+ All Categories
Home > Documents > Nsf Ideal Fluids

Nsf Ideal Fluids

Date post: 02-Jun-2018
Category:
Upload: sittidech-cu
View: 217 times
Download: 0 times
Share this document with a friend
98
8/10/2019 Nsf Ideal Fluids http://slidepdf.com/reader/full/nsf-ideal-fluids 1/98  II. Ideal – fluid flow Ideal fluids are Inviscid Incompressible The only ones decently understood mathematically Governing equations ∇⋅ u =0 u  +( u  ) u =− 1 ρ   p +  f Continuity Euler 
Transcript
Page 1: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 1/98

 

II. Ideal – fluid flow

● Ideal fluids are

● Inviscid

● Incompressible

● The only ones decently understood mathematically

● Governing equations

∇⋅u=0

∂u∂ t  +(u⋅  )u=−1

ρ   p+ f 

Continuity

Euler 

Page 2: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 2/98

 

Boundary conditions

u⋅n=U ⋅n

ormal to surface

!elocity of surface

Free-slip "velocity is parallel

to surface#

$otential flow "special case#

 u = (u = / x, v = / y, w = / z )

$otential flow is irrotational

Continuity equation for potential flow

 2 = 0 

Continuity equation "with boundary conditions#can be solved alone for velocity

Page 3: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 3/98

 

Then plug  into momentum equation "Bernoulliform# to solve for pressure

Page 4: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 4/98

 

%. &' potential flows%.(. )tream function ● &' ideal continuity equation

∂u∂ x

+∂ v∂ y

=0

u=∂φ

∂ x , v=

∂φ

∂ y

● !elocity potential

● Introduce streamfunction  "counterpart ofpotential# so that

u=

∂ψ

∂ y  , v=−

∂ψ

∂ x

Page 5: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 5/98

 

)treamfunction satisfies continuity equation byconstruction

∂2 ψ∂ x∂  y

− ∂2 ψ∂  y∂ x

=0

)treamfunction e*ists for any ideal &' flow

Before going further+ consider vorticity in &' flow

 =∇×u=det[  i j k 

∂∂ x ∂∂ y ∂∂ z u v w

 ]

Page 6: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 6/98

Page 7: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 7/98

 

!orticity in &' flow

 =k 

  ∂v

∂ x−

∂u

∂  y   =k ω

,or &'+effectivelya scalar 

ow consider an irrotational &' flow

ω=∂v∂ x− ∂

u∂  y=0

E*press velocity in terms of streamfunction

ω= ∂∂ x  −∂ψ∂ x  −   ∂∂  y  −∂ψ∂ y  =0

∇ 2

 ψ=0

Page 8: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 8/98

 

$roperties of streamfunction

● )treamlines are lines of   const 

● 'ifference in the value of  between twostreamlines equals the volume of fluid flowing

between them

● )treamlines   const and potential lines

  const are orthogonal at every point in the

flow

Page 9: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 9/98

 

)treamlineequation/

0hy   const is a streamline

 d s

dx      d    y

d  ψ=d  ψds

ds=   ∂ψ∂ x ∂ x∂ s +∂ψ∂  y

∂ y∂ sds=−vdx+udy

d  ψ=0 means v dx=udy ;dy

v

 =dx

u

Page 10: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 10/98

 

,low rate between two streamlines

 1

 2

 1

B

 u

u

!olume flow rate

Q=∫ A

 B

u⋅nds=∫ A

 B

u⋅d  n=∫ A

 B

u dy−∫ A

 B

v dx

ds

'irection along 1B2

ds  "dx +dy #

'irection normal to 1B2dn  "dy +3dx #

dn

Q=∫ A

 B

d  ψ=ψ1−ψ2

Page 11: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 11/98

 

4rthogonality between streamlines and potentiallines

d  ψ=−vdx+udy=0 1long a streamline

 1long an isopotential line "  const #...

