+ All Categories
Home > Documents > NSR 05-003-1

NSR 05-003-1

Date post: 03-Nov-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
53
LL SPACE FLfGHT ~ ~ N T ~ R NSR 05-003-1 89 APRIL, 1969 SPACE SCEENCES LAB0
Transcript
Page 1: NSR 05-003-1

LL SPACE FLfGHT ~ ~ N T ~ R

NSR 05-003-1 89

APRIL, 1969

SPACE SCEENCES LAB0

Page 2: NSR 05-003-1

G E 0 T E C H N I C A L E N G 111 E E R I N G

MATERIAL STUDIES RELATED TO LUNAR SURFACE EXPLORATION

James K. M i t c h e l l I a n C. Carmichael Joseph F r i s c h R ichard E. Goodman Paul A. W i therspoon Francois E. Heuz6

SUMMARY TECHNICAL REPORT

Prepared f o r Marsha l l Space F l i g h t Center H u n t s v i l l e , Alabama, under NASA Cont rac t

NSR 05-003-1 89

A p r i l 1969

Space Sciences Labora tory

U n i v e r s i t y o f C a l i f o r n i a , Berke ley 94720

Page 3: NSR 05-003-1

T ' A B L E O F C O N T E N T S

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . ii

LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

PREFACE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i v

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

SUMMARIES OF STUDIES AND CONCLUSIONS

Lunar S o i l and Rock Problems and Considerat ions i n t h e i r So lu t ion . . . . . . . . . . . . . . . . . . . . . . . . . 3

Engineering P r o p e r t i e s of Lunar S o i l s . . . . . . . . . . . . . . 8

Material Proper ty Evalua t ions from Boulder Tracks on t h e Lunar Surface . . . . . . . . . . . . . . . . . . . . . . . . . 10

Impact Records as a Source of Lunar Surface Material P r o p e r t y D a t a . . . . . . . . . . . . . . . . . . . . . . . . . 1 3

Lunar S t r a t ig raphy as Revealed by Crater Morphology . . . . . . . 15

Geochemical S tud ie s . . . . . . . . . . . . . . . . . . . . . . . 1 6 The Appl ica t ion of Geophysical Methods t o Lunar S i t e S tud ie s . . . 17

I n v e s t i g a t i o n of Rock Behavior and St rength . . . . . . . . . . . 19

The Measurement of S t r e s s e s i n Rock . . . . . . . . . . . . . . . 22

The Measurement of Rock Deformabil i ty i n Boreholes . . . . . . . . 26

T r a f f i c a b i l i t y . . . . . . . . . . . . . . . . . . . . . . . . . . 29

F r i c t i o n and Adhesion i n Ultra High Vacuum as Related t o Lunar Surface Explora t ions . . . . . . . . . . . . . . . . . . . 32

U t i l i z a t i o n of Lunar S o i l s f o r Shie ld ing Against Radia t ions , Meteoroid Bombardment and Temperature Gradients . . . . . . . . 34

The NX-Borehole Jack f o r Rock Deformabil i ty Measurements . . . . . 37

Permeabi l i ty and Thermal Conductivity S tud ie s f o r Lunar Surface Probes . . . . . . . . . . . . . . . . . . . . . . . . . 4 1

RECOMMENDATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

i

Page 4: NSR 05-003-1

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

L I S T O F I L L U S T R A T I O N S

Drawing of P r i n c i p a l P a r t s of t h e 3-Component S t r e s s Gage Designed by the U. S. Bureau of Mines ( a f t e r Merril. 1967 R.I. 7015) . . . . . . . . . . . . . . . . . 25

Schematic Diagram of Experimental Equipment . . . . . . 33

NX Borehole P l a t e Bearing Test Device . . . . . . . . . 38

Device Disassembled . . . . . . . . . . . . . . . . . . 38

Borehole Jack Detail . . . . . . . . . . . . . . . . . . 39

ii

Page 5: NSR 05-003-1

L I S T O F T A B L E S

Table ' 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

Table 12

T e s t Methods f o r Lunar S o i l and Rock Engineering Proper ty Determination e e e e . e . . . . a . 4

Summary of Lunar S o i l Proper ty Values . . a e . 9

Analysis Resu l t s - Sabine D Boulder Track . e e . e e 12

A p p l i c a b i l i t y of Geophysical Techniques t o t h e Solu t ion of Lunar Soil/Rock Engineer ing Problems . . e . 18

In-Si tu Tes t ing of Rock Behavior and St rength . a e 20

Laboratory Tes t ing of Rock Behavior and S t r eng th . e . . 21

Devices f o r Measuring S t r e s s e s i n Rock on the Ear th 23

Rat ing of In-Si tu S t r e s s Measuring Devices f o r Lunar Operation e e . . . . . . . . ., e . e 24

Devices f o r Measuring Rock Deformabil i ty i n Boreholes e . 27

Rat ing of Rock Deformabil i ty Measuring Devices f o r Lunar Operation . ., e . (. e . e e . e . e . . . . 28

Summary of Lunar S o i l Shie ld ing Study . . . . a . . a 36

Summary of T e s t Resul t s - Comparison of In-Si tu , Core, and Borehole Jack T e s t s . . e . . . . . . a . . 40

i ii

Page 6: NSR 05-003-1

PREFACE

This r e p o r t summarizes the r e s u l t s of s t u d i e s conducted during the

pe r iod March 6, 1967 - June 30, 1968, under NASA research c o n t r a c t

NSR 05-003-189, "Materials S tud ie s Related t o Lunar Surface Exploration."

This s tudy w a s sponsored by t h e Advanced Lunar Missions Di rec to ra t e , NASA

Headquarters, and w a s under t h e t e c h n i c a l cognizance of D r . N. C. Costes,

Space Sciences Laboratory, George C. Marshal l Space F l i g h t Center. Complete

r e s u l t s of t h e work are presented i n a f o u r volume De ta i l ed Technical Report,

The r e s u l t s summarized h e r e i n r ep resen t t h e combined e f f o r t of f ive

f a c u l t y i n v e s t i g a t o r s and a f u l l t i m e p r o j e c t manager/engineer a s s i s t e d by

s i x graduate research a s s i s t a n t s , represent ing several engineer ing and

s c i e n t i f i c d i s c i p l i n e s p e r t i n e n t t o s tudy of l una r s u r f a c e material pro-

p e r t i e s . James K. Mi t che l l , P ro fes so r of C iv i l Engineering, se rved as

P r i n c i p a l I n v e s t i g a t o r and w a s r e spons ib l e f o r those phases of t h e work

concerned wi th problems r e l a t i n g t o luna r s o i l mechanics and the engineer-

i n g p r o p e r t i e s of l una r s o i l s . Co-invest igators were I an C. Cannichael,

P ro fes so r of Geology, i n charge of geo log ica l s t u d i e s ; Joseph F r i sch ,

P ro fes so r of Mechanical Engineering, who w a s respons ib le f o r a n a l y s i s of

f r i c t i o n and adhesion problems and t h e t e s t i n g of materials under high-

vacuum condi t ions ; Richard E. Goodman, Assoc ia te P ro fes so r of Geological

Engineering, who w a s concerned wi th t h e engineer ing geology and rock

mechanics a s p e c t s of t he l u n a r s u r f a c e ; and Paul A. Witherspoon, P ro fes so r

of Geological Engineering, who conducted s t u d i e s r e l a t e d t o thermal and

pe rmeab i l i t y measurements on t h e l u n a r su r face .

A s s i s t a n t S p e c i a l i s t , se rved as p r o j e c t manager and con t r ibu ted t o s t u d i e s

i n t h e areas of rock mechanics and engineer ing geology.

Francois E. H e w & ,

i v

Page 7: NSR 05-003-1

1

INTRODUCTION

It i s axiomatic t h a t , among t h e myriad of t e c h n i c a l and s c i e n t i f i c

f a c t o r s t h a t must be considered i n t h e l u n a r exp lo ra t ion program, t h e

n a t u r e of l u n a r s o i l and rock s u r f a c e materials i s of prime importance i n

the design of s p a c e c r a f t l anding and s u r f a c e mob i l i t y systems , t h e design

of experiments t o be conducted on t h e luna r su r face , mission planning,

and, u l t i m a t e l y , t o mission success . Without s p e c i f i c knowledge of t h e

mechanical p r o p e r t i e s of l una r s o i l s , des igners and mission p lanners have

no choice b u t t o adopt u l t r aconse rva t ive designs and procedures i n an

e f f o r t t o i n s u r e a s t r o n a u t s a f e t y . Thus i t i s of paramount importance

t h a t as much s p e c i f i c information as p o s s i b l e about l una r s u r f a c e material

p r o p e r t i e s be obta ined p r i o r t o t h e f i r s t manned luna r mission, and t h a t

planning and design opt ions f o r f u r t h e r missions remain open t h e r e a f t e r i n

o rde r t o accommodate changes as more and more s p e c i f i c d a t a become available.

The s t u d i e s summarized i n t h i s r epor t were i n i t i a t e d i n an e f f o r t t o

b e t t e r de f ine both t h e s u r f a c e material r e l a t e d engineer ing problems and

t h e r e l evan t p r o p e r t i e s of the materials themselves. Information

developed as a r e s u l t of t h i s e f f o r t w a s then u t i l i z e d i n s p e c i f i c s t u d i e s

of problems considered t o be of c r i t i c a l importance and f o r t h e develop-

ment of a n a l y s i s and t e s t i n g methods t h a t appear p a r t i c u l a r l y promising

f o r t h e s tudy of l u n a r s u r f a c e p r o p e r t i e s by both remote and tact i le means.

