    maximum loads that can be applied simultaneously. A

    more realistic stress combination equation is used

    based on experience at Paulin Research. Stresses are

    typically produced within 80-105% of the allowable.

    4) Secondary allowable loads are limits for expansion

    and operating piping loads.

    5) Primary allowable loads are limits for weight,

    primary and sustained type piping loads.

    Table of Contents

    Flexibilities

    The following stiffnesses should be used in a piping,

    "beam-type" analysis of the intersection. The stiff-

    nesses should be inserted at the surface of the

    branch/header or nozzle/vessel junction. The general

    characteristics used for the branch pipe should be:

    Outside Diameter = 33.500 mm.

    Wall Thickness = 3.380 mm.

    Axial Translational Stiffness = 252619. N /mm.

    Inplane Rotational Stiffness = 3489170. mm. N /deg

    Outplane Rotational Stiffness = 1513391. mm. N /deg

    Torsional Rotational Stiffness = 15530895. mm. N /deg

    Intersection Flexibility Factors for

    Branch/Nozzle :

    Find axial stiffness: K = 3EI/(kd)^3 N /mm.

    Find bending and torsional stiffnesses: K = EI/(kd) mm. N per radian.

    The EI product is 0.71616E+10 N mm.^2

    The value of (d) to use is: 30.120 mm..

    The resulting bending stiffness is in units of force x length per radian.

    Axial Flexibility Factor (k) = 1.460

    Inplane Flexibility Factor (k) = 1.189

    Outplane Flexibility Factor (k) = 2.742

    Torsional Flexibility Factor (k) = 0.267

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    19/64

    Model Notes

    Input Echo:

    Model Type : Cylindrical Shell

    Parent Outside Diameter : 114.300 mm.

    Thickness : 6.020 mm.

    Fillet Along Shell : 5.000 mm.

    Parent Properties:

    Material DB # 1085918.

    (See Output Reports for Allowables.)

    Elastic Modulus (Amb) : 195100.0 MPa

    Poissons Ratio : 0.300

    Expansion Coefficient : 0.1740E-04 mm./mm./deg.

    Weight Density : 0.0000E+00 N /cu.mm.(NOT USED)

    Nozzle Outside Diameter : 60.300 mm.

    Thickness : 5.540 mm.

    Length : 150.000 mm.

    Nozzle Weld Length : 5.000 mm.

    Nozzle Tilt Angle : 0.000 deg.

    Distance from Top : 0.000 mm.

    Distance from Bottom : 500.000 mm.

    Nozzle PropertiesMaterial DB # 1068318.

    (See Output Reports for Allowables.)

    Elastic Modulus (Amb) : 195100.0 MPa

    Poissons Ratio : 0.300

    Expansion Coefficient : 0.1740E-04 mm./mm./deg.

    Weight Density : 0.0000E+00 N /cu.mm. (NOT USED)

    Design Operating Cycles : 7000.

    Ambient Temperature (Deg.) : 21.10

    The following temperatures have been specified for the analysis:

    Nozzle Inside Temperature : 250.00 deg.

    Nozzle Outside Temperature : 250.00 deg.

    Vessel Inside Temperature : 250.00 deg.

    Vessel Outside Temperature : 250.00 deg.

    Nozzle Pressure : 2.800 MPa

    Vessel Pressure : 2.800 MPa

    User Defined Load Input Echo:

    Loads are given at the Nozzle/Header Junction

    Loads are defined in Local Coordinatesc

    Forces( N ) Moments (N-m)

    Load Case FX FY FZ MX MY MZ

    ---------------------------------------------------------------------------

    OPER: 1700.0 1700.0 1700.0 650.0 650.0 650.0

    FEA Model Loads:

    These are the actual loads applied to the FEA model.

    These are the User Defined Loads translated to the

    end of the nozzle and reported in global coordinates.

    Forces( N ) Moments (N-m)

    Load Case FX FY FZ MX MY MZ

    ---------------------------------------------------------------------------

    OPER: 1700.0 1700.0 1700.0 650.0 905.0 395.0

    The "top" or "positive" end of this model is "free" in

    the axial and translational directions.

    Stresses ARE nodally AVERAGED.

    Vessel Centerline Vector : 0.000 1.000 0.000

    Nozzle Orientation Vector : 1.000 0.000 0.000

    Table of Contents

    Load Case Report

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    20/64

    Inner and outer element temperatures are the same

    throughout the model. No thermal ratcheting

    calculations will be performed.