d  φ=∂φ∂ x dx+

∂φ∂ y dy=u dx+v dy=0

ormal to streamline2 "3v + u#

ormal to isopotential line2 "u+ v #

They are orthogonal2 "3v + u#"u+ v#  5

Page 12: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 12/98

Page 13: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 13/98

 

Comple* potential constructed from velocitypotential and streamfunction

F( z ) = ( x, y) + i ( x, y)

Cauchy36iemann condition satisfied byconstruction

Advantages of using complex potential● If and are the real and imaginary parts of

any holomorphic function+ 2  

= 0 and 2  

= 0 

automatically●  Comple* velocity w = dF /dz  = u - iv – directly

related to flow velocity

Page 14: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 14/98

 

8agnitude of comple* velocity

w*w = (u + iv)(u – iv) = u2+v2 = uu =

$olar coordinates in comple* plane

 x 

  r

 x + iy = r (cos  + i sin ) = rei 

q

  e   r

e    

 

u = ur  cos - u sin

v = ur  sin + u

 cos

w = (ur  - iu) e-i

Page 15: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 15/98

 

%.9. :niform flow

 F ( z )=Ce−iα

 z 

w ( z )=dF 

dz  =Ce

−iα=C  cosα−iC sin α

u=C  cosα , v=C sinα

 x 

a

Page 16: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 16/98

 

%.%. )ource+ sin;+ and vorte*

 F ( z )=C log z =C  log (r e

)=C (log r +i θ)

w ( z )=dF 

dz  =

 z  =

r e−iθ

ur =C 

r  , uθ=0 x 

,irst+ let C  be real and positive

φ=C  log r ,   ψ=C θ

)ource at z  = 0

Page 17: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 17/98

 

)ource strength "discharge rate#

m=∫0

ur r d θ=∫0

Cd  θ=2πC 

Comple* potential of a source of strength m at z  = z 

0

 F ( z )= m2π

 log( z − z 0)

Comple* potential of a sin; of strength m at z  = z 0

 F ( z )=− m2π

log( z − z 0)

 x 

Page 18: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 18/98

 

ow consider a purely imaginary constant in thelogarithmic potential2

 F ( z )=−iC log z =−iC log(reiθ)=−iC log r +C θφ=C θ ,   ψ=−C log r 

w ( z )=

dF 

dz  =−i

 z =−i

r  e−iθ

ur =0, uθ=C 

 x 

$oint vorte*

Page 19: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 19/98

 

!orte* strength "circulation#

Γ=∮ L u⋅d  l =∫0

uθ r d θ=2πC 

Comple* potential of a vorte* with circulation G at z  = z 

0

 F ( z )=−i   Γ2π log ( z − z 0)

ote (. z  = z 0 is a singularity "u

q  #

ote &. This flow field is called a free vortex2

Γ L' =∮ L ' 

u⋅d  l ≡0 1ny contour not

including z 0 

Page 20: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 20/98

 

%.<. ,low in a sector 

 F ( z )=U z 

n

 , n⩾1

 1braham de 8oivre=s formula

 1braham de 8oivre(>>?3(?<%

 1uthor of The Doctrine of Chances

Page 21: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 21/98

 

%.<. ,low in a sector 

 F ( z )=U z 

n

 , n⩾1

 1braham de 8oivre=s formula

e

i nθ

=(cosθ+i sinθ)

n

=cos (nθ)+i sin(nθ):se polar coordinates

 z =r eiθ

 F ( z )=U r n

cos(nθ)+i U r n

sin (nθ)

$otential and stream function

φ=U r n

cos (nθ) ,   ψ=U r n

sin(nθ)

Page 22: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 22/98

 

q=p/n

Comple* velocity

w ( z )=nUz n−1=nU r 

n−1e

i(n−1)θ=

= nU r n−1 cosnθ+i nU r  n−1 sin nθ e−iθ

!elocity components

ur =nU r 

n−1

cos nθuθ=−nU r 

n−1sin nθ

n  (2 uniform flow

n  &2 flow in aright3angle corner 

n  92 shown

Page 23: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 23/98

 

