+ All Categories

npsE3CD

Date post: 29-May-2018
Category:
Upload: niveth-richard
View: 214 times
Download: 0 times
Share this document with a friend

of 33

Transcript
  • 8/8/2019 npsE3CD

    1/33

    30 nmPhysics and

    Materials Science

    devices

    Hewlett-Packard Laboratories, Palo AltoCA

    2005 Hewlett-Packard Development Company, L.P.

    The information contained herein is subject to change without notice

  • 8/8/2019 npsE3CD

    2/33

    People

    Jianhua Yang;

    Julien Borghetti;

    John Paul Stracham;

    Dou Ohlber ;

    Duncan Stewart;

    Phil Kuekes;

    Stan Williams;

    2

  • 8/8/2019 npsE3CD

    3/33

    Outline

    Memristor definition;

    Implementation;

    3

  • 8/8/2019 npsE3CD

    4/33

    History

    Memory effect in early MIM junctions (Au:SiO):

    4by Simmons and Verderber, Proc. Royal Society of London A, 301 (19671967) 77

  • 8/8/2019 npsE3CD

    5/33

    Currently.

    Stanford, U. Houston, Achen, Julich, Universit Paris-, ,

    AMD, HP, IBM, Motorola, Samsung, Sharp

    5

  • 8/8/2019 npsE3CD

    6/33

    3 fundamental circuit elements

    Resistor 1827

    Georg Ohm

    RESISTOR CAPACITORCv= R i q= C v

    INDUCTOR = L i

    Capacitor - 1745

    Volta / von Kleist & van Musschenbroek

    Benjamin Franklin

    page 6

    Faraday

    Joseph Henry

  • 8/8/2019 npsE3CD

    7/33

    3 fundamental circuit elements

    v1827 1745

    RESISTOR CAPACITORC

    d/dt

    v= R i q= C vdq/dt= i

    =v

    i q

    INDUCTOR = L i

    1831

    page 7

  • 8/8/2019 npsE3CD

    8/33

    Leon Chua 1971

    v1827 1745

    RESISTOR CAPACITORC

    d/dt

    v= R i q= C vdq/dt= i

    =v

    i q

    INDUCTOR = L i

    ?

    1831

    page 8

  • 8/8/2019 npsE3CD

    9/33

    Leon Chua 1971 the memristor

    v1827 1745

    RESISTOR CAPACITORC

    d/dt

    v= R i q= C vdq/dt= i

    =v

    iq

    INDUCTOR = L i

    MEMRISTOR =M q

    1831

    page 9

    L. O. Chua, Memristor - the missing circuit element, IEEE Trans. Circuit Theory 18, 507519 (1971).L. O. Chua and S. M. Kang, "Memristive devices and systems," Proc. IEEE, 64 (2), 209-23 (1976).

  • 8/8/2019 npsE3CD

    10/33

    Leon Chua 1971 the memristor

    v Simple Memristor:1827 1745

    RESISTOR CAPACITORC

    d/dt

    iwMv )(=dwv= R i q= C v

    dq/dt= i

    =v

    iq

    dt

    INDUCTOR = L i

    MEMRISTOR =M q

    Generalized Memristor

    (Memristive system):

    MEMRISTIVE SYSTEMS

    ,( , )

    dwf w i=

    1831

    page 10

    L. O. Chua, Memristor - the missing circuit element, IEEE Trans. Circuit Theory 18, 507519 (1971).L. O. Chua and S. M. Kang, "Memristive devices and systems," Proc. IEEE, 64 (2), 209-23 (1976).

  • 8/8/2019 npsE3CD

    11/33

    Leon Chua 1971 the memristor

    v Simple Memristor:1827 1745

    RESISTOR CAPACITORC

    d/dt

    iwMv )(=dwv= R i q= C v

    dq/dt= i

    =v

    iq

    dt

    INDUCTOR = L i

    MEMRISTOR =M q

    MEMRISTIVE SYSTEMS1831

    page 11

    L. O. Chua, Memristor - the missing circuit element, IEEE Trans. Circuit Theory 18, 507519 (1971).L. O. Chua and S. M. Kang, "Memristive devices and systems," Proc. IEEE, 64 (2), 209-23 (1976).

  • 8/8/2019 npsE3CD

    12/33

    Implementation

    Modulation of electronic transport;

    Dynamic electronics;

    page 12

  • 8/8/2019 npsE3CD

    13/33

    TiO2

    rutile TiO2

    3.0/3.2 eV semiconductordielectric ~ 80, bi-refringent

    pigment, photocatalyst, O2 sensors

    TiO2

    : 1x Ti4+ + 2x O2-

    anatase TiO2

    13

  • 8/8/2019 npsE3CD

    14/33

    TiO2-x

    rutile TiO2

    3.0/3.2 eV semiconductor

    TiO2-x : x ~ 10-3 10-2

    dopants all ionized Ei

    < 0.1 eV

    oxygen vacancies VO2+ @ low T < 800C & high P(O2) and

    Ti interstitials Tii4+ @ high T > 1000C & low P(O2):

    creation ~ 3-5 eVdiffusion ~ 0.7 - 1.1 eV

    - -

    14

  • 8/8/2019 npsE3CD

    15/33

    O vacancy drift model for TiOx switch

    undoped

    w

    Vdoped

    A

    ONV

    ( )( )