    THE 8 LOAD CASES ANALYZED ARE:

    1 SUSTAINED (Pr Only)

    Sustained case run to satisfy local primary

    membrane and bending stress limits.

    /-------- Loads in Case 1

    Pressure Case 1

    2 Thermal ONLY

    Thermal ONLY case run in the event expansion

    stresses exceed the secondary stress allowable.

    /-------- Loads in Case 2

    Temperature Case 1

    3 OPERATING (Fatigue Calc Performed)

    Case run to compute the operating stresses used in

    secondary, peak and range calculations as needed.

    /-------- Loads in Case 3

    Pressure Case 1

    Temperature Case 1

    Loads from (Operating)

    4 Program Generated -- Force Only

    Case run to compute sif's and flexibilities.

    /-------- Loads in Case 4

    Loads from (Axial)

    5 Program Generated -- Force Only

    Case run to compute sif's and flexibilities.

    /-------- Loads in Case 5

    Loads from (Inplane)

    6 Program Generated -- Force Only

    Case run to compute sif's and flexibilities.

    /-------- Loads in Case 6

    Loads from (Outplane)

    7 Program Generated -- Force Only

    Case run to compute sif's and flexibilities.

    /-------- Loads in Case 7

    Loads from (Torsion)

    8 Program Generated -- Force Only

    Case run to compute sif's and flexibilities.

    /-------- Loads in Case 8

    Pressure Case 1

    Table of Contents

    Solution Data

    Maximum Solution Row Size = 1296

    Number of Nodes = 3076

    Number of Elements = 1012

    Number of Solution Cases = 8

    Summation of Loads per Case

    Case # FX FY FZ

    1 -1294. 25806. 0.

    2 0. 0. 0.

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    21/64

    3 406. 27507. 1700.

    4 1090827. 0. 0.

    5 0. 0. 0.

    6 0. 0. 0.

    7 0. 0. 0.

    8 -1294. 25806. 0.

    Table of Contents

    ASME Code Stress Output Plots

    1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    2) Qb < SPS (SUS,Bending) Case 1

    3) S1+S2+S3 < 4S (SUS,S1+S2+S3) Case 1

    4) Pl+Pb+Q < SPS (OPE,Inside) Case 3

    5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    6) Pl+Pb+Q+F < Sa (EXP,Inside) Case 3

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    8) Membrane < User (OPE,Membrane) Case 3

    9) Bending < User (OPE,Bending) Case 3

    10) Pl+Pb+Q+F < Sa (SIF,Outside) Case 4

    11) Pl+Pb+Q+F < Sa (SIF,Outside) Case 5

    12) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

    13) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

    14) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

    Table of Contents

    Region Data

    Header Next to Nozzle Weld

    Cold Allowable ........... 138. MPa

    Hot Allowable @ 250 deg .. 122. MPa

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 27. MPa

    Case 3

    Nominal Stress (M/Z) ... 134. MPa

    Pressure Stress (Pd/2t) .. 27. MPa

    Case 4

    Nominal Stress (M/Z) ... 1145. MPaPressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 27. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 5.540 mm.

    Stress Concentration ..... 1.350

    Branch Next to Header Weld

    Cold Allowable ........... 138. MPa

    Hot Allowable @ 250 deg .. 126. MPa

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    22/64

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 27. MPa

    Case 3

    Nominal Stress (M/Z) ... 134. MPa

    Pressure Stress (Pd/2t) .. 27. MPa

    Case 4

    Nominal Stress (M/Z) ... 1145. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 27. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 5.540 mm.

    Stress Concentration ..... 1.350

    Branch Transition

    Cold Allowable ........... 138. MPaHot Allowable @ 250 deg .. 126. MPa

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 27. MPa

    Case 3

    Nominal Stress (M/Z) ... 134. MPa

    Pressure Stress (Pd/2t) .. 27. MPa

    Case 4

    Nominal Stress (M/Z) ... 1145. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 27. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 5.540 mm.

    Stress Concentration ..... 1.350

    Header away from Junction

    Cold Allowable ........... 138. MPa

    Hot Allowable @ 250 deg .. 122. MPa

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 27. MPa

    Case 3

    Nominal Stress (M/Z) ... 134. MPa

    Pressure Stress (Pd/2t) .. 27. MPaCase 4

    Nominal Stress (M/Z) ... 1145. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 27. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 5.540 mm.