%.>. ,low around a sharp edge

 F ( z )=C z 

1 /2

=C r 

1 /2

e

iθ/2

w ( z )=dF 

dz  =

1

2C z 

−1 /2=C 

2 r 1 /2 e

−iθ/2=

ur =

2 r 1/2 cos

θ2  , uθ=−

2 r 1 /2 sin

 θ2

$otential and streamfunction

φ=C r 1 /2

cos θ2 ,   ψ=C r 

1/2sin θ

2

= C 

2 r 1 /2 e

−iθeiθ/2= C 

2 r 1 /2 (cos θ2+i sin θ

2)e−iθ

Comple* velocity

Page 24: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 24/98

 

 x 

ur =

2 r 1/2 cos

θ2  , uθ=−

2 r 1 /2 sin

 θ2

 

= 0, q = 0 

 

= 0, q = 2p 

)ingularity

Page 25: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 25/98

 

%.?. 'oublet

)ource at  x = -e )in; at  x = +e

 x 

ow lete 

0

Page 26: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 26/98

 

Comple* potential of source and sin;

 F ( z )=m

2π log( z +ε)−

m

2π log( z −ε)

 F ( z )=m

2π log

 z +ε z −ε

=m

2π log

1+ε/ z 1−ε/ z 

,or small  /z + e*pand denominator into series2

(1−ε/ z )−1=1+ε/ z +…$lug that into F ( z )

 F ( z )=m

2π log((1+ε/ z )(1+ε/ z +…))

 F ( z )=

m

2π  log 1+2

ε z +…

Page 27: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 27/98

 

:se series e*pansion for logarithm near (

 F ( z )=m

2π log

(1+2 ε

 z +…

)=

m

2π (2 ε

 z +…

)If we ta;e the limit of this as   0+ the result willbe trivial2 F ( z ) = 0

,or a non3trivial result+ let   limε →0

mε=πμ

Then

limε →0

 F ( z )=μ z =   μ

 x+iy=μ  x−iy( x+iy)( x−iy)=μ

 x−iy x

2+ y2

φ=μ x

 x2

+ y2 ,   ψ=−μ

 y

 x2

+ y2

Page 28: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 28/98

 

Consider a streamline  = !nst

 ψ=−μ

 y

 x2+ y2

 ψ( x2+ y2)=−μ  y

 x2

+ y2

+μ ψ  y=0

 x2+ y

2+μ ψ  y+

(

  μ2 ψ

)

2

=

(

  μ2 ψ

)

2

 x2+( y+ μ2 ψ )

2

=(   μ2 ψ)2

Circle of radius m/(2y) and center at x = 0, y = 3m/(2y)

Page 29: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 29/98

 

 x 

Page 30: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 30/98

 

 x 

w ( z )=−μ

 z 2=−

μ

r 2e−2iθ=−

μ

r 2e−iθ (cosθ−i sinθ)

ur =−

μ

r 2 cos

θuθ=−

μ

r 2 sinθ

Page 31: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 31/98

 

'oublet of strength m at z  = z 0

 F ( z )=

  μ

 z − z 0

Page 32: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 32/98

 

%.@. Circular cylinder flow

Aet uniform flow go past a doublet

 F ( z )=Uz +μ z 

$otential and stream function

 F ( z )=Ureiθ+  μ

r eiθ= Ur +

μr 

  cosθ+i Ur −μr 

  sinθ

$otential )tream function

Consider streamline y = 0 

Ur  = m/r means that this streamline is a circle of

radius " = (m/U )1/2 

Page 33: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 33/98

 

Can rewrite comple* potential as

 F ( z )=U z +"

2

 z 

 z →∞ , F ( z )→U z 

:niform flow dominates the far field

 z →0,  F ( z )→U "

2

 z 

'oublet dominates the flow near the origin

Page 34: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 34/98

 