The scope of work accomplished during the con t r ac t pe r iod i s indicated

by the fol lowing l i s t of conten ts of t he Deta i led Technical Report, The

names of t he i n v e s t i g a t o r s a s s o c i a t e d wi th each phase of t h e work are

i n d i c a t e d

VOLUME I

LUNAR SOIL MECHANICS AND SOIL PROPERTIES

1. Lunar S o i l and Rock Problems and Considerat ions i n Thei r So lu t ion (James K. Mi tche l l )

(James KO Mitche l l and S c o t t S. Smith)

(James K. Mi t che l l and S c o t t S. Smith)

4 . Impact Records as a Source of Lunar Surface Material Proper ty Data (James K O Mi tche l l , Donald W. Quigley and S c o t t S. Smith)

2. Engineering P r o p e r t i e s of Lunar S o i l s

Material P r o p e r t i e s Evalua t ions from Boulder Tracks on the Lunar Surface 3 .

Page 8: NSR 05-003-1

2

5.

6 ,

1.

2,

3.

4 .

1,

2.

3'

Lunar S t r a t ig raphy as Revealed by Crater Morphology

Geochemical S tud ie s

(Francois E. Heuze' and Richard E , Goodman)

( I . S . E. Carmfchael and J. Nichol l s )

VOLUME I1

APPLICATION OF GEOPHYSICAL AND GEOTECHNICAL METHODS TO LUNAR SITE EXPLORATION

The Appl ica t ion of Geophysical Methods t o Lunar S i t e S tud ie s

I n v e s t i g a t i o n of Rock Behavior and S t r eng th

The Measurement of Stresses i n Rock

The Measurement of Rock Deformabil i ty i n Bore Holes

(Richard E. Goodman, Jan J. Roggeveen and Francois E. Heuze')

(Francois E. Heuze" and Richard E. Goodman)

(Francois E. Heuze" and Richard E , Goodman)

(Richard E. Goodman and Francois E , Heuze')

VOLUME I11

PRELIMINARY STUDIES ON SOIL/ROCK ENGINEERING PROBLEMS RELATED TO LUNAR EXPLORATION

Traf f i c a b i l i t y

F r i c t i o n and Adhesion in Ult rah igh Vacuum as Related t o Lunar Surface Explora t ions

U t i l i z a t i o n of Lunar S o i l s f o r Shie ld ing Against Radia t ions , Meteoroid Bombardment and Temperature Gradien ts

(James KO Mitche l l , S c o t t S. Smith and Donald W. Quigley) '

(J. Fr i sch and U. Chang)

(Francois E , Heuze' and Richard E. Goodman)

VOLUME I V

PRELIMINARY STUDIES FOR THE DESIGN OF ENGINEERING PROBES

1,

2 , Permeabi l i ty and Thermal Conduct ivi ty S tudies f o r Lunar Surface Probes

The NX-Borehole Jack f o r Rock Deformabil i ty Measurements (Richard E. Goodman, Tran K. Van and Francois E. Heuze')

(Paul A, Witherspoon and David F. Katz)

The p r i n c i p a l conclusions r e s u l t i n g from each of t hese s t u d i e s are

presented i n t h i s Summary Technical Report , followed by a l i s t i n g of recom-

mendations p e r t i n e n t t o the advancement of l una r exp lo ra t ion technology.

Page 9: NSR 05-003-1

SUMMARIES OF STUDIES AND CONCLUSIONS

Page 10: NSR 05-003-1

3

LUNAR SOIL AND ROCK PROBLEMS AND

CONSIDERATIONS I N THEIR SOLUTION

Geotechnical engineer ing problems t h a t are r e l a t e d t o l u n a r explora-

t i o n can be d iv ided i n t o (1) those needing s o l u t i o n f o r e a r l y l u n a r

s c i ence missions and (2) t hose r e l a t e d t o extended lunar exp lo ra t ion and

the development of l u n a r bases . Among t h e most important concerns during

e a r l y missions are bear ing capac i ty of t h e l u n a r su r face , s u r f a c e e ros ion

by rocket exhaus t , system contamination, l u n a r s u r f a c e t r a f f i c a b i l i t y ,

sampling, and i d e n t i f i c a t i o n of hazard areas. When extended exp lo ra t ion

and l u n a r base development begin, then problems of excavat ion, under-

ground cons t ruc t ion , i n s u l a t i o n and s h i e l d i n g , and cons t ruc t ion materials

w i l l become important .

Tables have been prepared, presented i n Vol. I of t he F i n a l Report,

which i n d i c a t e

1. The major problem areas and t h e s p e c i f i c p r o p e r t i e s of

l una r materials t h a t must be known i f reasonable s o l u t i o n s

are t o be obtained.

2. Approaches t o de te rmina t ion of t he d i f f e r e n t p r o p e r t i e s and

p r i o r i t i e s f o r proper ty determinat ion.

3 . Some s p e c i f i c test methods t h a t might be used t o acqu i r e the

needed d a t a f o r eva lua t ion of propert ies . , This t a b l e is

reproduced he re as Table 1.

It is concluded t h a t knowledge of l u n a r s o i l dens i ty , compress ib i l i t y ,

s t r e s s - s t r a i n , and s t r e n g t h are of g r e a t e s t importance, b u t t h a t t h i s

knowledge w i l l , f o r t he s h o r t range a t least , have t o be acqui red us ing

less than i d e a l test techniques.,

Page 11: NSR 05-003-1

4

z 0

I- 4 z z & W I- W

H

H

n =- I- & W

0 & Q

a z & W w z CS z W

2 0 0 cr:

z Q -I

C cn cr: 4 z 3 -1

& 0 LL

I/)

0 I I- W E

n

H

H

n

H

n

t; w I-

v) U 0 -t c, a, E m S

c, v)

x W

rc 0

1, c,

-I-

.I-

.I- F *I- n m c, S v)

*I-

.C L C n o a, v ) v ) o s m Q H W

W

1, c, L a, Q 0 L n

0 E a, a n

a, V S m c, v)

v) a, L

*r

S 0

c, a L c, a, S a, a

-7

cr)

v) L

v) SI: a, n

Ti-

l I I v ) l a , I F I Q

I v ) I 1 - 0 l a , I S I L I S I C , l a , I L I I 1 s I C , I L I m I W 1 %

r z

Page 12: NSR 05-003-1

5

n -0 a, 3 S

c, S 0 0

*I-

v

P

W A M

v) DJ -0 S- 0.I- W c w v c , r b I E T a,a,rb E L €

V L m a , o v ) L a,+ a,

I- o a

c,n+

W Lrc - W O

.? L a, m o v) v ) r b 0 s w a-

nu

v

h c, L a, Q. 0 L n

c, S a,

0 a, > a, -0

L a, -0 S x

E 7

I m a ,

m-0 7 s o o v ) 'I-zcc, c u .- -a& a, r E E k S rb ( n M

7 .I-

0 v)

L a, T c, 0

+ 0

S 0 c, Q.

.I-

5 v ) v ) m a , rb .I- c,

W Z , W a , L Q .I- 0 3 % 0-Q a, nc

-0 S 3% 0 0

h Lc, n

Y rb s n

-0 a, S

rb L cn

I a, S.

+ S

.r

.I-

*I-

v 3 +

s s 0 0 0 0 € E

hG L L L I - L O O O -P a,+++

v) w v ) C n c , W I n @a,

c, S O L .I- rb Ma, r b f LV, c, aa, s s arb n >

*C

-0 fa 0 P

fA S 0

c, n .I-

5 In v) rb

v) V

c, v)

L a, w 0 rb L rb s V

S

rb L c, v) I

v) v) a, L w rn

.I-

-I-

.I-

u3

S

S Y

c, 0 z

i5

v) W c, L W P 0 L Q

S 0

.r

.C

in a, f -0 eel:

Page 13: NSR 05-003-1

6

L 0 rc

aJ Lrc - a 0 *I- L aJ v)o v) C n m 0 s w an

-9-a

U

=-I c, L a P 0 L P

h

v ) W S 5 v) aJQ

Y V 0 L -a S m c .I-

0 VI

rc 0

1, c, x aJ P

V

.I-

r-

5 m .I-

C , -

w c, v) aJ c, S c, cn S aJ L c, v)

Eo L rc m c, m n

h L 0 c, V a Y- v)

+, m VI S Is

*I-

n

W r: m v) aJ

Ltl

u) L o v ) m c , t v ) a J a J V I -

aJ 55 L 3 -r c , > m .I- L c ,

cn

n V

n Q

n m

v

W

U

V U h,

r L m .I- 7 L

Page 14: NSR 05-003-1

7

n 2 c, L M a 0

L,

S 0

2 0 c,

v) S 0

c, P

.I--

5 v) v) M

aJ L S 0- aJ L n

.r

n W

n M

W

n al n M

- V a J car- s- 0 v)s 0

*I- C aJ L S S

aJ

n M S 0

W

7

.C

v, cx W

L 0 rc 0) c, (d S 0- aJ

W 4

i. v) aJ 3

CY

I S 0 L .- n

W a, S S

c, S 0 V

*I-

W

- W J

4 I- m

> S a J m

c,

n

aJ V s v )

9- aJ L, c,

M > L aJ v) n 0

M S v)

7

v) 0 L V

E S 0 L c, V

.r

v ) v ) S a J C S 0 m o 0

aJ Lrc - a 0 Q W .I- L aJ v)o v) v ) ( d 0 s m aI-4

U

h c, L a, Q 0 L Q

v)

aJ v) .. v) aJ L c, v) h c,

*I- 7 .-

S 0 c, .r .- a,

c, 3 - v)

0 P

E h

n

M L S

0 v) B 4 u

m r-

in C C

Page 15: NSR 05-003-1

8

ENGINEERING PROPERTIES OF LUNAR SOILS

A c r i t i c a l review of a v a i l a b l e informat ion from 34 sources concerning

the p r o p e r t i e s of l u n a r s o i l s has been made, wi th emphasis on information

der ived from Ranger, O r b i t e r , Surveyor and Luna Programs. A d e t a i l e d

t a b u l a t i o n of t h e proper ty va lues and t h e methods used f o r t h e i r determina-

t i o n i s given i n Table 2-1 of t h e De ta i l ed F i n a l Report. A s a r e s u l t of

t h i s review t e n t a t i v e va lues f o r use i n t h e a n a l y s i s of engineer ing

problems have been s e l e c t e d and are presented i n Table 2.

i n Table 2 are estimates presented by Bank* which r e f l e c t t h e r e s u l t s of

s t u d i e s by the Jet Propuls ion Laboratory i n connect ion w i t h the Surveyor

Program. It may be seen t h a t i n gene ra l t he va lues cor robora te each o the r .

