+ All Categories
Home > Documents > Nuclear Physics Institute Czech Academy of Sciences

Nuclear Physics Institute Czech Academy of Sciences

Date post: 10-Feb-2016
Category:
Upload: shina
View: 45 times
Download: 3 times
Share this document with a friend
Description:
Budapest,12/02/2013. 13. Zimányi Winter School on Heavy Ion Physics. Kaon Femtoscopy in √ s NN =200 GeV Au+Au Collisions at RHIC. Róbert Vértesi [email protected] . for the collaboration. Nuclear Physics Institute Czech Academy of Sciences. Femtoscopy. - PowerPoint PPT Presentation
Popular Tags:
30
Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 1 Nuclear Physics Institute Czech Academy of Sciences Róbert Vértesi [email protected] . for the collaboration 13. Zimányi Winter School on Heavy Ion Physics Budapest,12/02/2 013 Kaon Femtoscopy in √s NN =200 GeV Au+Au Collisions at RHIC
Transcript
Page 1: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 1

Nuclear Physics InstituteCzech Academy of Sciences

Róbert Vé[email protected] .

for the

collaboration

13. Zimányi Winter School on Heavy Ion PhysicsBudapest,12/02/2013

Kaon Femtoscopy in √sNN=200 GeV Au+Au Collisions at RHIC

Page 2: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 2

Femtoscopy

1coulombraw0 )()( KqCqC

Boson emitting source: Symmetric two-boson wave function

Bose-Einstein Correlation / Hanbury-Brown–Twiss effect

Correlation function:

Final state interactions Compensating the Coulomb force Strong FSI …

Solving for the source is difficult assumptions

Emitting source

Correlation

Info about shape and evolution of the particle emitting source

Page 3: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 3

Gaussian radii and LCMS

Homogeneity regionsReflect the size of the source from where particles are emitted with similar velocity

Gaussian source:

Correlation HBT radii

Out: along average pair transverse momentumLong: beam directionSide: orthogonal to both

LCMS (not invariant)

Page 4: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 4

Source imaging

Koonin-Pratt equation (1D)

Imaging: Obtain S(r) directly No assumptions for the shape of source Kernel includes all interactions (QM, FSI)

Numerical inversion of the equation No analytical solution, hence some limitations and approximations

(integral cutoff, finite resolution … ) Assumptions (e.g. weak dependence in single particle sources) Needs statistics, stability is a question

D. A. Brown, P. Danielewicz, Phys.Lett. B398, 252 (1997)

Emitting source

rSrqKdrrqC ,41 2 Interactions

Physics in shape: dynamics, resonance decays, rescattering…

Page 5: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 5

Pion images

PHENIX Year 2002 data low kT = (pT,1+pT,2)/2 C from data ~ C restored from image

Imaging process can be trusted

A heavy, non-Gaussian tail is present in the 1D pion source

Several interpretations suggested Non-zero emission duration Anomalous diffusion due to

rescattering in the hadronic phase Contribution of long-lived resonance

decays

PHENIX, PRL 98, 132301 (2007)

Page 6: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 6

Gauss

Csanád, Csörgő, Nagy, Braz.J.Phys. 37 (2007) R.V. (PHENIX), WWND 2007 proc. [arXiv:0706.4409]

Rescattering or resonances?

Both HRC and THERMINATOR describe the 1D pion sourceDifferent, but similar underlying mechanism:Anomalous diffusion in an expanding system vs. dying-out resonances

• Universal T, mI3, mB , mS• Single hyper-ellipsoid FO surface• Many resonances (385)• no rescattering Kisiel et al., Comput.Phys.Commun. 174 (2006)

THERMINATOR Single Freezeout• Cascade model, few resonances:

ρ, Δ, K* ; ω ; η, η’, Φ, Λ• Causality-keeping scatterings• p-dependent cross sections

T. J. Humanic, Int. J. Mod. Phys. E 15 (2006)

Hadronic Rescattering Code

Page 7: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 7

3D Koonin-Pratt:Plug (1) and (2) into (3)

Invert (1)

Invert (2)

Danielewicz and Pratt, Phys.Lett. B618:60, 2005

x = out-directiony = side-directionz = long-direction

ai = x, y or z

)2( )()()(

)1( )()()(

1

1

1

1

1

1

ql

l

l

ql

l

l

l

l

l

l

l

l

ArSS

AqRR

aaaa

aa

aaaa

aa

r

q

)3( )(),(41)()( 3 rrqqq SKdrCR

)4( )(),(4)(11

3 rSrqKdrqR ll

lll aaaa

)()(4!