,low symmetry2 F (- z ) = - F ( z )

!elocity5"rearstagnationpoint#

!elocity5"forwardstagnationpoint#

)ingularity at origin

Page 35: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 35/98

 

%.. Cylinder with circulation

Ta;e cylinder flow+ add rotation around the origin

 F ( z )=U z +"

2

 z   +

iΓ2π

 log z +C 

!orte* at origin

Constant to

;eep y = 0  at r  = "

$retty easy to find C + tuc; it into the logarithm

 F ( z )=U z +"

2

 z 

  +iΓ

 log z 

"Comple* velocity

w=dF 

dz 

 =U    1−"

2

 z 2  +

1

 z 

Page 36: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 36/98

 

w=U   1−"

2

 z 2  +

iΓ2π

1

 z =U    1−

"2

r 2e−2 iθ +

iΓ2π

1

r e−iθ

w=[U (1−"2

r 2 )cosθ+i(U (1+

"2

r 2 )sinθ+   Γ

2π r )]e−iθ

w=[U (e iθ−"

2

r 2e−iθ)+ iΓ

2π1

r ]e−iθ

6emember that w = (ur -iuq)e-iq

ur =U    1−"

2

r 2

  cosθ , uθ=−U    1+"

2

r 2

  sinθ−  Γ2π r 

Page 37: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 37/98

 

4n the surface "r  = "#+

ur =0, uθ=−2U  sin θ−  Γ

2π"Boundary/

,ind stagnation points "velocity 5+ r = "#

sinθ s=−

  Γ4πU "

$ossibilities2

& stagnation points on the cylinder 

( stagnation point on the cylinder 

5 stagnation points on the cylinder "but maybesomewhere else in the flow#

Page 38: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 38/98

 

Two stagnation points

0<  Γ4πU"<1

4ne stagnation point

Γ

4πU"=1

Page 39: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 39/98

Page 40: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 40/98

Page 41: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 41/98

 

r  s=  Γ4πU 

!"(  Γ4πU  )

2

−"2

Two stagnation points

3 inside the cylinder "so who cares#

  D outside the cylinder "good stuff#

Page 42: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 42/98

 

%.(5. Blasius integral laws

● ,ind potential

● ,ind velocity components

● $lug velocity into Bernoulli equation to find

pressure on body surface

● Integrate to find

● ydrodynamic force on the body

● ydrodynamic moment on the body

● MUCH simpler with complex potential!

Page 43: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 43/98

 

c.g.

Body of an arbitrary shape

)urface2 streamline y = 0 

 1ny contour fully enclosing the body

C 5

  , o r c e  , o

 r c e

 x 

y  X 

 M 

Comple* force2 $ % i& 

Blasius first law

 $ −i& =iρ2∮C 0

w2dz 

Blasius second law

  =ρ2# ∮

C 0

 z w2dz 

Page 44: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 44/98

 

valuating complex integrals

Taylor series "real variable#

 (   ( x− x0)=$n=0

∞"n( x− x0)

n , "n= (   (n)( x0)

n)

This e*pansion is valid in an interval | x - x0| < d x

Page 45: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 45/98

 

valuating complex integrals

Aaurent series "comple* variable#

 (   ( z − z 0)=$n=−∞

∞ "n( z − z 0)n ,

"n=  1

2π i∮C 

 (   (% )(%− z 0)−n−1

d  %

This e*pansion is valid in an annulus where  (  isholomorphic2 

1 < | z - z 

0| < 

2

If 1 = 0+ z 0 – isolated singularity

  z 0

Coefficient "-1 of Aaurent series2

residue of (  at z 0

Page 46: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 46/98

 