    Stress Concentration ..... 1.000

    Branch away from Junction

  • 8/11/2019 Nozzle FEA Calculation

    23/64

    Cold Allowable ........... 138. MPa

    Hot Allowable @ 250 deg .. 126. MPa

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 27. MPa

    Case 3

    Nominal Stress (M/Z) ... 134. MPa

    Pressure Stress (Pd/2t) .. 27. MPa

    Case 4

    Nominal Stress (M/Z) ... 1145. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 27. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 5.540 mm.

    Stress Concentration ..... 1.000

    Table of Contents

    Stress Results - Notes

    - Results in this analysis were generated using the finite

    element solution method.

    - Using post 07 ASME Section VIII Division 2

    - Use Polished Bar fatigue curve.

    - Ratio between Operating and Design Pressure = 0.9000000

    Assume pressure increases all other stresses.

    Use operating pressure for occasional load cases.

    - Assume free end displacements of attached pipe are

    secondary loads within limits of nozzle reinforcement.

    - Use Equivalent Stress (Von Mises).

    - S1+S2+S3 evaluation omitted from operating stress.

    Include S1+S2+S3 evaluation in primary case evaluation.

    Assume bending stress not local primary for S1+S2+S3.

    Table of Contents

    ASME Overstressed Areas

    *** NO OVERSTRESSED NODES IN THIS MODEL ***

    Table of Contents

    Highest Primary Stress Ratios

    Header Next to Nozzle Weld

    Pl (1.5)(S) Primary Membrane Load Case 1

    31 182 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    17%

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    24/64

    Branch Next to Header Weld

    Pl (1.5)(S) Primary Membrane Load Case 1

    20 189 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    10%

    Branch Transition

    Pl (1.5)(S) Primary Membrane Load Case 1

    14 189 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    7%

    Header away from Junction

    Pl (1.5)(S) Primary Membrane Load Case 1

    24 182 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    13%

    Branch away from Junction

    Pl (1.5)(S) Primary Membrane Load Case 1

    14 189 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    7%

    Table of Contents

    Highest Secondary Stress Ratios

    Header Next to Nozzle Weld

    Pl+Pb+Q SPS Primary+Secondary (Outer) Load Case 3

    313 389 Plot Reference:

    MPa MPa 5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    80%

    Branch Next to Header Weld

    Pl+Pb+Q SPS Primary+Secondary (Outer) Load Case 3

    258 395 Plot Reference:

    MPa MPa 5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    65%

    Branch Transition

    Pl+Pb+Q SPS Primary+Secondary (Outer) Load Case 3

    115 395 Plot Reference:

    MPa MPa 5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    29%

    Header away from Junction

    Pl+Pb+Q SPS Primary+Secondary (Inner) Load Case 3

    107 389 Plot Reference:

    MPa MPa 4) Pl+Pb+Q < SPS (OPE,Inside) Case 3

    27%

    Branch away from Junction

    Pl+Pb+Q SPS Primary+Secondary (Inner) Load Case 3

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    25/64

    94 395 Plot Reference:

    MPa MPa 4) Pl+Pb+Q < SPS (OPE,Inside) Case 3

    23%

    Table of Contents

    Highest Fatigue Stress Ratios

    Header Next to Nozzle Weld

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Outer) Load Case 3

    211 0.013 Life Stress Concentration Factor = 1.350

    MPa 0.438 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 542,806.

    Allowable "B31" Fatigue Stress Allowable = 324.4

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 237,731.

    WRC 474 99% Probability Cycles = 55,227.

    43% WRC 474 95% Probability Cycles = 76,676.

    BS5500 Allowed Cycles(Curve F) = 25,335.

    Membrane-to-Bending Ratio = 0.544

    Bending-to-PL+PB+Q Ratio = 0.648Plot Reference:

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    Branch Next to Header Weld

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Outer) Load Case 3

    174 0.005 Life Stress Concentration Factor = 1.350

    MPa 0.361 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 1,433,146.

    Allowable "B31" Fatigue Stress Allowable = 329.5

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 446,978.

    WRC 474 99% Probability Cycles = 103,837.

    36% WRC 474 95% Probability Cycles = 144,165.

    BS5500 Allowed Cycles(Curve F) = 45,313.