Also i n d i c a t e d

*Bank, H, Letter t o 0. H. Vaughan and N o C. Costes , MSFC, March 21, 1968.

Page 16: NSR 05-003-1

9

L N

5 \ z

30 0 %

0 co

0

I co d 0

0

P

v

*P v) n

.)( W I- Q E I- m W

1

3

H

a

3 W

> W CY

m I t-

H

H

0 Ln m I

d m % 0

v)

a, n 0

v)

X fd

Z E

P

m I I 0

X

h

l a c\1

W I 0 P

W 3 -1

2

5 w -1 a

0 oc a

x

m W 3 1

2 > I- CY w 0 CY

(u 1

-10

Q + C Y

Q z 3 -1

LL 0

> oc 5 z m

a

a

W H

m v ,

5

0 Ln m

C V

L I S 0 L

-r-

.I-

P 5

L c, v) a, L L a, c, 0 c, L 5-P

.r- 5 E m .r fd m a

*r

r -7

r n r n

5 5 .r m Q

m N O

I--N I I

- 0

0 -

. a

D O 7 3 c n a, aJE CY%W

I- O

I- m oc w I- O Q cr:

O

H

H

3

t s W 1

LL 0 CY

H

h

c, X a, c, a, a, v) v

I n

Y S 5

sf

W O

oc 3 m

;f m W N

v,

W

H oc 0

>- z w

>

-I t;

2 H a

E CY w a

z 0 H

L

E5

v, 0 a O

o z 5 1

0 m H

a 0 CY a

Page 17: NSR 05-003-1

10

MATERIAL PROPERTY EVALUATIONS FROM BOULDER

TRACKS ON THE LUNAR SURFACE

The a n a l y s i s of boulder t r a c k s on t h e l u n a r s u r f a c e as seen i n Lunar

O r b i t e r photographs should be p o t e n t i a l l y rewarding i n terms of y i e l d i n g

informat ion on s o i l and rock v a r i a b i l i t y a t d i f f e r e n t l oca t ions .

a b l e q u a n t i t a t i v e de te rmina t ions should be p o s s i b l e i n those cases where

r e l a t i v e l y accu ra t e va lues of boulder s i z e , t r a c k shape and s inkage, and

s lope angle can be obta ined , as should be the case f o r some of t h e

Surveyor r e s u l t s , and as w i l l be p o s s i b l e dur ing Apollo missions.

Theore t i ca l and experimental s t u d i e s are d e s i r a b l e i n o rde r t h a t a

r a t i o n a l a n a l y t i c a l framework may be developed. The r e s u l t s w i l l be use-

f u l no t only f o r boulder t r a c k a n a l y s i s , b u t a l s o f o r s tudy of t h e l u n a r

roving veh ic l e t r a f f i c a b i l i t y problem.

Reason-

The Sabine D boulder t r a c k w a s analyzed us ing several methods i n

a d d i t i o n t o those a l r eady presented i n t h e l i t e r a t u r e . The r e s u l t s of

these ana lyses are summarized i n Table 3. It w a s shown, using bear ing

capac i ty f a c t o r s f o r foo t ings on sand s lopes, t h a t a boulder of s p e c i f i c

g r a v i t y s i m i l a r t o t h a t f o r terrestrial rocks; i c e . , 2.7-3,0, would be

uns t ab le on a 30" s lope having Surveyor s o i l c h a r a c t e r i s t i c s .

o t h e r hand i t would be s t a b l e on a 13" s lope , t h e es t imated s lope on

which the Sabine D boulder f i n a l l y came t o rest.

On the

Analysis of t h e boulder w i t h i n t h e framework of empi r i ca l c o r r e l a t i o n s

developed f o r cons tan t v e l o c i t y r o l l i n g of spheres down s lopes of cohesion-

less s o i l l e d t o the very reasonable boulder dens i ty e s t ima te of 3.0.

From a p p l i c a t i o n of an e m p i r i c a l equat ion developed t o desc r ibe the

r o l l i n g r e s i s t a n c e of a r i g i d wheel i n sand a boulder d e n s i t y of 3.5 w a s

obtained. An estimate obta ined us ing t r a f f i c a b i l i t y r e l a t i o n s h i p s based

on t h e s o i l va lue system gave a dens i ty of 2.7 f o r an assumed va lue of n

equal t o 1. An a n a l y s i s based on s i m i l i t u d e r e l a t i o n s h i p s f o r t r a f f i c -

a b i l i t y gave an u n r e a l i s t i c a l l y low va lue f o r dens i ty . I n a l l cases t h e

estimates involved a number of approximations and assumptions.

Whatever t h e methods u l t i m a t e l y s e l e c t e d f o r boulder t r a c k a n a l y s i s ,

i t w i l l be impera t ive t h a t t he s a m e method be appl ied i n t h e same manner

t o a l l t r a c k s i f meaningful comparative r e s u l t s are t o be obtained. It

i s recommended t h a t a r a t i o n a l theory f o r d e s c r i p t i o n of t h e mechanics of

Page 18: NSR 05-003-1

11

boulder t r a c k formation be developed f o r t h i s purpose. It should b e noted

t h a t only r e g u l a r , continuous t r a c k s have been cons idered thus f a r . Tracks

formed by bouncing, sk ipping , and sk idd ing boulders must be analyzed

s e p a r a t e l y .

Page 19: NSR 05-003-1

12

v) w c, c,

.r

.r

s a ff

-0 W > L w .r

n

m m n

a

c,

c,

P

Y

W a,

v) v)

a J

m m n

a a

cr

c,

E

-0

L S v)

Y

m P

-0 0 c c, w x v)

v) .r

h

m E 4

-

L 0 cr

m c, VI w > E

m .r

Y

I

L O 0 0 e m

.r

V Y

' 4 ' 1

3%3

N N

I1 I1

.r u .r m m v ) SV- E w L w -0 a-0

v) L L aJ- a J h -0 m u w -cr- n a s a o 0 0 0- m NKI VI

0

m m I1 m

€ ? - E -z 3 m n.? LO

Ln 2 q

I1 \ * E

0 w r - 0

a - 0

I1 .r 0 urn 7

L a, 'P

S 0 F

m

m

m aJ L

m EaJ

*r E L S

a 0 m - m >

- * z e

Q m

'9 0

+ z U

i;8

x v

F ?

c,-0 u + .r

m z v u

.r 7 L- a J e

v I1

c , c , m - c , s V J f f

m~ n e .r

h

h W m 7 v

L w

E w L 0 z

B

L -0- w s a l m n

o o a - w - o m nv) w o n o

,- m m h -

E s 20 0

cr z - 0 h . h . lnm S W O

m

E 5

K Y

\

* L o

m - I1 I1

8 F

- 0 o v )

I1 m Q u -

.r

h

m

m m

S

L a,

.r

C c,

I m E

c , m 0 0 O L L a

2

.r

h

h UJ m F

IC 0 C L w o -

r - mlN a m

3 2-

Q Q 0 - +

U v)

s u o z V

F 11 .r c , c , 0 7 o s L o -

VI

L 0 C c,

3

h

N N

. E E O *r \

\z 7 N

L n h N-

n

v I1

3 .r V m m V

m E L aJ

.r

m m

3 .r 0

VIE E O

$ 3 L a 0

ahl m II 0

m

m m

m m

0) L

E

L aJ

.r

c, E L o w L U L 7

S 0 .n 3 L -r aJ v w as

0)

m s m o m ms. s m

L L ! m m i W 7 - l

n a - u : - 0 L I s .r -I a v 0 1

n v - 4 O !

3- I o m : -1s I

.r

fv- I

h

h W m 7 - w 0 .r c .C L

b .r V

0.

0 m E L 0)

m m

.r

m m

3

= 5 2'1

.r m

W E E O W \

L w o

S N 0 m II

m

m m

m m

a L

E

L w

.r

L w

Sc, o s 2. m w

b 3"

. w

.r L

n s U L

E

u m m y m u

m v

m

.r

'E 2 9 9 U U

U L *r 0 c r a

c , S v ) v )

m a

h

h W m 7 - E 0 c, VI W

m m 7

w

m

Ei

('f

3

\

m E

I1

.r

VI S 01 -0

L a -0

S 0 7

m

0

m m

h

h W m 7 w

L w

E -0 L

0 z

VI L 0 e c,

B

3

w -a mc, E .r m u 0 W 7 n w o >

v) u. E v) .r >-

- 7

BE .r

v)cr S E

-0cr v)

L E 0 0 v v

S L 0 0

w m

7

mv-

c1 S a,

U

L

x - w r -0 .r S \ *r .@

w EUJ 0 v I1

.r

m m

-

aJ I € .r s -07 E O 0 2 L V

-aJ .r u 0- m s 0

0

> s L O s .r v)c,

L m

3,"

m m I,

aJ L LL

.r

7

.r 0 v)

7 m E 0 c,

L v- .. S E O

c,

w u c a J

-0- o r w

e-

.r

.r

.r .r

- m m a

3-

mm .r F

v) L 0 c c,

3

L 0 q_

h

N

I1

N

3 .r

v) E 0) -00

L O a 7 wv) 0 0

n

r_ a o

m m

7

I1

E

Ln

11

Y

0

I1

Y

8

0

L w -0

S L o w m u * a 7

s o + M W .r n L

%9 x r n w m s m V Y E L .r .r c m - 0

6 2 c, VI

aJ a m -

- I

7

> E

.r o m v ) w

- N 0 W m

E

- : a n q m Y Y I1 w m z

VI L 0 x c,

z

0

Ei E \

N h

0 I1

3 .r

U) E a, -0

L a, -0

S 0 7

m

0 I1

cr E S o w cr-0 u m w L - m v- w x m m a s -0 -r L s\ w n - 0 - - w a SUJ 0 0 m v II