Cauchy theorem

If comple* function ( ( z ) is holomorphic

everywhere inside contour C +

∮C 

 (   ( z )dz =0

Cauchy residue theorem

If comple* function ( ( z ) is holomorphiceverywhere inside contour C + e*cept isolated

singularities+∮C 

 (   ( z )dz =2iπ$+ 

"−1, + 

Page 47: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 47/98

 

xamplee z  – holomorphic everywhere in a dis; of radius r  with center at  z  = 0

e z =1+ z +

 z 2

2 +

 z 3

6 +…

e z 

 /z  – holomorphic everywhere in a dis; of radius r  with center at  z  = 0+ e*cept at it center 

e z 

 z 

 =1

 z 

+1+ z 

2

+ z 

2

6

+…

"-1=1

Note. "%m

   0, "%m% 

  0, = 1,2, ... at z  = z 0 –

 z 0

 is a pole of order m 

Page 48: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 48/98

 

%.((. ,orce and moment on a circularcylinder 

Comple* potential

 F ( z )=U z +"

2

 z   +

iΓ2π

 log z 

"

Comple* velocity

w=dF 

dz  =U    1−

"2

 z 

2  +

iΓ2π z 

Blasius first law

 $ −i& =iρ2∮C 

0

w2dz 

Page 49: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 49/98

 

w2=U 

2−2

2"

2

 z 2  +

U 2"

4

 z 4  +

i U Γπ z 

  −iU  Γ"2

π z 3  −   Γ2

4π2 z 2

  0 -2 -4 -1 -3 -2Term order in z 

"−1=iU  Γπ

 $ −i& =2iπ$+ 

"−1,+ =2iπiU  Γπ   =−iρU Γ

 z  = 0 – sole isolated singularity of w2

+ thus 

 $  = 0 "'=1lembert=s parado*#&  = U G "Fhu;ovs;y3utta law#

)imilar analysis for zw

2

 produces '  = 0

Page 50: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 50/98

 

%.(&. Conformal transformations

elps deal with boundaries

 x 

 

"

# = ( ( z )

 z  = x+iy #  = ! +i"

It=s only good if the Aaplace equation is alsotransformed into something nice...

Page 51: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 51/98

 

● Consider (  – holomorphic function mapping " x, y#

into "!,"#

● In " x, y# plane+ let 2( x, y) 

= 0● Then in "!,"# plane+ &"!,"# = 0

"proof2 p. 9#

● Aaplace equation is preserved by conformalmapping

● 0hat happens with comple* velocity

w ( z )=dF 

dz  =

dF (%)d  %

d %dz  =

d  %dz 

w(%)

!elocity scales during conformal mapping

Page 52: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 52/98

 

Aet=s prove that conformal mapping preservessources+ sin;s+ etc.

 d l

dx dy 

Γ=∮C  u⋅dl =∮C  (u dx+v dy)Circulation of all

point vortices inside

m=∮C 

u⋅dn=∮C 

(udy−v dx)

)trength of allsourcesHsin;s inside

Page 53: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 53/98

 

∮C 

w( z )dz =

=∮C  (u−iv )(dx+idy )=∮C  (u dx+v dy)+i∮C  (udy−vdx )==Γ+i m

Could have proven the same with residuetheorem...

ow consider a conformal mapping " x,y#  "!,"#

(Γ+i m

)& z =

∮C & z 

w( z )dz =

=∮C &%

w(%)d %=(Γ+i m )&%

=∮C & z 

w(%) d %dz 

dz =

Page 54: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 54/98

 

Conformal mapping preserves strength ofsources+ sin;s+ and vortices

Page 55: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 55/98

 

%.(9. Fhu;ovs;y transformation

i;olai EgorovichFhu;ovs;y

"(@%?3(&(#“Man will fly using the

 power of his intellectrather than the strengthof his arms.” 

 z =%+

2

%

&%&→∞ , z →%

dz d %

=1− 2

%2

# = 02 singularity "let=s contain it

inside the body#

%=! ,dz 

d %=0

# = $2 critical points "angle not preserved#

Page 56: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 56/98

 

Critical points of Fhu;ovs;y transform

 