    Membrane-to-Bending Ratio = 0.674

    Bending-to-PL+PB+Q Ratio = 0.597

    Plot Reference:

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    Branch Transition

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Outer) Load Case 3

    78 0.000 Life Stress Concentration Factor = 1.350

    MPa 0.161 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 1.0000E11

    Allowable "B31" Fatigue Stress Allowable = 329.5

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 5,160,248.

    WRC 474 99% Probability Cycles = 1,198,772.

    16% WRC 474 95% Probability Cycles = 1,664,344.

    BS5500 Allowed Cycles(Curve F) = 510,190.

    Membrane-to-Bending Ratio = 1.897Bending-to-PL+PB+Q Ratio = 0.345

    Plot Reference:

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    Header away from Junction

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Inner) Load Case 3

    53 0.000 Life Stress Concentration Factor = 1.000

    MPa 0.111 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 1.0000E11

    Allowable "B31" Fatigue Stress Allowable = 324.4

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 6,838,555.

    WRC 474 99% Probability Cycles = 1,588,658.

    11% WRC 474 95% Probability Cycles = 2,205,652.

    BS5500 Allowed Cycles(Curve F) = 640,861.

    Membrane-to-Bending Ratio = 0.362

    Bending-to-PL+PB+Q Ratio = 0.734

    Plot Reference:

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    26/64

    6) Pl+Pb+Q+F < Sa (EXP,Inside) Case 3

    Branch away from Junction

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Inner) Load Case 3

    47 0.000 Life Stress Concentration Factor = 1.000

    MPa 0.098 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 1.0000E11

    Allowable "B31" Fatigue Stress Allowable = 329.5

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 9,393,385.

    WRC 474 99% Probability Cycles = 2,182,169.

    9% WRC 474 95% Probability Cycles = 3,029,666.

    BS5500 Allowed Cycles(Curve F) = 929,255.

    Membrane-to-Bending Ratio = 14.331

    Bending-to-PL+PB+Q Ratio = 0.065

    Plot Reference:

    6) Pl+Pb+Q+F < Sa (EXP,Inside) Case 3

    Table of Contents

    Stress Intensification Factors

    Branch/Nozzle Sif Summary

    Peak Primary Secondary

    Axial : 4.530 2.243 6.711

    Inplane : 1.383 1.316 2.049

    Outplane: 3.047 1.370 4.513

    Torsion : 0.901 0.982 1.334

    Pressure: 0.951 1.171 1.409

    The above stress intensification factors are to be used

    in a beam-type analysis of the piping system. Inplane,

    Outplane and Torsional sif's should be used with the

    matching branch pipe whose diameter and thickness is given

    below. The axial sif should be used to intensify the

    axial stress in the branch pipe calculated by F/A. The

    pressure sif should be used to intensify the nominal

    pressure stress in the PARENT or HEADER, calculated

    from PD/2T.

    Pipe OD : 60.300 mm.

    Pipe Thk: 5.540 mm.

    Z approx: 13047.465 cu.mm.

    Z exact : 11970.017 cu.mm.

    B31.3 Branch Pressure i-factor = 3.318

    Header Pressure i-factor = 1.902

    The B31.3 pressure i-factors should be used with with

    F/A, where F is the axial force due to pressure, and

    A is the area of the pipe wall. This is equivalent to

    finding the pressure stress from (ip)(PD/4T).

    B31.3

    Peak Stress Sif .... 0.000 Axial2.916 Inplane

    3.582 Outplane

    1.000 Torsional

    B31.1

    Peak Stress Sif .... 0.000 Axial

    3.582 Inplane

    3.582 Outplane

    3.582 Torsional

    WRC 330

    Peak Stress Sif .... 0.000 Axial

    2.309 Inplane

    2.602 Outplane

    1.316 Torsional

    Table of Contents

    Allowable Loads

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    27/64

    SECONDARY Maximum Conservative Realistic

    Load Type (Range): Individual Simultaneous Simultaneous

    Occuring Occuring Occuring

    Axial Force ( N ) 56160. 17639. 26459.

    Inplane Moment (mm. N ) 2310468. 508404. 1078488.

    Outplane Moment (mm. N ) 1032534. 224472. 476178.

    Torsional Moment (mm. N ) 3547619. 1114283. 1671424.

    Pressure (MPa ) 29.11 2.80 2.80

    PRIMARY Maximum Conservative Realistic

    Load Type: Individual Simultaneous Simultaneous

    Occuring Occuring Occuring

    Axial Force ( N ) 80128. 23038. 34557.