.r .r

a J h mcr m .r Y V I E S -r a m - 0

L L w a J -0-0

s s 0 0 -r-

m m

h V i+ h a W m I I

s n

7

L m a J

w L S a - m

E w *r - 0 - 0 a m - P o

*r -0 E E .r m m v )

w 5

.E- 7 -

2

3 0 c cr

Page 20: NSR 05-003-1

13

IMPACT RECORDS AS A SOURCE OF LUNAR SURFACE MATERIAL

PROPERTY DATA

Lunar O r b i t e r photographs show many secondary impact craters formed

by ejecta b locks thrown ou t dur ing the formation of primary craters on

the moon. I n an a t tempt t o s tudy t h e l u n a r s u r f a c e homogeneity from

these photographic records , D r . H. J. Moore of the Astrogeology Branch,

U. S. Geological Survey, developed the fol lowing equat ion semi-empirically

f o r p e n e t r a t i o n of a p r o j e c t i l e i n t o t h e ground,

1

where P = depth of pene t r a t ion , L = l eng th of p r o j e c t i l e , c = cons tan t ,

= m a s s dens i ty of t h e p r o j e c t i I e , pt = m a s s dens i ty of t h e t a r g e t pP material, g = a c c e l e r a t i o n of g r a v i t y , and V = ver t ica l component of

t he impact v e l o c i t y of t h e p r o j e c t i l e . From an a n a l y s i s of secondary

impact crater d a t a from O r b i t e r photographs us ing t h i s equat ion Moore

concluded t h a t t h e l u n a r s u r f a c e i s inhomogeneous over the areas i n v e s t i -

gated.,

0

Because t h i s conclusion i s a t va r i ance wi th the f i n d i n g s a t the f i v e

Surveyor landing sites, f u r t h e r s tudy w a s made of r e l a t i o n s h i p s t h a t might

be used f o r s tudy of secondary impact craters. The Moore equat ion can be

modified t o t h e form

where K i s a s o i l cons tan t and Q i s t h e weight of t he p e n e t r a t o r d iv ided

by t h e c ros s s e c t i o n a l area.

(<200 fps ) p r o j e c t i l e p e n e t r a t i o n i n t o t h e ground were examined us ing

several equat ions . The d a t a examined inc luded p e n e t r a t i o n records f o r

several s o i l types. It w a s found t h a t t he modified form of t h e Moore

equat ion provides t h e b e s t r e l a t i o n s h i p between s o i l type and p r o j e c t i l e

p e n e t r a t i o n on e a r t h . Because of t h i s and because of i t s s imple form,

i t s use f o r f u r t h e r a n a l y s i s of secondary impact craters i s recommended

i n preference t o the o t h e r equat ions t h a t were examined.

Avai lab le d a t a on low impact v e l o c i t y

Page 21: NSR 05-003-1

14

'However, examination of t h e assumptions r equ i r ed f o r t h e a n a l y s i s of

l u n a r secondary impact craters i n d i c a t e t h a t t h e r e exist g r e a t p o s s i b i l i -

t ies f o r e r r o r which can completely nega te the purpose of t he a n a l y s i s i f

it i s app l i ed i n t h e hope of determining abso lu te s o i l p roper ty values. It appears t h a t a t t h e p re sen t t i m e conclusions can only be drawn concern-

i n g l u n a r s o i l v a r i a b i l i t y on t h e b a s i s of l u n a r secondary impact crater

da ta .

Information on secondary impact c r a t e r s has proved beyond any doubt

t h a t l a r g e areas of the moon's s u r f a c e are covered by s o i l t o a depth of

a t least one t o two meters. Because the boulders bounced out of t he

secondary craters, i t would appear t h a t t h e l u n a r s o i l ( o r underlying

rock) o f f e r s a s i g n i f i c a n t r e s i s t a n c e t o pene t r a t ion .

It i s t o be hoped t h a t cont inued s tudy of secondary c r a t e r i n g

phenomena w i l l l e a d t o a reduct ion of t he u n d e r t a i n t i e s i n t h e ana lyses ,

and t h a t more s p e c i f i c q u a n t i t a t i v e estimates of s o i l p r o p e r t i e s can be

ob ta ined .

Page 22: NSR 05-003-1

15

LUNAR STRATIGRAPHY AS REVEALED BY CRATER MORPHOLOGY

The e x t e n t and th ickness of t h e l u n a r s u r f i c i a l l a y e r w i l l p l ay a

major r o l e i n

1. Traf f i c a b i l i t y a n a l y s i s of planned traverses

2. Optimizat ion of bor ings f o r sampling purpose

3. Analysis of foundat ions f o r major s t r u c t u r e s

4 . Const ruc t ion of excavat ions and embankments.

A c r i t i c a l review w a s conducted of t he techniques used s o f a r t o

determine l u n a r s t r a t i g r a p h y from crater morphology. They are:

1. Comparative s t u d i e s of Ranger photographs--and l abora to ry s imula t ion of over lay depos i t i on ( J a f f e , 1965,1966)

2. Direct s t u d i e s of O r b i t e r and Surveyor photographs--Analysis of b lock f i e l d s , terraces and outcrops

3. Comparative s t u d i e s of O r b i t e r photographs--Considerations of impact crater morphology (Quaide and Oberbeck, 1967,1968)

4 , U s e of a mathematical model f o r time-dependent l u n a r crater r i m - e ros ion and f l o o r depos i t i on (Roos, 1968)

The r e s u l t s of a l l s t u d i e s are summarized i n t h e Deta i led Technical

Report (Vol. I , Chapter 5 ) i n t e r m s of technique used, l o c a t i o n of

area s tud ied on t h e moon, crater diameter range, probable o r i g i n of

crater, and e s t ima ted depth of s u r f i c i a l l una r l a y e r .

S tud ie s based upon v i s u a l observa t ion of l u n a r craters and cornpari-

son wi th exper imenta l r e s u l t s o r a n a l y t i c a l models have apprec iab ly

narrowed the range of conclusions regarding t h e luna r s u r f a c e s t r a t i g r a p h y .

Most maria s u r f a c e s are be l i eved t o be o v e r l a i n by a l a y e r of f i n e gra ined ,

cohes ionless t o weakly cohesive fragmented rock whose th ickness varies

from a few meters t o a few t e n s of meters ( see Table 5.1, Ch. 5, Vol. I ) .

Compress ib i l i ty decreases and average g r a i n s i z e inc reases from t h e

s u r f a c e down. Rubble i s probably present . This f ragmental b l anke t can

probably be excavated and handled wi thout t h e use of explos ives except i n

t h e v i c i n i t y of l a r g e c r a t e r s where very l a r g e blocks may be found.

For f i n a l mission planning a t s p e c i f i c sites, ex tens ive high resolu-

t i o n photographic coverage is requ i r ed , and the i n t e r p r e t a t i o n should r e l y

upon v i s u a l observa t ion (Lunar O r b i t e r Photo Data Screening Group 1967,1968).

Other procedures are s t i l l t o o open t o va r i ed i n t e r p r e t a t i o n s a t t h e p re sen t

t i m e .

Page 23: NSR 05-003-1

16

GEOCHEMICAL STUDIES

Study w a s made of t h e probable c h a r a c t e r i s t i c s of l u n a r lava and

the imp l i ca t ions of t h e s e c h a r a c t e r i s t i c s i n t h e i n t e r p r e t a t i ~ n of l u n a r

composition and h i s t o r y . It w a s concluded t h a t because t h e a v a i l a b i l i t y

of oxygen i n t h e lunar and terrestrial environments is d i f f e r e n t t he

p r o p e r t i e s of l u n a r and terrestrial b a s a l t may d i f f e r , e s p e c i a l l y wi th

r e s p e c t t o t h e magnetic minera ls .

It is suggested t h a t i n t e r p r e t a t i o n and c o l l e c t i o n of remnant

magni t iza t ion in re turned l u n a r samples may be cons t ra ined by the

p o s s i b i l i t y t h a t t h e carriers of magnet izat ion, t he Fe-Ti ox ides , could

have Curie temperatures in te rmedia te between t h e d iurna l temperature

l i m i t s

Page 24: NSR 05-003-1

17

THE APPLICATION OF GEOPHYSICAL METHODS

TO LUNAR SITE STUDIES

Geophysical methods can be d iv ided i n t o two ca tegor ies : those which

measure n a t u r a l l y e x i s t i n g f i e l d s , and those which measure a r t i f i c i a l l y

c rea t ed f i e l d s . Measurements of n a t u r a l l y e x i s t i n g f i e l d s , such as

g r a v i t a t i o n a l and magnetic, r e f l e c t average condi t ions over l a r g e volumes.

On t h e o t h e r hand, seismic, electrical r e s i s t i v i t y , o r conductive

e lec t romagnet ic methods which make use of a r t i f i c i a l l y c r e a t e d f i e l d s can

usua l ly be s o designed as t o r e so lve t h e e f f e c t of l o c a l s t r u c t u r a l

f e a t u r e s . A l l geophysical methods however are dependent f o r t h e i r success

upon an apprec i ab le c o n t r a s t i n phys i ca l p r o p e r t i e s between t h e body t o be

s t u d i e d and the material surrounding it.

Lunar engineer ing problems which can be i n v e s t i g a t e d us ing geo-

phys i ca l methods inc lude those which concern: l o c a t i o n and d e l i n e a t i o n

of s o i l depos i t s ; foundat ions; excavat ions; l o c a t i o n and d e l i n e a t i o n of

n a t u r a l c a v i t i e s ; determina t ion of engineer ing p r o p e r t i e s of s o i l s and

rocks; and c h a r a c t e r i z a t i o n of l u n a r resources .

The a p p l i c a b i l i t y of s p e c i f i c techniques t o s p e c i f i c problems i s

summarized i n Table 4 .