"#  = ! +i"

 x 

y  z  = x+iy

3&c   D&c 

 z 0

3c   Dc 

#0

%1%

2q

1q

2

%=!  z =!+

2

!=!2cCan prove2 q

1- q 

2= 2 (% 

1- % 

2)

 1 smooth curve passing through # =  will

correspond to a curve with a cusp in z 3plane

Page 57: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 57/98

 

E*ample2 # = ei%

 

"#  = ! +i"

 x 

y  z  = x+iy

3&c   D&c  3c   Dc 

 z =e

i'

+

2

e i'= (ei '

+e

−i '

)=2ccos '

hu"ovs"y transform recipe# )tart with flow

around a cylinder in #3plane+ map to something

Page 58: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 58/98

 

8aor semia*is 8inor semia*is

%.(%. ,low around ellipses

Circle in #3plane+ radius " ! + center at origin%="e

i '

 z ="ei '+

2

"e−i'= "+

2

"  cos'+i "−

2

"  sin '

$arametric equation of an ellipse

Page 59: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 59/98

 

"#  = ! +i"

3c   Dc 

 x 

y  z  = x+iy

3&c   D&c 

Page 60: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 60/98

 

,low past a cylinder 

 F ( z )=U z +"

2

 z 

Page 61: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 61/98

 

ow consider freestream flow at an angle

Can get this by conformal

mapping too "in plane z "2 z  = ei" z " 3 rotation#   x       =

  y       =

a

Correspondingly+ z " = e%i" z 

Page 62: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 62/98

 

In plane z "

 F ( z ' )=U z' +"

2

 z ' 

 F =U z e−iα+

"2

 z e−iα  =U z e

−iα+"

2

 z e

Aet=s have this flow in #3plane2

 F (%)=U   % e−iα+

"2

%e

ow recall that

 z =%+

2

%

Page 63: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 63/98

 

E*press # in terms of z 2

%2+2−% z =0

%= z 

2!"( z 2)

2

−2

6ecall that for z   + z   #. Thus select

%= z 

2

+

"( z 

2

)

2

−2

$lug this into F (#) to get F ( z )... "s;ip derivation#

[ ]

Page 64: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 64/98

 

 F ( z )=U [ ze−iα+

(

"2

2e

iα−e−iα

)( z 

2

"( z 

2

)

2

−2

)]

:niform flow at angle a approaching an ellipsewith maor semia*is " + 2/" and minor semia*is

" - 2/" 

Page 65: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 65/98

 

a

)tagnation points2 # =$"eia

)t ti i t i l

Page 66: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 66/98

 

a

)tagnation points in z 3plane...

 z =!"eiα!

2

"e−iα

2 2

Page 67: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 67/98

 

 z =! "+2

"  cosα!i "−

2

"  sinα

 x=! "+

2

"cosα

 y=! "− 2

"sinα

3 forward stagnation point

D downstream stagnation pointa  52 horiJontal flow approaching horiJontalellipse

a = p/22 vertical flow+ horiJontal ellipse "or

horiJontal flow+ vertical ellipse#

Page 68: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 68/98

 

%.(<. utta condition and the flat3plate airfoil

% (< Fhu;ovs;y Chaplygin postulate and

Page 69: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 69/98

 

%.(<. Fhu;ovs;y3Chaplygin postulate andthe flat3plate airfoil

,low around a sharp edge "section %.>#...