    Inplane Moment (mm. N ) 1659555. 324434. 688228.

    Outplane Moment (mm. N ) 1647272. 346564. 735173.

    Torsional Moment (mm. N ) 2259663. 624731. 937096.

    Pressure (MPa ) 16.41 2.80 2.80

    NOTES:

    1) Maximum Individual Occuring Loads are the maximum

    allowed values of the respective loads if all other

    load components are zero, i.e. the listed axial force

    may be applied if the inplane, outplane and torsionalmoments, and the pressure are zero.

    2) The Conservative Allowable Simultaneous loads are

    the maximum loads that can be applied simultaneously.

    A conservative stress combination equation is used

    that typically produces stresses within 50-70% of the

    allowable stress.

    3) The Realistic Allowable Simultaneous loads are the

    maximum loads that can be applied simultaneously. A

    more realistic stress combination equation is used

    based on experience at Paulin Research. Stresses are

    typically produced within 80-105% of the allowable.

    4) Secondary allowable loads are limits for expansion

    and operating piping loads.

    5) Primary allowable loads are limits for weight,

    primary and sustained type piping loads.

    Table of Contents

    Flexibilities

    The following stiffnesses should be used in a piping,

    "beam-type" analysis of the intersection. The stiff-

    nesses should be inserted at the surface of the

    branch/header or nozzle/vessel junction. The general

    characteristics used for the branch pipe should be:

    Outside Diameter = 60.300 mm.

    Wall Thickness = 5.540 mm.

    Axial Translational Stiffness = 332999. N /mm.

    Inplane Rotational Stiffness = 9792365. mm. N /deg

    Outplane Rotational Stiffness = 3616443. mm. N /deg

    Torsional Rotational Stiffness = 30174178. mm. N /deg

    Intersection Flexibility Factors for

    Branch/Nozzle :

    Find axial stiffness: K = 3EI/(kd)^3 N /mm.

    Find bending and torsional stiffnesses: K = EI/(kd) mm. N per radian.

    The EI product is 0.70375E+11 N mm.^2

    The value of (d) to use is: 54.760 mm..

    The resulting bending stiffness is in units of force x length per radian.

    Axial Flexibility Factor (k) = 1.569

    Inplane Flexibility Factor (k) = 2.291

    Outplane Flexibility Factor (k) = 6.202

    Torsional Flexibility Factor (k) = 0.743

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n1/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    28/64

    Model Notes

    Input Echo:

    Model Type : Cylindrical Shell

    Parent Outside Diameter : 168.300 mm.

    Thickness : 7.110 mm.

    Fillet Along Shell : 5.000 mm.

    Parent Properties:

    Material DB # 1064818.

    (See Output Reports for Allowables.)

    Elastic Modulus (Amb) : 195100.0 MPa

    Poissons Ratio : 0.300

    Expansion Coefficient : 0.1730E-04 mm./mm./deg.

    Weight Density : 0.0000E+00 N /cu.mm.(NOT USED)

    Nozzle Outside Diameter : 88.900 mm.

    Thickness : 5.490 mm.

    Length : 150.000 mm.

    Nozzle Weld Length : 5.000 mm.

    Nozzle Tilt Angle : 0.000 deg.

    Distance from Top : 0.000 mm.

    Distance from Bottom : 500.000 mm.

    Nozzle PropertiesMaterial DB # 1064818.

    (See Output Reports for Allowables.)

    Elastic Modulus (Amb) : 195100.0 MPa

    Poissons Ratio : 0.300

    Expansion Coefficient : 0.1730E-04 mm./mm./deg.

    Weight Density : 0.0000E+00 N /cu.mm. (NOT USED)

    Design Operating Cycles : 7000.

    Ambient Temperature (Deg.) : 21.10

    The following temperatures have been specified for the analysis:

    Nozzle Inside Temperature : 235.00 deg.

    Nozzle Outside Temperature : 235.00 deg.

    Vessel Inside Temperature : 235.00 deg.

    Vessel Outside Temperature : 235.00 deg.

    Nozzle Pressure : 2.800 MPa

    Vessel Pressure : 2.800 MPa

    User Defined Load Input Echo:

    Loads are given at the Nozzle/Header Junction

    Loads are defined in Local Coordinatesc

    Forces( N ) Moments (N-m)

    Load Case FX FY FZ MX MY MZ

    ---------------------------------------------------------------------------

    OPER: 2700.0 2700.0 2700.0 1000.0 1000.0 1000.0

    FEA Model Loads:

    These are the actual loads applied to the FEA model.