!)!12(

)()(4!

!)!12()(

11

11

q

q

SAd

llS

RAd

llqR

qlql

qlql

ll

ll

aaaa

aaaa

3D source shapesExpansion of R(q) and S(r) in Cartesian Harmonic basis

Page 8: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 8

3D pion imaging (PHENIX)

Correlation profiles C(qx) C(qx,0,0) C(qy) C(0,qy,0) C(qz) C(0,0,qz)

Source profiles S(rx) C(rx,0,0) S(ry) C(0,ry,0) S(rz) C(0,0,rz)

PHENIX, PRL100, 232301 (2008)

Correlation moments (0th, 2nd, 4th, 6th order)

𝑆𝐻 (𝑟 𝑥 ,𝑟𝑦 ,𝑟𝑧 )=𝑒−𝐹 𝑠[( 𝑟 𝑥

2 𝑅𝑥𝑠 )2

+( 𝑟 𝑦

2 𝑅𝑦𝑠)2

+( 𝑟 𝑧

2𝑅𝑧𝑠)2 ]−𝐹𝑙 [( 𝑟 𝑥

2𝑅𝑥𝑙 )2

+( 𝑟 𝑦

2𝑅𝑦𝑙)2

+( 𝑟 𝑧

2𝑅 𝑧𝑙 )2 ]

¿¿

𝐹 𝑠=1

1+(𝑟 /𝑟 0 )2 , 𝐹 𝑙=1−𝐹 𝑠

Hump:

Page 9: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 9

P. Chung (STAR), arXiv:1012.5674 [nucl-ex]

3D pion images: STAR vs. PHENIX

STAR PRELIMINARYPHENIX, PRL100, 232301 (2008)

Elongated source in “out” direction Moments up to the 6th order Elliptic and non-Gaussian 1D radii determined by side/long

Well described by a hump fit

STAR and PHENIXmeasurements are consistent Two different detectors with

different properties and acceptance Good agreement with same cuts Attests to the reliability of results

Source profiles

Page 10: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 10

3D pion images vs. B/W modelPHENIX, PRL100, 232301 (2008)

• Expansion: vr(ρ)=(ρ/ρmax)/(ρ/ρmax+vt). • Thermal emission at proper time t, ρ=ρmax.• Freeze-out occurs at t = t0 +aρ.• LAB emission time t2 = (t0 +aρ)2+z2 .• Finite emission duration Δt in lab frame

THERMINATOR Blast-Wave model

Elongated source in “out” direction Moments up to the 6th order Elliptic and non-Gaussian 1D radii determined by side/long

Therminator B/W model description Iff resonance contributions ON, and Iff non-zero emission duration

Δτ~2 fm/c

Source profiles

Inset: B/W emission duration in lab frame

Page 11: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 11

Kaons: A cleaner probe

PHENIX, PRL 103, 142301 (2009)

Less feed-down, less rescattering Interpretation more straightforward More difficult due to ~10 less statistics

PHENIX 1D Kaon source: an even larger non-Gaussian component Seemingly favors rescattering

explanation against resonances

Interpretation caveat: wide kT (Npart) bin Different kT Gaussians with different

radii convolute to non-Gaussian

toyexample

Page 12: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 12

PHENIX STAR

BRAHMSPHOBOS

RHIC/STAR

Time Projection Chamber ID via energy loss (dE/dx) Momentum (p)Full azimuth coverageUniform acceptancefor different energies and particles