Page 25: NSR 05-003-1

18

TABLE 4

APPLICABILITY OF GEOPHYSICAL TECHNIQUES

TO THE SOLUTION OF LUNAR SOIL/ROCK ENGINEERING PROBLEMS

__ ~-

Soil o r Rock Attribute Application Geophysical Method*

Deformability o f Soi l s

Shear Strength

Dens i t y

Porosity

Soil Prof i le and Depth t o Rock

Underground Cavities

Ease of Removal

Dynamic Response Spectrum

Foundations Seismic ( M )

Slope S t a b i l i t y None

Excavations; Gravity (M) Shielding; Seismic (M) Founda t i ons

Storage Underground Res i s t i v i ty** ( M )

Excavations ; Seismic ( I ) Foundations Gravity ( I )

Traff i cabi 1 i t y 5 Seismic ( I ) Storage Underground Gravity ( I )

Excavations seismic ( I )

Foundations of Seismic (M) Rotating Towers

*M = property closely related t o d i r e c t l y measured quant i t ies .

I = property inferred through correlat ions or from comparison of measured response w i t h idealized te r ra in models.

**Probably inappl i cab1 e t o 1 unar exploration because of the expected t o t a l absence of pore f luids .

Page 26: NSR 05-003-1

19

INVESTIGATION OF ROCK BEHAVIOR AND STRENGTH

Whereas, u n t i l a few years ago, design of s t r u c t u r e s i n rock w a s

s t i l l approached on t h e b a s i s of experience and rule-of-thumb, r ecen t

developments i n Rock Mechanics are provid ing more and more dependable

and real is t ic t o o l s of i n v e s t i g a t i o n , t he use of which appears v i t a l

f o r sound engineer ing p r a c t i c e , be i t e a r t h l y o r l una r .

Four s t e p s are involved i n t h e design of any rock s t r u c t u r e (Deere,

19671 :

1, Determination of boundary condi t ions

2. Determination of the engineer ing p r o p e r t i e s of materials

3 . Pred ic t ion of s t r u c t u r e behavior

4 . Assessment of a c t u a l performance

The second s t e p i s considered here . A summary l i s t i n g and r a t i n g of

through i n s i t u and l abora to ry t e s t i n g programs

rock t e s t i n g techniques f o r behavior and s t r e n g t h , i n the l abora to ry and

i n s i t u , are presented i n Tables 5 and 6.*

I n the p re sen t s ta te -of - the-ar t design i s most ly based on i n s i t u

behavior and l abora to ry s t r e n g t h ana lyses , owing t o t h e bulk iness of

f i e l d equipment., However ins t ruments can be designed t o ope ra t e i n bore-

ho le s on t h e moon, (Goodman, Van and Heuz6, 1968), and meaningful

l abora to ry tests can be performed on a l i m i t e d q u a n t i t y of r e tu rned

samples, t o y i e l d , d i r e c t l y o r through c o r r e l a t i o n techniques, r e l i a b l e

d a t a on luna r rock s t r e n g t h and behavior t h a t are needed f o r a sound

planning of l u n a r exp lo ra to ry missions

*For b ib l iography, t he r eade r i s r e f e r r e d t o the Vole 11, Chapter 2 of t he Deta i led F i n a l Technical Report ,

Page 27: NSR 05-003-1

20

r 5

0 a 0 0

to 0

I k- (3 z W a L 0 z 4

a 0 3 I W

Y 0 0 a

LL 0

(3 z I- v) W I-

3 I- v)

I

-

E

---I--- +. 0 2

e' E. I / F n

m

m f

0 z c .- e o U .- - n n

b

8

t

O

a - r

e m .-

0

0 z

cn lD

N d N

r-' .

t d

Page 28: NSR 05-003-1

21

ac b (3

w M I- m

D P Q

a 0 - k I w m

Y 0 0 E

LL 0

(3 z 6 bl I-

> a

5 0 m 5

0 2

a, N

I__

W 0 2 9 8 W a

__I_

0 z

7

5

w"

b"

s'

0 z

-

W

a

- OD N

f -

e a a +

__I_

N O I S N 3 1

311vJ.s

t .- c

Slj3HJ.O

Page 29: NSR 05-003-1

22

THE MEASUREMENT OF STRESSES I N ROCK

Rock d i f f e r s from many o t h e r engineer ing materials i n t h a t i t o f t e n

exists under s i g n i f i c a n t i n i t i a l stresses. Excavation a t t h e s u r f a c e o r

underground d i s t u r b s t h i s stress f i e l d and induces a new one. The f i n a l

stress state i s thus d i r e c t l y dependent upon t h e i n i t i a l one which must

t h e r e f o r e be determined f o r any r a t i o n a l ana lyses of a rock s t r u c t u r e .

An ex tens ive review of techniques used f o r t h e de te rmina t ion of

stresses i n a rock mass on the e a r t h is sumnarized i n Table 7.

A l i s t i n g and r a t i n g of probes be ing used f o r t h e purpose of stress

measurements are given i n Table 8.*

cr i ter ia which are p e r t i n e n t f o r l u n a r a p p l i c a t i o n s .

The r a t i n g values are ass igned using

One of t h e most promising gages f o r e a r t h use has been designed by

the U. S. Bureau of Mines and is shown i n Fig. 1.

*Def in i t ions of probe numbers and r e fe rence numbers are contained i n t h e De ta i l ed F i n a l Technical Report , Vole 11, Chapter 3.

Page 30: NSR 05-003-1

23

b

Page 31: NSR 05-003-1

24

z 0 I- 5 E W a 0

a Q z 3

-

a 0 LL

cn w

> W

2

n

a z 3 cn 5 W 2

cn v) W

I- cn

3 !- 5

- a

a

I z LL 0

a z

-

- !z a

w 0 m a n

l- a a n a 0 t-

a m v

Page 32: NSR 05-003-1

25

m m

I

z 0 I- o W v,

- a W 3 a,

G

Q

E 0

3

c c n L o 0)

1

- 0 0 + -

0 0 c

c c W

5 V 0

0. - c c 0)

5 u 0 - a

0)

E e 0 V

c W E E

o. .- L

c v)

L

W

W

0 u

0

- n

L

.c

v)

W c v) 0

L

1

W m o m

c 0

W VI 0 0

W cn 0 cn c 0

W 01 0 m r 01

0) v)

0 n o. 0 u c = E .Y c c .-

a

L

c 0 V

W v) c 0

a

L c

L W n n a a

0

m 3 J

c E 0 c v) .- a

W > 01 W v) -

x 0 0 rn

a 0 0 v)

Page 33: NSR 05-003-1

26

THE MEASURFXENT OF ROCK DEFORMABILITY I N BOREHOLES

Mapping and d e s c r i p t i o n of var ious rock members w i t h i n an e a r t h s i t e

may r e q u i r e many f e e t of d r i l l ho les . However q u a n t i t a t i v e charac te r iza-

t i o n of the rock l i m i t s on t h e s o l e b a s i s of re turned samples is a p t t o

be misleading; t h e s o f t e r and weaker components tend t o be l o s t and the

f a b r i c of t he rock b lock-f rac ture system i n s i t u i s not sampled. The

w a l l s of bor ings form more complete samples of the rock m a s s ,

Accordingly w i t h i n t h e p a s t few yea r s a number of devices ( d i l a t o -

meters, borehole j a c k s , borehole penetrometers) have been developed which

can be i n s e r t e d i n t o a borehole t o apply a load and measure t h e response

d i r e c t l y on i t s w a l l s . They combine the advantages of reduced s i z e and

deeper i n v e s t i g a t i o n .

A l i s t i n g and r a t i n g of t hese probes i s summarized i n t h e fol lowing

t ab le s . " E f f o r t s should be d i r e c t e d towards t h e l u n a r i z a t i o n of a borehole

j a c k us ing LVDT'S as monitoring u n i t s .

u se o f narrow angle j acks be i n v e s t i g a t e d f o r t e s t i n g of i n s i t u s t r e n g t h

c h a r a c t e r i s t i c s of s o i l s o r rocks

It i s a l s o recommended t h a t the

*A l i s t of r e fe rences i s given i n Vol, 11, Chapter 4 of t h e Deta i led F i n a l Technical Report,

Page 34: NSR 05-003-1

27

0

8 w

W 0

K

a

u

3 m a

a 9

a

U W

m

m X K

3

x E i--

W

E

9

m r--

W 0 z K

a fn 3

*. . .. ..+-.-

8 n

w n ' - , i

, ! 4 F -

W

3 m m Y

a c)

Y a

0

W

0 I w 0 m

a 8

g w

4 n

w

I- z w z w 0

-I a v,

4

: c

5

0 3

SU313WOkJ13N3d 310H3808

Page 35: NSR 05-003-1

28

z z1 a I- 12: W a 0

12:

Z 2 -I

12: 0 LL

m W u > W

a

-

n c3 Z

0 - F I E

3 m

u a

r - > - I- 1 rn a E 12: 0 LL w n Y 0 0 12: LL 0

(3 Z I-

(L

-

- a

W u 2 W

W

a

a ti 8i t !-

su 313 wo iv i ia

-

m

-

h. v) W 2.

-

0 z

-

0 z

-

v) W t

-

v) W t

- h. v) W t

-

h. v) W t

__

0 z

-

0 z

-

f) (u

-

v v

0 0 z z

0 0 z z

0 0 z z

0 0 z z

o m z ?

0 0 z z

v ) v ) w w t t

0 0 z z

0 0 z z

F J 1

Page 36: NSR 05-003-1

29

TRAFFI CABILITY

Because of t h e severe c o n s t r a i n t s on weight , power supply, and t i m e

t h a t w i l l be a s soc ia t ed wi th any lunar mission, as w e l l as t h e need t o

i n s u r e s a f e t y t o as g r e a t an e x t e n t as p o s s i b l e , a p r e c i s i o n of design

and e s t ima t ion of r e l evan t mob i l i t y f a c t o r s w i l l be needed f o r l una r

v e h i c l e s t h a t exceeds by f a r any requirements imposed on t h e design and

performance p r e d i c t i o n of terrestr ia l veh ic l e s . Both the topographic

c h a r a c t e r i s t i c s of the t e r r a i n and t h e p h y s i c a l p r o p e r t i e s of t h e s u r f a c e

materials wi th which t h e v e h i c l e i n t e r a c t s are important. Emphasis during

t h i s p r o j e c t has been on t h e s u r f a c e material r e l a t e d f a c t o r s wi th the

o b j e c t i v e s of (1) reviewing methods f o r s o l u t i o n of v e h i c l e mob i l i t y

problems, (2) recommending methods f o r use i n i n t e g r a t i o n of s o i l d a t a

i n t o v e h i c l e design and mission planning, and ( 3 ) recommending methods

f o r determinat ion of t h e needed s o i l da ta .