    These are the User Defined Loads translated to the

    end of the nozzle and reported in global coordinates.

    Forces( N ) Moments (N-m)

    Load Case FX FY FZ MX MY MZ

    ---------------------------------------------------------------------------

    OPER: 2700.0 2700.0 2700.0 1000.0 1405.0 595.0

    The "top" or "positive" end of this model is "free" in

    the axial and translational directions.

    Stresses ARE nodally AVERAGED.

    Vessel Centerline Vector : 0.000 1.000 0.000

    Nozzle Orientation Vector : 1.000 0.000 0.000

    Table of Contents

    Load Case Report

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    29/64

    Inner and outer element temperatures are the same

    throughout the model. No thermal ratcheting

    calculations will be performed.

    THE 8 LOAD CASES ANALYZED ARE:

    1 SUSTAINED (Pr Only)

    Sustained case run to satisfy local primary

    membrane and bending stress limits.

    /-------- Loads in Case 1

    Pressure Case 1

    2 Thermal ONLY

    Thermal ONLY case run in the event expansion

    stresses exceed the secondary stress allowable.

    /-------- Loads in Case 2

    Temperature Case 1

    3 OPERATING (Fatigue Calc Performed)

    Case run to compute the operating stresses used in

    secondary, peak and range calculations as needed.

    /-------- Loads in Case 3

    Pressure Case 1

    Temperature Case 1

    Loads from (Operating)

    4 Program Generated -- Force Only

    Case run to compute sif's and flexibilities.

    /-------- Loads in Case 4

    Loads from (Axial)

    5 Program Generated -- Force Only

    Case run to compute sif's and flexibilities.

    /-------- Loads in Case 5

    Loads from (Inplane)

    6 Program Generated -- Force Only

    Case run to compute sif's and flexibilities.

    /-------- Loads in Case 6

    Loads from (Outplane)

    7 Program Generated -- Force Only

    Case run to compute sif's and flexibilities.

    /-------- Loads in Case 7

    Loads from (Torsion)

    8 Program Generated -- Force Only

    Case run to compute sif's and flexibilities.

    /-------- Loads in Case 8

    Pressure Case 1

    Table of Contents

    Solution Data

    Maximum Solution Row Size = 1164

    Number of Nodes = 2764

    Number of Elements = 908

    Number of Solution Cases = 8

    Summation of Loads per Case

    Case # FX FY FZ

    1 -2027. 57168. 0.

    2 0. 0. 0.

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    30/64

    3 673. 59868. 2700.

    4 2349565. 0. 0.

    5 0. 0. 0.

    6 0. 0. 0.

    7 0. 0. 0.

    8 -2027. 57168. 0.

    Table of Contents

    ASME Code Stress Output Plots

    1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    2) Qb < SPS (SUS,Bending) Case 1

    3) S1+S2+S3 < 4S (SUS,S1+S2+S3) Case 1

    4) Pl+Pb+Q < SPS (OPE,Inside) Case 3

    5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    6) Pl+Pb+Q+F < Sa (EXP,Inside) Case 3

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    8) Membrane < User (OPE,Membrane) Case 3

    9) Bending < User (OPE,Bending) Case 3

    10) Pl+Pb+Q+F < Sa (SIF,Outside) Case 4

    11) Pl+Pb+Q+F < Sa (SIF,Outside) Case 5

    12) Pl+Pb+Q+F < Sa (SIF,Outside) Case 6

    13) Pl+Pb+Q+F < Sa (SIF,Outside) Case 7

    14) Pl+Pb+Q+F < Sa (SIF,Outside) Case 8

    Table of Contents

    Region Data

    Header Next to Nozzle Weld

    Cold Allowable ........... 115. MPa

    Hot Allowable @ 235 deg .. 105. MPa

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 33. MPa

    Case 3

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 33. MPa

    Case 4

    Nominal Stress (M/Z) ... 1633. MPaPressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 83. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 83. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 83. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 33. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 5.490 mm.

    Stress Concentration ..... 1.350

    Branch Next to Header Weld

    Cold Allowable ........... 115. MPa

    Hot Allowable @ 235 deg .. 105. MPa

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    31/64

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 33. MPa

    Case 3

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 33. MPa

    Case 4

    Nominal Stress (M/Z) ... 1633. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 83. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 83. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 83. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 33. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 5.490 mm.