 F ( z )=C z 1 /2

w ( z )=dF 

dz  =C 

2 z 1 /2

z   52 singularity

● 1t a sharp edge+ velocity goes to infinity

● This is not the case in e*periment+ luc;ily

● eed a fi* for theory near sharp edges

That=s not the only problem though...

z %+2

Page 70: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 70/98

 

a

#  = ! +i" z  = x+iy

a

r =

 z =%+%

erein liesthe problem/

Page 71: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 71/98

 

)mo;e visualiJation of wind tunnel flow past a lifting surface 1le*ander Aippisch+ (<9

)tagnation point is 1A01K)at the trailing sharp edge/

h " " Ch l i t l t

Page 72: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 72/98

 

hu"ovs"y-Chaplygin postulate$ ,or bodies with sharp trailing edges at modestangles of attac; to the freestream+ the rearstagnation point will stay at the trailing edge

%ealing with trailing-edge singularity In modeling real lifting surfaces+ trailing edge hassharp but finite curvature

ow to Lfi*M the flat plate flow

Page 73: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 73/98

 

a

#  = ! +i"

ow to fi* the flat3plate flow

 1ngle of attac;

Page 74: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 74/98

 

 z  = x+iy

a

#  = ! +i"

 1dd circulation... z  = x+iy

a

...to move the

stagnation point to thetrailing edge/

0e want to move the rear stagnation point to

Page 75: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 75/98

 

0e want to move the rear stagnation point to z  = 2

That would correspond to # =  in the J3planeeed to move it there from # = eia 

,or cylinder flow with circulation... 

sinθ s=−   Γ4πU "

If sin q s = - sin a+

Γ=4πU " sinα

6ecipe for constructing a comple* potential for

Page 76: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 76/98

 

6ecipe for constructing a comple* potential forcorrected flat3plate flow "Eq. %.&&b#

Cylinder flow●  1dd circulation G = &p  " U sin a

● 6otate the plane a degrees countercloc;wise

● Fhu;ovs;y transform

● $rofit/

Aift on a flat plate airfoil e*tending from 2" to 2"

Page 77: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 77/98

 

Aift on a flat3plate airfoil e*tending from -2" to 2"

& =ρU Γ

Blasius law for cylinder flow2

In our case

& =4πρU 

2

" sinα

Introduce dimensionless lift coefficient

Page 78: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 78/98

 

Introduce dimensionless lift coefficient 

C  L=& 

12ρU 2  

Characteristic length scale"for wings – chord length#

wing

chord

,or our flat plate+   = 4" and

C  L=2π sinα

 1t small angles of attac;+ lift coefficient on a flatplate increases with angle of attac;/

Page 79: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 79/98

 

Page 80: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 80/98

 

"#  = ! +i"

3c   Dc 

%.(>. )ymmetrical Fhu;ovs;y airfoil

Goal2 airfoil with sharp trailing edge and bluntleading edge

Center2

%m = %e

small-( + 2m)

r  = " = (1 + e)

 x 

y  z  = x+iy

3&c   D&c 

 t 

Aeading edge in # plane2 ( + 2m)

Page 81: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 81/98

 

Aeading edge in #3plane2 -( + 2m)

In z 3plane+ the leading edge is...

 z =− (1+2ε)−

1+2ε=−2c+-(ε2)−2c

Chord length   = 4

)imilarly "more series e*pansions+ lineariJation#thic;ness

t =3" 3ε ,t 

 

=3" 3

4

  ε

8a*imum thic;ness occurs at x = %

Thic;ness ratio

E*tra ,lugJeugbau E1955+ (@?+ 0alterE t d i Fh ; ; i fil

Page 82: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 82/98

 

E*tra design+ Fhu;ovs;y wing profile

Can find e in # plane from desired and t in z

Page 83: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 83/98

 

 1t Jero angle of attac;+ stagnation point is attrailing edge+ lift 5

 1dd angle of attac; a...

Can find e in #3plane from desired   and t  in z 3plane2

ε=

  4

3" 3t 

 0.##

 

Equation for symmetric Fhu;ovs;y profile in z 3plane

 y

  =!

  2

3" 3(1−2 x

  )"1−(2 x

  )2

To satisfy the Fhu;ovs;yHuttaHwhatever

Page 84: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 84/98

 

To satisfy the Fhu;ovs;yHuttaHwhatevercondition...

a

#  = ! +i"

r = "

eed to move thisstagnation point...

!