The conclusions r e s u l t i n g from t h e s e s t u d i e s are as fol lows.

(1) While complete monoscopic photographic coverage of t h e moon has been

provided by Orb i t e r , t he s m a l l scale and l i m i t e d q u a l i t y and q u a n t i t y

of s t e r e o coverage makes topographic a n a l y s i s on t h e scale needed f o r

t r a f f i c a b i l i t y s t u d i e s d i f f i c u l t .

(2) Both t h e s o i l va lue (U. S. Army Ordnance Tank-Automotive Command Land

Locomotion Research Laboratory Method) and t h e cone index (Army

Mobil i ty Branch, Corps of Engineers, Waterways Experiment S t a t i o n )

systems of t r a f f i c a b i l i t y a n a l y s i s have been reviewed. These two

systems are used most ex tens ive ly f o r off-the-road locomotion s t u d i e s

a t t h e p re sen t t i m e , The major advantage of t he s o i l va lue system is

t h a t i t y i e l d s q u a n t i t a t i v e va lues of performance parameters , e ,g .

t o t a l t h r u s t , drawbar p u l l , power requirements, f u e l consumption,

which can be used f o r v e h i c l e design and mission planning. Its

major disadvantages are t h a t p a r t s of t h e t h e o r e t i c a l b a s i s of t he

method are ques t ionable , t h e t e s t i n g r equ i r ed f o r de te rmina t ion of

t he needed s o i l d a t a i s complex and n o t r e a d i l y adaptab le t o luna r

s u r f a c e opera t ions , and i t i s d i r e c t l y app l i cab le only t o level

ground condi t ions .

Page 37: NSR 05-003-1

30

The cone index method, on t h e o t h e r hand, involves very simple

p e n e t r a t i o n t e s t i n g which could be e a s i l y adapted f o r l una r opera-

t i o n s . The disadvantage of t h i s method, however, is t h a t t h e

information obta ined i s only s u i t a b l e f o r determinat ion of whether

a given v e h i c l e w i l l o r w i l l n o t s a t i s f a c t o r i l y n e g o t i a t e a given

t e r r a i n . This may poss ib ly be overcome i n t h e f u t u r e through

f u r t h e r development of s i m i l i t u d e a n a l y s i s techniques.

A review of r ecen t t r a f f i c a b i l i t y and mobi l i ty l i t e r a t u r e has i n d i -

ca ted t h e fol lowing:

a.

b.

C.

de

e.

f .

The s o i l va lue system appears t o be widely used as a b a s i s

f o r l u n a r roving v e h i c l e ana lyses .

It would be d e s i r a b l e t o cont inue s t u d i e s f o r development of

methods of conver t ing c, $I, and p t o k k and n.

A means f o r conversion of cone index d a t a t o s o i l value

system parameters would be very u s e f u l .

Fu r the r a n a l y s i s of bea r ing capac i ty approaches t o v e h i c l e

mob i l i t y would appear des i r ab le .

An analog computer technique s i m i l a r t o t h a t r epor t ed by

VanDuesen (Chrysler Gorp., Contract NASW-1287, May 1966) f o r

modeling the dynamics of so i l -veh ic l e i n t e r a c t i o n appears

promising and is deserving of f u r t h e r s tudy.

A number of r e p o r t s were reviewed which are concerned mainly

wi th the design and t e s t i n g of proposed luna r roving veh ic l e s

of va r ious types. Many of these s t u d i e s were done on simu-

l a t e d lunar -sur face materials t h a t were prepared without t h e

d e t a i l e d knowledge of s o i l condi t ions t h a t has been provided

by Surveyor. Some r e a n a l y s i s and f u r t h e r t e s t i n g us ing

"Surveyor Soi l" would appear i n order .

c' $Iy

The Engineer ing Lunar Model Surface (ELMS) has been reviewed and

found inappropr i a t e f o r q u a n t i t a t i v e r ep resen ta t ion of l u n a r s u r f a c e

p r o p e r t i e s f o r t r a f f i c a b i l i t y ana lyses , Te r ra in c h a r a c t e r i z a t i o n

techniques now being developed by t h e U.S.G.S. are promising.

A s i m i l i t u d e approach t o t h e s o l u t i o n of l u n a r t r a f f i c a b i l i t y

problems i s very appeal ing, s i n c e q u a n t i t a t i v e measures of v e h i c l e

performance could conceivably be obta ined us ing model tests and t h e

Page 38: NSR 05-003-1

31

r e s u l t s of s imple s o i l tests; e.g. cone index. Unfortunately the

s i m i l i t u d e c o r r e l a t i o n s developed by t h e Waterways Experiment

S t a t i o n f o r pneumatic tires do n o t appear s u i t a b l e f o r d e s c r i p t i o n

of t he behavior of proposed l u n a r v e h i c l e wheels; e.g. metal-elastic

wheel, w i r e wheel. It is d e s i r a b l e t h a t acce le ra t ed tes t programs

be i n i t i a t e d wi th t h e o b j e c t i v e s of (1) p o s s i b l e ex tens ion of t h e

method f o r u se wi th proposed l u n a r v e h i c l e wheel types and

(2) eva lua t ion of key t r a f f i c a b i l i t y f a c t o r s such as t h e in f luence

of s lopes , l i g h t wheel loads and con tac t p re s su res .

(6) A l i m i t e d s tudy of a v a i l a b l e d a t a on t h e performance c h a r a c t e r i s -

t i c s of t he metal-elastic and w i r e wheels sugges ts t h a t t hese

designs may be over ly conserva t ive f o r a p p l i c a t i o n t o the l u n a r

su r face . Some recons ide ra t ion of t hese designs appears i n order .

Page 39: NSR 05-003-1

32

FRICTION AND ADHESION I N ULTRA HIGH VACUUM AS

E L A T E D TO LUNAR SURFACE EXPLORATIONS

Since a h igh vacuum environment may produce c l ean s u r f a c e s , f r i c t i o n

and adhesion between con tac t ing s o l i d s may be s i g n i f i c a n t l y increased

re la t ive t o t h e i r magnitudes i n t h e normal terrestrial atmosphere. The

consequences of t hese e f f e c t s may be important i n t h e design and ope ra t ion

of roving v e h i c l e s o r o t h e r equipment on the lunar sur face .

A s a p a r t of t h i s p r o j e c t a review of s t u d i e s on f r i c t i o n and

adhesion w a s made, followed by a design f o r r o l l i n g f r i c t i o n tests

u t i l i z i n g a modified form of equipment a l r eady a v a i l a b l e i n our labora-

t o r i e s . Included i n t h i s design are p rov i s ions f o r ion bombardment of

rock specimens t o s imula t e s o l a r wind condi t ions . The r e s u l t s of f o u r

pre l iminary tests of adhesion i n vacuum between copper and obs id i an and

between aluminum and obs id ian are presented. The purposes of t hese

tests w e r e t o determine t h e c a p a b i l i t y of an e x i s t i n g f o r c e dynamometer,

t o determine the magnitude of rock outgass ing and adhesion, and t o

determine t h e t i m e needed f o r pump down t o p re s su re i n t h e range of

IO-” t o IO-’’ t o r r .

An experimental conf igu ra t ion has been designed f o r t h e de te rmina t ion

of c o e f f i c i e n t s of r o l l i n g f r i c t i o n between a wheel and a rock s u r f a c e

relative t o the app l i ed load , temperature , wheel s i z e and wheel ve loc i ty .

A schematic diagram of t h e experimental arrangement i s shown i n Fig. 2 .

Detail drawings and d e s c r i p t i o n s of t h e design and ope ra t ion of t h i s

appara tus are presented i n Chapter 2 , Vol. I11 of t h e Deta i led Technical

Report ,

Page 40: NSR 05-003-1

33

P

Page 41: NSR 05-003-1

34

UTILIZATION OF LUNAR SOILS FOR SHIELDING AGAINST

RADIATIONS, METEOROID BOMBARDMENT AND TEMPERATURE GRADIENTS

P r o t e c t i o n has t o be provided f o r a s t r o n a u t s on t h e moon a g a i n s t

t h r e e environmental f a c t o r s : r a d i a t i o n s meteoroid bombardment, and

excess ive temperature g rad ien t s e Extended s t a y times and payload

c o n s t r a i n t s w i l l r e q u i r e t h a t some of t he s h i e l d i n g materials be ind i -

geneous t o t h e l u n a r su r face . Lunar s o i l s may be s u i t a b l e f o r t h i s

purpose.

P resen t knowledge regard ing each of t he mentioned hazards has been

reviewed and a model s e l ec t ed . Lunar s u r f a c e material p r o p e r t i e s used

can be those s e l e c t e d i n t h i s r e p o r t (Ch. 2, Vol. I ) . F i r s t estimates

of s h i e l d i n g th icknesses are then e s t a b l i s h e d corresponding t o a given

set of assumptions whose v a l i d i t y i s d iscussed . Fur ther research needed

is a l s o o u t l i n e d where i t i s f e l t t h a t major u n c e r t a i n t i e s s t i l l e x i s t

f o r t h e es tab l i shment of f i n a l s h i e l d i n g s p e c i f i c a t i o n s a g a i n s t a given

hazard,

Shie ld ing a g a i n s t r a d i a t i o n s

Lunar r a d i a t i o n s h i e l d i n g w i l l have t o be designed a g a i n s t e n e r g e t i c

s o l a r r a d i a t i o n f o r missions longer than one week,

a b i l i s t i c

The hazard is prob-

A procedure i s presented (Ch. 5, Vol. 111) f o r determining conserva-

t ive design s p e c i f i c a t i o n s based upon mission dura t ion , a l lowable t o t a l

r a d i a t i o n dose, d e s i r e d p r o b a b i l i t y of no overexposure, equ iva len t

aluminum s h i e l d th i cknesses , and average l u n a r s o i l dens i ty .