    Stress Concentration ..... 1.350

    Branch Transition

    Cold Allowable ........... 115. MPaHot Allowable @ 235 deg .. 105. MPa

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 33. MPa

    Case 3

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 33. MPa

    Case 4

    Nominal Stress (M/Z) ... 1633. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 83. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 83. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 83. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 33. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 5.490 mm.

    Stress Concentration ..... 1.350

    Header away from Junction

    Cold Allowable ........... 115. MPa

    Hot Allowable @ 235 deg .. 105. MPa

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 33. MPa

    Case 3

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 33. MPaCase 4

    Nominal Stress (M/Z) ... 1633. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 83. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 83. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 83. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 33. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 5.490 mm.

    Stress Concentration ..... 1.000

    Branch away from Junction

  • 8/11/2019 Nozzle FEA Calculation

    32/64

    Cold Allowable ........... 115. MPa

    Hot Allowable @ 235 deg .. 105. MPa

    Case 1

    Nominal Stress (M/Z) ... 0. MPa

    Pressure Stress (Pd/2t) .. 33. MPa

    Case 3

    Nominal Stress (M/Z) ... 91. MPa

    Pressure Stress (Pd/2t) .. 33. MPa

    Case 4

    Nominal Stress (M/Z) ... 1633. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 5

    Nominal Stress (M/Z) ... 83. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 6

    Nominal Stress (M/Z) ... 83. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 7

    Nominal Stress (M/Z) ... 83. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Case 8

    Nominal Stress (M/Z) ... 33. MPa

    Pressure Stress (Pd/2t) .. 0. MPa

    Smallest Thickness ....... 5.490 mm.

    Stress Concentration ..... 1.000

    Table of Contents

    Stress Results - Notes

    - Results in this analysis were generated using the finite

    element solution method.

    - Using post 07 ASME Section VIII Division 2

    - Use Polished Bar fatigue curve.

    - Ratio between Operating and Design Pressure = 0.9000000

    Assume pressure increases all other stresses.

    Use operating pressure for occasional load cases.

    - Assume free end displacements of attached pipe are

    secondary loads within limits of nozzle reinforcement.

    - Use Equivalent Stress (Von Mises).

    - S1+S2+S3 evaluation omitted from operating stress.

    Include S1+S2+S3 evaluation in primary case evaluation.

    Assume bending stress not local primary for S1+S2+S3.

    Table of Contents

    ASME Overstressed Areas

    *** NO OVERSTRESSED NODES IN THIS MODEL ***

    Table of Contents

    Highest Primary Stress Ratios

    Header Next to Nozzle Weld

    Pl (1.5)(S) Primary Membrane Load Case 1

    47 157 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    29%

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    33/64

    Branch Next to Header Weld

    Pl (1.5)(S) Primary Membrane Load Case 1

    39 157 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    24%

    Branch Transition

    Pl (1.5)(S) Primary Membrane Load Case 1

    22 157 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    13%

    Header away from Junction

    Pl (1.5)(S) Primary Membrane Load Case 1

    33 157 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    20%

    Branch away from Junction

    Pl (1.5)(S) Primary Membrane Load Case 1

    22 157 Plot Reference:

    MPa MPa 1) Pl < (1.5)(S) (SUS,Membrane) Case 1

    14%

    Table of Contents

    Highest Secondary Stress Ratios

    Header Next to Nozzle Weld

    Pl+Pb+Q SPS Primary+Secondary (Outer) Load Case 3

    238 330 Plot Reference:

    MPa MPa 5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    72%

    Branch Next to Header Weld

    Pl+Pb+Q SPS Primary+Secondary (Outer) Load Case 3

    246 330 Plot Reference:

    MPa MPa 5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    74%

    Branch Transition

    Pl+Pb+Q SPS Primary+Secondary (Outer) Load Case 3

    86 330 Plot Reference:

    MPa MPa 5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    26%

    Header away from Junction

    Pl+Pb+Q SPS Primary+Secondary (Outer) Load Case 3

    95 330 Plot Reference:

    MPa MPa 5) Pl+Pb+Q < SPS (OPE,Outside) Case 3

    28%

    Branch away from Junction

    Pl+Pb+Q SPS Primary+Secondary (Inner) Load Case 3

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    34/64

    79 330 Plot Reference:

    MPa MPa 4) Pl+Pb+Q < SPS (OPE,Inside) Case 3

    23%

    Table of Contents

    Highest Fatigue Stress Ratios

    Header Next to Nozzle Weld

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Outer) Load Case 3

    160 0.004 Life Stress Concentration Factor = 1.350

    MPa 0.333 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 1,869,714.