...here/

,or a cylinder of radius "+ the needed amount ofcirculation is "same as for flat plate...#

G = &p " U sin a

E*press radius " in terms of and t

Page 85: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 85/98

 

,or an angle of attac; a+ circulation we need toadd is...

Γ=4πU " sinα=πU    1+   43" 3

t  

  sinα

E*press radius " in terms of   and t ...

"=+m= (1+ε)= 

4

  1+  4

3" 3

 

Aift coefficient for symmetrical Fhu;ovs;y airfoil

C  L2π   1+0.## t  

  sinα

t   0+ this reduces to lift coefficient of flat plate

Fhu;ovs;y symmetrical profile has better lift/

% (? 1 i f il

Page 86: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 86/98

 

 x y 

 

"#  = ! +i"

3c   Dc 

%.(?. 1rc airfoil

 1irfoil of Jero thic;ness but finite curvature

    m

 a

   r

%

:se cosine theorem toget r 

"

2

=r 

2

+m

2

−2 rm cos

  π2−'

In z 3plane+

 z =r e

i'

+

2

r  e

−i '

=

= r +2

r   cos '+i r −

2

r   sin '

4

4

Page 87: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 87/98

 

 x2= r 

2+2c2+

r 2

  cos2' , y

2= r 2−2c

2+

r 2

  sin2'

' sin

2

% ' cos

2

%

r 2

cos2'sin

2'= x2

sin2'−   2

2+

4

r 2

  cos2'sin

2 '

r 2

cos2'sin

2'= y2

cos2 '+   2

2−4

r 2

  cos2'sin

2'

 x2

sin2

'− y2

cos2

'=4c2

cos2

'sin2

'

      .

:se cosine theorem2

sin '=r 2−

2

2 rm = r −

2

r

1

2m=

 y

2msin '

Page 88: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 88/98

[ ( )]2

[ ( )2

]

Page 89: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 89/98

 

 x2+[ y+(

m−

m

 )] =2[4+(

m−

m

 ) ] y⩾0

Equation of an arc in the z 3plane

"#  = ! +i"

3c   Dc 

    m

 a

   r

% x 

 z  = x+iy

3&c D&c

h – will find

4tto Ailienthal and his glider+ (@<

Page 90: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 90/98

 

4tto Ailienthal and his glider+ (@<

Page 91: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 91/98

)tagnation point needs to rotate by a + t$n-1(m/)

Page 92: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 92/98

 

)tagnation point needs to rotate by a + t$n (m/)

 1ngle of attac; !ertical shift

AineariJe2

t$n-1(m/)  m/ = e, " 

 1mount of circulation to be added2

Γ=4πU " sin   α+m

  4πU sin   α+

m

Aift coefficient2

C  L=2πU sin   α+m

  =2πU sin   α+2

.

 

 1gain+ more lift than flat plate/

% (@ Fhu;ovs;y airfoil

Page 93: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 93/98

 

%. (@. Fhu;ovs;y airfoil

● now how to create lifting surfaces with2● )traight chord+ finite thic;ness

● Fero thic;ness+ small finite curvature "camber#

● Both improve lift+ compared with flat plate● Create a lifting surface with both thickness and

camer "Fhu;ovs;y profile#

#  = ! +i"

Page 94: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 94/98

 

"# ! i"

3c   Dc 

 a

   r

        .        /        2

0.## t/ 

  – chordt  – ma*. thic;ness. – ma*. camber 

y z  = x+iy

Page 95: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 95/98

 

 x 

3&c   D&c 

 

t .

Page 96: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 96/98

Circulation

Page 97: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 97/98

 

Γ=πU    1+0.##t 

 

  sin   α+2.

 thic;ness

camber 

Aift coefficient

C  L=2π   1+0.##t 

   sin   α+

2 .

 

Page 98: Nsf Ideal Fluids

8/10/2019 Nsf Ideal Fluids

http://slidepdf.com/reader/full/nsf-ideal-fluids 98/98


Recommended