The Solenoidal Tracker at RHIC

Broad physics program Heavy ions: Au+Au, Cu+Cu, U+U

√sNN=7.7–200 GeV Polarized protons up to √s = 510 GeV Asymmetric systems (d+Au, Cu+Au)PHENIX & STAR complement and x-check each otherContinuous improvements

The Relativistic Heavy Ion Collider

Page 13: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 13

TPC

Kaon femtoscopy analysesAu+Au @ √sNN=200 GeVMid-rapidity |y|<0.51. Source shape: 20% most central

Run 4: 4.6 Mevts, Run 7: 16 Mevts

2. mT-dependence: 30% most centralRun 4: 6.6 Mevts

0.2<kT<0.36 GeV/c 0.36<kT<0.48 GeV/c

Rigidity (GeV/c) Rigidity (GeV/c)

dE/d

x

dE/d

x d

E/dx

(keV

/cm

)

dE/

dx (k

eV/c

m)

Page 14: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 14

PID cut applied1. Source shape analysis

dE/dx: nσ(Kaon)<2.0 and nσ(Pion)>3.0 and nσ(electron)>2.0nσ(X) :deviation of the candidate dE/dx from the normalized distribution of partice type X at a given momentum

0.2 < pT < 0.4 GeV/c

2. mT-dependent analysis -1.5< nσ(Kaon)<2.0 -0.5< nσ(Kaon)<2.0

0.36<kT<0.48 GeV/c0.2<kT<0.36 GeV/c

Rigidity (GeV/c) Rigidity (GeV/c)

dE/d

x

dE/d

x d

E/dx

(keV

/cm

)

dE/

dx (k

eV/c

m)

Page 15: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 15

Kaons: STAR vs. PHENIX

PHENIX, PRL 103, 142301 (2009)

STAR preliminary 1D source in narrow kT bin consistent with Gaussian 0.20<kT<0.36 GeV , compared to 0.3<kT<0.9 GeV

STAR PRELIMINARY

STAR PRELIMINARY

Šumbera (STAR),

ISMD 2013

Page 16: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 16

3D Shape analysis

2

2

2

2

2

2

3 444exp

π2

λ,,zyxzyx

G

rz

ry

rx

rrrzyxS

l=0 moment agrees 1D C(q)Higher moments relatively small

Trial funcional form for S(r): 4-parameter ellipsoid (3D Gauss)

Fit to C(q): technically a simultaneous fit on 6independent moments Rl

α1…αl , 0≤l≤4

Result: statistically good fitRun4+Run7 200 GeV Au+AuCentrality<20%0.2 < kT < 0.36 GeV/c

λ = 0.48 ± 0.01rx = (4.8 ± 0.1) fmry = (4.3 ± 0.1) fmrz = (4.7 ± 0.1) fm

Phys.Rev. C88 (2013) 034906 

Page 17: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 17

3D kaon correlation and source

Phys.Rev. C88 (2013) 034906 

Phys.Rev. C88(2013) 034906 

3D Kaon correlation moments and profiles consistent with Gaussian

Source Gaussian fit shown Uncertainties include shape assumption (error dominated low statistics)

Page 18: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 18

3D kaon source: Model comparisonTherminator B/W model

Kaons: Instant freeze-out Δτ = 0 (contrary to pions!)

Parameters tuned for STAR kaons! Resonances are needed

Hydrokinetic model Consistent in “side” Slightly more tail (r>15fm) in

“out” and “long”

PRC81, 054903 (2010)• Glauber initial conditions• Pure hydro expansion• Hadronic cascade with UrQMDGets many RHIC observables right

Hybrid Hydrokinetic Model (hHKM)

Therminator: Kisiel, Taluc, Broniowski, Florkowski, Comput. Phys. Commun. 174 (2006) 669.

HKM data: Shapoval, Sinyukov, Karpenko ,  arXiv:1308.6272 [hep-ph]

Phys.Rev. C88 (2013) 034906 

Page 19: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 19

Model: M. Csanád and T. Csörgő: arXiv:0801.0800[nucl-th]Data: PHENIX, PRL 93, 152302 (2004)

Au+Au √sNN=200GeV

Excellent description of PHENIX charged pion data

Inherent mT-scaling predicts the same dependence for Kaons

• Perfect hydrodinamics• Analitic solutions fitted to the data• Extremely powerful: SPS to RHIC, η

distributions, HBT radii vs. azimuth, flow etc.Csörgő, Lörstad, Phys. Rev. C54, 1390 (1996).