Shie ld ing a g a i n s t meteoroids

The meteoroid hazard i s p r o b a b i l i s t i c i n na ture . A model i s s e l e c t e d

f o r t he m a s s f l u x r e l a t i o n s h i p of meteoroid i n f a l l .

A procedure i s presented which completely determines the s h i e l d

s p e c i f i c a t i o n s a g a i n s t e ros ion and p e r f o r a t i o n given t h e mission l eng th ,

t h e s h i e l d area, t h e des i r ed p r o b a b i l i t y of no s h i e l d f a i l u r e and the

maximum meteoroid m a s s a g a i n s t which the s h i e l d w i l l be designed.

Addi t iona l parameters e n t e r i n g t h e computations are t h e impact c h a r a c t e r i s -

t i c s ( e j e c t a and crater d iameter ) , and t h e l u n a r s o i l dens i ty . A s i n t he

case of r a d i a t i o n s h i e l d i n g the procedure i s expanded i n t o t y p i c a l computa-

t i o n s f o r d i f f e r e n t s p e c i f i c a t i o n s and parameter values .

Page 42: NSR 05-003-1

35

Shie ld ing a g a i n s t temperature g rad ien t s

The o b j e c t i v e i s t o determine under which th ickness of l una r s o i l s ,

d i u r n a l temperature v a r i a t i o n s w i l l be l i m i t e d t o a p r e s p e c i f i e d amount

(chosen he re as 1 'K) .

(T> 14 days) and of s h i e l d area.

The problem i s independent of mission l eng th

A review of p o s s i b l e thermal models of t h e luna r s u r f a c e l a y e r l eads

t o s e l e c t i o n of a l i k e l y b racke t f o r d i f f u s i o n t i m e s , and corresponding

computations of s o i l s h i e l d th icknesses .

Deta i led conclusions have been drawn f o r each of t h e hazards

considered i n t h i s work (Ch. 3 , Vol. 111). Recurr ing parameters v i t a l

t o s o i l s h i e l d design have been assigned s p e c i f i c va lues o r va lue

b racke t s t ak ing i n t o account t h e most up-to-date knowledge of l u n a r

s u r f a c e p r o p e r t i e s , p rocesses and environment. Overall r e s u l t s are

summarized i n Table 11.

Page 43: NSR 05-003-1

36

5 a, L 5

W

a, c v)

% 0

c, S a, -a S a, Q a, -0 S

v

-r

H

5 0 cn

V c, v)

.r

.r 7 -r 9 5 9 0 L a

c c, tn S a,

S 0

v) v)

P

*r

.r € S 0

c, S a, -0 S a, Q a, n

5 a, L

S 0

c, S a, -0 S a, II. a, n

5 a, L 5

-0

a, c v)

Y- 0

P

-r

c, S a,

W S a, Q a, -0 S H

Page 44: NSR 05-003-1

37

THE NX-BOREHOLE JACK FOR ROCK DEFORMAB ILITY MEASUREMENTS

A s descr ibed i n t h e Deta i led Technical Report (Ch. 4 , Vole 11) a

number of ins t ruments have been b u i l t t o measure rock and s o i l deform-

a b i l i t y i n boreholes , whose purpose is t o guide a r a t i o n a l design of

foundat ions o r underground openings. '

P a r t i c u l a r a t t e n t i o n i s given t o t h e borehole jack developed by

Goodman e t , a l . , 1968,as i t seems w e l l s u i t e d f o r t h e purposes and con-

s t r a i n t s of t he l u n a r program. This instrument i s presented i n Figures 3,

4 and 5,

The r e s u l t of deformabi l i ty t e s t i n g i n a borehole of diameter , d, i s

a curve of app l i ed pressure, Q,versus d i ame t ra l deformation. Data i n t e r -

p r e t a t i o n has been i n v e s t i g a t e d i n depth wi th r e spec t t o t h e fol lowing

parameters: p l a t e width, rock ' s Poisson ' s r a t i o , non l inear rock

p r o p e r t i e s , p l a t e r i g i d i t y , c rack formation, w a l l roughness and round-

ness .

The s i z e of t h e test i s l a r g e enough s o as t o be s i g n i f i c a n t wi th

r e spec t t o geologic d i s c o n t i n u i t i e s , a n d i t s r e s u l t s compare very

favorably w i t h o t h e r i n s i t u tests f o r deformabi l i ty which are much more

expensive and cumbersome. (See Table 12 ) .

Page 45: NSR 05-003-1

38

FIGURE 3. NX Borehole Plate Bearing Test Device

FIGURE 4. Device Disassembled

Page 46: NSR 05-003-1

39

. .

Page 47: NSR 05-003-1

40

c Y V l a - 3 s c, a, .I-

F v ) 0 I S a , - L 0

-I-

m

N P

W -I m 5

M 0 - O w

W 0

P

v)

3 v) W n: I- v) W ?-- LL 0

> z

z

9 f v)

t3, S

L = J l a w a, .I- M v )

a s c, .I- l a -

CL

.I- - -

v) I- v) W I-

Y 0

% W -I 0 I W n: 0 m n z Q

W n: 0 0

=> I- v)

z

LL 0

z 0 v)

n:

E 0 0

n

n

H

H

H

2

M co 0 O c, M Lo

0

z,UW I

M P 7

Lo M

0

a, P b I- Y

a, c, v) .r

.I- n

0 b

N

0 c,

d- Lo

P

0

Lo

0 c, Lo

0

Lo

h

0 N

0

Y la -r v) L O E 3 l a a n

Lo cn P

0 c, Lo M

P

I-=

co cn N

0 c, rn h

P

N h

N

0 w d- h - rn W

Lo cu 0

a, > *r

v) la E

a, .n

P

a L la

a, L 0 E w ma, w s L .I- Or:

.I-

v) P

0 0

M 0,

I 0

a, Is, S la L a, L S v) v) a, L P a,

v)

a, -cT: c, S

5

&I-

Page 48: NSR 05-003-1

4 1

PERMEABILITY AND THERMAL CONDUCTIVITY

STUDIES FOR LUNAR SURFACE PROBES

Among the o b j e c t i v e s of man's s tudy of t he moon i s an understanding

of t h e flow of h e a t and f l u i d s through lunar materials. This knowledge i s

n o t only of s c i e n t i f i c va lue , b u t i t i s e s s e n t i a l t o t he s o l u t i o n of

engineer ing problems i n exp lo r ing t h e moon, I n approaching these problems,

two parameters of g r e a t importance are the t r a n s p o r t c o e f f i c i e n t s :

thermal conduct iv i ty and f l u i d permeabi l i ty .

A s a f i r s t approach t o the measurement of t hese parameters , i t is

proposed t h a t cons ide ra t ion be given t o a s u r f a c e probe, i .e. a device

t h a t w i l l rest d i r e c t l y on t h e s u r f a c e of t he material t o be measured.

I n determining thermal conduct iv i ty , h e a t i s t r a n s f e r r e d i n t o t h e material,

and appropr i a t e temperature and h e a t f low measurements are made. I n

determining permeabi l i ty , a gas i s i n j e c t e d i n t o the material and

appropr i a t e p re s su re and flow rate measurements are made.

Since both t h e s e t r a n s p o r t processes are non l inea r from a s t r ic t

mathematical s t andpo in t , cons ide ra t ion is f i r s t given t o t h e corresponding

l i n e a r problems. For the flow of h e a t , t h i s amounts t o assuming a

temperature independent thermal conduct iv i ty . For t h e flow of gases , t h e

problem i s more complicated i n t h a t t h e fundamental n a t u r e of t h e flow

process changes as p res su re varies over several o rde r s of magnitude. Such

a pres su re range is a n t i c i p a t e d , due t o t h e low abso lu te p re s su re on the

moon and t h e r e l a t i v e l y h igh p res su re i n f lows of i n t e r e s t . I n under-

s t and ing t h i s complex t r a n s p o r t p rocess , t he h igh p res su re ( o r continuum)

range cannot be neglec ted . The low p res su re ( o r r a r e f i e d ) regimes may n o t

p l ay a s i g n i f i c a n t r o l e i n t h e o v e r a l l flow process , Consequently, t he

continuum range is i n v e s t i g a t e d f i r s t , and f o r s teady s ta te flow, the

process i s l i n e a r .

Solu t ions f o r one p o s s i b l e probe conf igu ra t ion are obta ined f o r bo th

of t hese l i n e a r problems. The a p p l i c a b i l i t y of these s o l u t i o n s i s

inves t iga t ed . This c o n s i s t s , i n p a r t , of a pre l iminary examination of

t h e e f f e c t s on gas flow of r a r e f a c t i o n .

This s tudy is c l e a r l y only a f i r s t s t e p and f u r t h e r i n v e s t i g a t i o n s ,

i nc lud ing experimental work, are recommended. For t h e experiments t o be

meaningful, they must inc lude i n v e s t i g a t i o n s on porous media i n vacuo.

Page 49: NSR 05-003-1

RECOMMENDATIONS

Page 50: NSR 05-003-1

42

RECOMMENDATIONS

The fo l lowing recommendations are made relative t o f u r t h e r s t u d i e s

of l u n a r s u r f a c e materials and t h e i r r e l a t i o n s h i p s t o l u n a r s u r f a c e

exp lo ra t ion . They are l i s t e d i n t h e same sequence as the summary of

s t u d i e s i n t h e preceding s e c t i o n .

1. In t ens ive e f f o r t s are needed t o determine t h e e x t e n t t o which d a t a

such as those provided by LM landing records , photographic coverage

of landing pad s inkage and a s t r o n a u t f o o t p r i n t s , and s imple tests

(e. g. , p e n e t r a t i o n , t r ench ing , s l i d i n g ) us ing t h e Apollo hand t o o l s

can be used t o determine q u a n t i t a t i v e va lues of t he p r o p e r t i e s

of t he l u n a r s o i l i n s i t u . Useful information w i l l be provided by

examination of re turned l u n a r samples from e a r l y Apollo missions.