    Allowable "B31" Fatigue Stress Allowable = 275.0

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 500,365.

    WRC 474 99% Probability Cycles = 116,239.

    33% WRC 474 95% Probability Cycles = 161,384.

    BS5500 Allowed Cycles(Curve F) = 57,872.

    Membrane-to-Bending Ratio = 0.534

    Bending-to-PL+PB+Q Ratio = 0.652Plot Reference:

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    Branch Next to Header Weld

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Outer) Load Case 3

    166 0.004 Life Stress Concentration Factor = 1.350

    MPa 0.344 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 1,683,686.

    Allowable "B31" Fatigue Stress Allowable = 275.0

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 538,848.

    WRC 474 99% Probability Cycles = 125,179.

    34% WRC 474 95% Probability Cycles = 173,796.

    BS5500 Allowed Cycles(Curve F) = 52,553.

    Membrane-to-Bending Ratio = 0.560

    Bending-to-PL+PB+Q Ratio = 0.641

    Plot Reference:

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    Branch Transition

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Outer) Load Case 3

    58 0.000 Life Stress Concentration Factor = 1.350

    MPa 0.121 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 1.0000E11

    Allowable "B31" Fatigue Stress Allowable = 275.0

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 13,044,634.

    WRC 474 99% Probability Cycles = 3,030,384.

    12% WRC 474 95% Probability Cycles = 4,207,306.

    BS5500 Allowed Cycles(Curve F) = 1,208,851.

    Membrane-to-Bending Ratio = 1.181Bending-to-PL+PB+Q Ratio = 0.459

    Plot Reference:

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    Header away from Junction

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Outer) Load Case 3

    48 0.000 Life Stress Concentration Factor = 1.000

    MPa 0.099 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 1.0000E11

    Allowable "B31" Fatigue Stress Allowable = 275.0

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 8,456,431.

    WRC 474 99% Probability Cycles = 1,964,506.

    9% WRC 474 95% Probability Cycles = 2,727,469.

    BS5500 Allowed Cycles(Curve F) = 903,240.

    Membrane-to-Bending Ratio = 0.889

    Bending-to-PL+PB+Q Ratio = 0.529

    Plot Reference:

    http://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOChttp://c/Users/berylzeng/Desktop/PersonalFolder/Flotech/7489/hpf30-n2/OUTPUT/NOZZLE.htm%23TOC
  • 8/11/2019 Nozzle FEA Calculation

    35/64

    7) Pl+Pb+Q+F < Sa (EXP,Outside) Case 3

    Branch away from Junction

    Pl+Pb+Q+F Damage Ratio Primary+Secondary+Peak (Inner) Load Case 3

    39 0.000 Life Stress Concentration Factor = 1.000

    MPa 0.082 Stress Strain Concentration Factor = 1.000

    Cycles Allowed for this Stress = 1.0000E11

    Allowable "B31" Fatigue Stress Allowable = 275.0

    482.0 Markl Fatigue Stress Allowable = 329.8

    MPa WRC 474 Mean Cycles to Failure = 16,800,968.

    WRC 474 99% Probability Cycles = 3,903,014.

    8% WRC 474 95% Probability Cycles = 5,418,844.

    BS5500 Allowed Cycles(Curve F) = 1,602,801.

    Membrane-to-Bending Ratio = 4.413

    Bending-to-PL+PB+Q Ratio = 0.185

    Plot Reference:

    6) Pl+Pb+Q+F < Sa (EXP,Inside) Case 3

    Table of Contents

    Stress Intensification Factors

    Branch/Nozzle Sif Summary

    Peak Primary Secondary

    Axial : 5.172 2.413 7.663

    Inplane : 1.761 1.426 2.608

    Outplane: 3.838 1.805 5.686

    Torsion : 0.838 1.050 1.242

    Pressure: 1.110 1.409 1.644

    The above stress intensification factors are to be used

    in a beam-type analysis of the piping system. Inplane,

    Outplane and Torsional sif's should be used with the

    matching branch pipe whose diameter and thickness is given

    below. The axial sif should be used to intensify the

    axial stres


Recommended