    Rdw ti t

    dt L=

    ONV

    ( ) ( )R

    w t q t L

    = )()(

    1)(

    )( OFFON tiL

    twR

    L

    twRtv

    +=

    L

    0.5

    1.0

    tage 5

    10

    current

    0.60.50.40.30.20.10.0 time (10

    3

    )

    RESISTORv=R i

    CAPACITORq= C v

    d/dt

    =v

    v

    1.0

    0.5w/L

    -1.0

    -0.5

    .vol

    -10-5

    (10

    -3

    )

    INDUCTOR = L i

    MEMRISTOR =M q

    dq/dt= ii q

    0.0

    0.60.50.40.30.20.10.0

    time (103)

    MEMRISTIVE SYSTEMS

    0

    5

    rrent(10-3)

    .

    0.40.20.0

    char

    g

    500flux

    page 15

    -10

    -c

    -1.0 -0.5 0.0 0.5 1.0

    voltage

  • 8/8/2019 npsE3CD

    16/33

    O vacancy drift model for TiOx switch

    undoped

    w

    Vdoped

    A

    ONV

    ( )( )

    Rdw ti t

    dt L=

    ONV

    ( ) ( )R

    w t q t L

    = )()(

    1)(

    )( OFFON tiL

    twR

    L

    twRtv

    +=

    L

    0.5

    1.0

    tage 5

    10

    current

    0.60.50.40.30.20.10.0 time (10

    3

    )

    RESISTORv=R i

    CAPACITORq= C v

    d/dt

    =v

    v

    1.0

    0.5w/L

    -1.0

    -0.5

    .vol

    -10-5

    (10

    -3

    )

    INDUCTOR = L i

    MEMRISTOR =M q

    dq/dt= ii q

    0.0

    0.60.50.40.30.20.10.0

    time (103)

    Generalized Memristor

    MEMRISTIVE SYSTEMS

    0

    5

    rrent(10-3)

    .

    0.40.20.0

    char

    g

    500flux ivwMv ),(=

    (Memristive system):

    page 16

    -10

    -c

    -1.0 -0.5 0.0 0.5 1.0

    voltage

    ( , )f w i

    dt

    =

  • 8/8/2019 npsE3CD

    17/33

    O vacancy drift model for TiOx switch

    undoped

    w

    Vdoped

    A

    L

    1.61.20.80.40.0

    time (103)

    -1

    0

    1

    v

    oltage

    1.0

    0.5

    0.0

    w/

    L

    1.61.20.80.40.0

    0.5

    1.0

    t

    ROFF/RON = 50

    v = 4 V

    -0.5

    0.0curre

    n

    page 17

    - .

    -1.0 -0.5 0.0 0.5 1.0

    voltage

  • 8/8/2019 npsE3CD

    18/33

    O vacancy drift model for TiOx switch

    undoped

    w

    Vdoped

    A

    L

    41.61.20.80.40.0

    time (103)

    47

    Pt PtExpt Expt

    2

    t(mA

    )-1

    0

    voltage

    1.61.20.80.40.0

    .

    0.5

    0.0

    w/

    L 2

    t(m

    A) 1

    2345Ti

    Pt

    Ti

    Pt

    -2

    C

    urren

    0.0

    0.5

    1.0

    current

    ROFF/RON = 50

    v0 = 4 V

    -2

    Curren

    9

    10

    17

    -4

    -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5Voltage (V)

    -1.0

    - .

    -1.0 -0.5 0.0 0.5 1.0voltage

    -4

    -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5Voltage (V)

    8

    page 18

    Dmitri Strukov, Greg Snider,

    Duncan Stewart, R. Stanley Williams,Nature453, 80 - 83 (01 May 2008)

  • 8/8/2019 npsE3CD

    19/33

    Device operation

    Electroforming and bubbling

    Endurance

    Scalability;page 19

  • 8/8/2019 npsE3CD

    20/33

    O2 reduction at anode creates bubbles

    -

    20

  • 8/8/2019 npsE3CD

    21/33

    O2 bubble movie

    click for movie

    21

  • 8/8/2019 npsE3CD

    22/33

    Electroforming can induce O2 reduction

    Anode (+)Cathode (-)Anode

    Where oxidation occurs

    2e-

    TiO2+ O2

    Oxygen is oxidized from

    -

    TiO2

    22

    E

  • 8/8/2019 npsE3CD

    23/33

    Electroforming can induce O2 reduction

    Anode (+)Cathode (-)

    O2TiO2+2

    O2O2O2

    TiO2+

    TiO2+

    TiO +

    TiO2+

    TiO22

    bubble

    23

    E

  • 8/8/2019 npsE3CD

    24/33

    Nano-devices do NOT show bubbles

    1530

    )