Because these samples w i l l be d i s tu rbed , however, it is n o t l i k e l y

t h a t q u a n t i t a t i v e measurement of mechanical p r o p e r t i e s w i l l y i e l d

r e s u l t s app l i cab le t o t h e l u n a r s o i l i n s i t u . These i n v e s t i g a t i o n s

should be supplemented by f u r t h e r s tudy of Lunar O r b i t e r photographs

and Surveyor da t a .

2 . A r a t i o n a l theory should b e developed f o r d e s c r i p t i o n of t h e

mechanics of boulder t r a c k formation, and boulder t r a c k s on the

luna r s u r f a c e should be analyzed i n a c o n s i s t e n t manner.

w i l l t h e development of such a theory be u s e f u l f o r deduct ion of

s u r f a c e material p r o p e r t i e s , b u t i t w i l l a l s o b e u s e f u l i n considera-

t i o n of t r a f f i c a b i l i t y problems

Not only

3 . Addi t iona l s tudy of t h e problem of dynamic p e n e t r a t i o n of bodies i n t o

the s u r f a c e of the e a r t h and moon, t o enable b e t t e r i n t e r p r e t a t i o n of

secondary impact craters and a l s o the p o s s i b l e development of s ens ing

techniques f o r s o i l eva lua t ion us ing p e n e t r a t o r s i s reconmended,

4 . High r e s o l u t i o n photographic coverage ( r e s o l u t i o n t o a t least 0.5 m)

is d e s i r a b l e f o r mission p lanning a t s p e c i f i c si tes on t h e moon.

This photography is needed f o r i n fe rence of l una r s t r a t i g r a p h y ,

d e f i n i t i o n of s u r f a c e topography on a scale appropr i a t e f o r s t u d i e s

of a s t r o n a u t and v e h i c l e mobi l i ty , and d e f i n i t i o n of p o s s i b l e

hazards .

Page 51: NSR 05-003-1

43

5. Re l i ab le d a t a on luna r rock s t r e n g t h and behavior can be used f o r

s c i e n t i f i c i n t e r p r e t a t i o n of l una r h i s t o r y and w i l l be needed f o r

proper design and cons t ruc t ion of f a c i l i t i e s on and under the

luna r s u r f a c e , Instruments should be designed t o provide t h i s

information.

6 . S tudies are needed t o d e f i n e more p r e c i s e l y t h e r e l a t i o n s h i p s

between s o i l d a t a obta ined us ing penetrometers and p r e d i c t i o n of

t r a f f i c a b i l i t y parameters

7. Since t h e s o l u t i o n of t h e t o t a l t r a f f i c a b i l i t y problem requ i r e s

cons ide ra t ion of bo th topographic and material c h a r a c t e r i s t i c s , terrestrial s imula t ions of proposed luna r veh ic l e s o r v e h i c l e

components should be c a r r i e d out on c a r e f u l l y s e l e c t e d sites.

8. Abandonment of the Engineering Lunar Model Surface (ELMS) i s recom-

mended i n favor of power s p e c t r a l dens i ty techniques be ing developed

by the U.S.G.S, f o r t e r r a i n c h a r a c t e r i z a t i o n .

9. Although i t appears t h a t ou r knowledge of t he mechanical p r o p e r t i e s

of l u n a r s u r f a c e s o i l s exceeds our p r e s e n t a b i l i t y t o use t h a t know-

ledge i n a q u a n t i t a t i v e manner f o r t h e design of l una r roving v e h i c l e s

and p r e d i c t i o n of t h e i r performance, i t i s imperat ive t h a t t h e ten ta-

t i v e conclusion from Surveyor r e s u l t s t h a t s u r f a c e s o i l s are reason-

ab ly similar i n p r o p e r t i e s a t d i f f e r e n t p o i n t s on t h e moon be

confirmed, Of p a r t i c u l a r importance a l s o i s t h e need f o r pressure-

s inkage da ta ,

Earth-based s imula t ions may provide one p o s s i b l e source f o r t h i s

needed information. Simulated l u n a r s o i l s having the proper grada-

t i o n , dens i ty , cohesion, and angle of i n t e r n a l f r i c t i o n can be

prepared and t e s t e d under conf in ing p res su res r e p r e s e n t a t i v e of those

on the moon. The r e s u l t s of such tests would provide i n s i g h t i n t o

t h e deformation behavior of a c t u a l l u n a r s o i l s . Simple tests; e .g . ,

penetrometers , a n a l y s i s of s p a c e c r a f t - s o i l and a s t r o n a u t - s o i l i n t e r -

a c t i o n s during e a r l y Apollo miss ions , w i l l provide inva luab le d a t a

concerning l u n a r s o i l v a r i a b i l i t y and, t o some e x t e n t , t h e stress-

s t ra in behavior .

Page 52: NSR 05-003-1

44

10. It i s recommended t h a t research be i n t e n s i f i e d on t h e problem of

wheel-soil i n t e r a c t i o n wi th s t u d i e s proceeding on two f r o n t s ,,

a. For t h e s h o r t range it may be p o s s i b l e t o extend t h e WES

s i m i l i t u d e method t o performance p r e d i c t i o n s f o r l una r

roving v e h i c l e wheels. Tests should be conducted us ing

appropr i a t e wheel types and loadings and s imula ted l u n a r

s o i l s . I n v e s t i g a t i o n s should be made of the in f luence of

wheel load , wheel s i z e , wheel s l i p , s o i l cond i t ions , and t e r r a i n

i n c l i n a t i o n as r e l a t e d t o wheel performance parameters

(s inkage, motion r e s i s t a n c e , drawbar p u l l , to rque) . Empir ical

c o r r e l a t i o n s thus e s t a b l i s h e d would probably provide as

reasonable a b a s i s as any a t p re sen t f o r p r e d i c t i o n of

performance, I f p o s s i b l e , s o i l p r o p e r t i e s should be i n t r o -

duced i n t o these c o r r e l a t i o n s by means of cone penetrometer

t e s t r e s u l t s . The tes t is s imple, t h e apparatus i s s imple,

and cone penetrometer measurements could e a s i l y be made i n

e a r l y Apollo missions a

b. For t h e long range, i n t e n s i f i e d e f f o r t s should begin now t o

develop an improved understanding of t h e mechanics of wheel-

s o i l i n t e r a c t i o n w i t h the u l t i m a t e o b j e c t i v e of t he formula-

t i o n of a r a t i o n a l theory f o r performance p r e d i c t i o n , Such

a theory should relate wheel c h a r a c t e r i s t i c s , loading condi t ions ,

s o i l p r o p e r t i e s and performance i n a c o n s i s t e n t manner. The

t a s k i s formidable and t h e r e s u l t may be i n a form so complex

t h a t it cannot be app l i ed i n a p r a c t i c a l manner. Nonetheless

t h e r e s u l t s would s t i l l serve t o focus a t t e n t i o n on (1) t h e

relative importance of va r ious v e h i c l e system f a c t o r s and

(2) t h e s o i l p r o p e r t i e s p e r t i n e n t t o s o l u t i o n of t he problem.

Such a s tudy should begin wi th an a n a l y s i s of the interdepen-

dent c h a r a c t e r of t h e stresses and deformations i n t h e wheel

and s o i l , Modern computation methods o f t e n make such ana lyses

p o s s i b l e using numerical techniques.

11. Somewhat conserva t ive design procedures i n d i c a t e t h a t 3 f e e t of l u n a r

s u r f a c e materials w i l l be a s u f f i c i e n t p r o t e c t i o n a g a i n s t r a d i a t i o n s ,

meteoroid bombardment, and temperature g rad ien t s f o r extended missions

on the l u n a r su r face , A reduct ion i n t h e above th ickness might r e s u l t

Page 53: NSR 05-003-1

45

12.

13

from t h e u s e of much more s o p h i s t i c a t e d computational techniques

s t i l l t o be developed. Fu r the r experimental research would then

be d e s i r a b l e mainly i n t h e f i e l d of r a d i a t i o n s h i e l d i n g w i t h

s o i l s , and hyperve loc i ty impacts i n s o i l t o v e r i f y t h a t such

reduced th i cknesses are indeed adequate. It i s n o t f e l t however

t h a t such i n v e s t i g a t i o n s are w i t h i n t h e c a p a b i l i t i e s of t h i s

working group

Pos t Apollo development of t he moon w i l l r e q u i r e cons ide ra t ion of

s u r f a c e and subsur face s t r u c t u r e s i n rock (shal low and deep bore-

ho le s , s c i e n t i f i c s t a t i o n s , underground chambers f o r s t o r a g e and

waste d i sposa l , e t c . ) . Sound engineer ing w i l l achieve t h e optimum

r e s u l t s only i f based on in t ima te knowledge of t he modes of

mechanical behavior of t he materials involved. This must be

t r u e on the moon as i t i s on e a r t h . Hence, t h e r e i s a need f o r

de te rmina t ion of moon rock load-deformation c h a r a c t e r i s t i c s e A

borehole test appara tus should be developed f o r ope ra t ion on t h e

moon, It should be operable t o y i e l d both deformabi l i ty and

s t r e n g t h d a t a i f poss ib l e . Experimental and t h e o r e t i c a l work i s

needed t o provide t h e b a s i s f o r i n t e r p r e t a t i o n of s o i l and rock

f a i l u r e c h a r a c t e r i s t i c s from borehole tests , s i n c e t h i s c a p a b i l i t y

has no t y e t been developed on e a r t h . The most s u i t a b l e configura-

t i o n s of a test appara tus f o r l una r boreholes can be decided only

upon t h e b a s i s of the r e s u l t s of such work.

Continued i n v e s t i g a t i o n of t h e theory f o r f l u i d flow through porous

media i n vacuo is recommended, as w e l l as experimental work l ead ing

t o the design of a s u r f a c e probe f o r i n s i t u de te rmina t ion of t h e

permeabi l i ty of l u n a r s o i l s .


Recommended