    Micron-sized Nano-sized

    200100

    10

    5

    0

    Z(nm)

    800040000

    15

    0

    X (nm)

    Z(n

    TE

    X (nm)

    BE

    BE

    4

    100

    50

    0

    Z(nm)

    TE

    X (nm)

    TE

    24

    BE

  • 8/8/2019 npsE3CD

    25/33

    Endurance: 200-400 traces on 50

    nanometer Pt/TiOx/Pt devices

    200a c +V pushPt

    100

    V vacanc esSwitching I-V

    TiOx

    0

    urrent

    (uA)

    4)b

    50 nm hp-V attract

    OV vacancies

    -3

    Pt

    -100

    C

    2

    urrent

    (nA

    10-6

    10-9

    Pt

    TiO2TiOx

    V

    +

    -

    -200-2 -1 0 1 2

    Voltage ( V )

    C

    -2 -1 0 1 2Voltage ( V )

    rg n - -1 0 1

    25

  • 8/8/2019 npsE3CD

    26/33

    Role of interface: Devices on

    Sin le cr stal TiO Pre arationSingle crystal TiO2 rutile

    was annealed at 700 oC

    Create Vo2+ by annealing

    TiO2 bulk crystal, Rutile

    2 2

    1 2

    3 4Ti+TiO2=>TiO2-x creating Vo

    2+Ti

    Pt

    Create more Vo2+ locally by Ti

    I3-4

    TiO2 bulk crystal

    Many two-terminal permutations (devices)

    Pt PtTi Ti

    Pt Pt

    TiO2

    1

    2 3

    4 V

    +

    -

    J. Joshua Yang 26

    TiO2-X

  • 8/8/2019 npsE3CD

    27/33

    +

    I2-3

    Pt Pt1

    2 3

    4

    -

    V

    TiO2

    1

    TiO2-X

    TiO2Pt

    w

    b

    w

    TiO2-X

    TiO2Pt TiO2Ti

    b

    J. Joshua Yang 27

  • 8/8/2019 npsE3CD

    28/33

    Role of interface: I-V curves

    2 3-

    V

    +

    I2-310

    (mA)

    2-3

    Pt PtTi Ti

    Pt Pt

    TiO2-X

    TiO2

    4

    TiO2-x

    TiPt

    Ti

    2

    -

    0

    Current

    identical contacts Symmetric I-V;

    5nmTi/TiO2Ohmic contacts (Pads 2,3);

    The single crystal TiO2 is very conductive;

    I1-4

    -0.4 0.0 0.4Voltage (V)

    Pt PtTi Ti

    Pt Pt1

    2 3

    4-

    V

    +

    500

    (nA) 1-4

    TiO2-X

    TiO2

    -500Curren

    1

    4Pt

    TiO2-x

    Pt

    J. Joshua Yang 28

    -

    Pt/TiO2Schottky contact (pads 1,4);

    Interfaces dominates the I-V (bulk TiO2 contact). -0.4 0.0 0.4

    V oltag e (V)

  • 8/8/2019 npsE3CD

    29/33

    Role of interface: I-V curves

    0

    I2-4

    -200

    rrent(

    A) - Gnd

    2Pt PtTi Ti

    Pt Pt

    TiO2

    1 4 V

    -

    TiO2-x

    TiPt

    -400

    C

    -0.4 0 0.4

    42-X

    I2-3

    Pt

    400

    A)

    1-3GndPt Pt1

    2 3

    4

    -

    V

    +

    200

    Current

    (

    3

    Pt PtTi Ti

    TiO2-X

    TiO2

    Pt

    TiO2-xTi

    J. Joshua Yang 29

    0

    -0.4 0.0 0.4V oltage (V)

    S f

  • 8/8/2019 npsE3CD

    30/33

    Scalability: from micron- to nano-

    cross oint unctions5x5 micronmeter2 50x50 nanometer2

    50 nm

    10~100nm

    TiO2-xAV

    half-pitchHP Labs

    200 OFF

    500m

    20

    OFF10

    -3

    100

    (uA) 10

    -9

    10-7

    10-

    -2.0 -1.0 0.0 1.0

    10

    ent(mA)

    10-7

    10-5

    -3 -2 -1 0 1

    Large on/offratio (~103)

    -100

    Curren

    ON

    -10

    C

    urr

    ON Fast (

  • 8/8/2019 npsE3CD

    31/33

    Conclusions

    class of devices, that can be configured

    New applications can be found inmemory, signal conditioning, etc.

    page 31

  • 8/8/2019 npsE3CD

    32/33

    The end

    page 32

  • 8/8/2019 npsE3CD

    33/33

    Switching features: localized or

    Question: Is pad 4 uniformly or locally changed?!

    42-4

    2 3

    V

    I2-4

    2

    rre

    nt(mA)

    2-41

    Pt Ti Ti

    Pt Pt

    TiO2-X

    TiO2

    141 42

    0

    -2

    Cu

    2-42

    -1 0 1Voltage (V)

    J. Joshua Yang 33