Buda-Lund model

Radii vs. mT in perfect hydro

Buda-LundKaon prediction

Page 20: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 20

Lin, Ko, J.Phys. G30 (2004) S263 [nucl-th/0305069]

Larger radii for K0s than for

charged pions Prediction from 2003 Note: similar radii expected for

K0S as for K+-

Radii from source ~ from fit Less non-Gaussianity for K0

S

than for pions

• Initial conditions from HIJING• Parton cascade (ZPC)• Lund fragmentation• Relativistic transport (ART) for hadron

scattering

A Multi-Phase Transport Model

Radii vs. mT: AMPT prediction

Page 21: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 21

NA49, Phys. Lett B557 (2003) 157[8] NA44, Phys. Rev. Lett 87 (2001) 112301[14] WA98, Nucl. Phys. A698 (2002) 647c[15] NA45, Nucl.Phys. A714 (2003) 124 [16] WA97, J.Phys. G 27 (2001) 2325

Yano-Koonin-Podgoretsky radii

Bertsch-Pratt radii

Radii vs. mT: SPS data

“The kaon radii are fully consistent with pions and the hydrodynamic expansion model. “

“Pions and kaons seem to decouple simultaneously.”

Note: sizeable uncertainties (horizontal and vertical)

Pb+Pb Ebeam=158 AGeV

Page 22: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 22

Radii: rising trend at low mT Strongest in “long”

Buda-Lund model Deviates from kaons in the

“long” direction in the lowest mT bin

HKM (Hydro-kinetic model) Describes all trends Some deviation in the “out”

direction

Buda-Lund: M. Csanád, arXiv:0801.4434v2HKM: PRC81, 054903 (2010)

Phys.Rev. C88 (2013) 034906 

Radii vs. mT: STAR @RHIC

Page 23: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 23

SummarySTAR performed the first model-independent extraction of kaon 3D images

in RHIC √sNN=200 GeV central Au+Au data Contrary to pions, no heavy tail observed in “out” Results are consistent with a Gaussian source

The mT-scaling of HBT radii appears not to be perfect The Gaussian radii of Kaons indicate a steeper rise in the “long”

direction for low mT values than expected from pions This suggests that kaons and pions decouple differently

Multiple models were compared to the results Kaons and pions may be subject to different freeze-out dynamics Resonances have to be included for a proper description of data Most successful models include rescattering

Page 24: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 24

Thank You!NIKHEF and Utrecht University, Amsterdam, The NetherlandsOhio State University, Columbus, Ohio 43210Old Dominion University, Norfolk, VA, 23529Panjab University, Chandigarh 160014, IndiaPennsylvania State University, University Park, Pennsylvania 16802Institute of High Energy Physics, Protvino, RussiaPurdue University, West Lafayette, Indiana 47907Pusan National University, Pusan, Republic of KoreaUniversity of Rajasthan, Jaipur 302004, IndiaRice University, Houston, Texas 77251Universidade de Sao Paulo, Sao Paulo, BrazilUniversity of Science \& Technology of China, Hefei 230026, ChinaShandong University, Jinan, Shandong 250100, ChinaShanghai Institute of Applied Physics, Shanghai 201800, ChinaSUBATECH, Nantes, FranceTexas A\&M University, College Station, Texas 77843University of Texas, Austin, Texas 78712University of Houston, Houston, TX, 77204Tsinghua University, Beijing 100084, ChinaUnited States Naval Academy, Annapolis, MD 21402Valparaiso University, Valparaiso, Indiana 46383Variable Energy Cyclotron Centre, Kolkata 700064, IndiaWarsaw University of Technology, Warsaw, PolandUniversity of Washington, Seattle, Washington 98195Wayne State University, Detroit, Michigan 48201Institute of Particle Physics, CCNU (HZNU), Wuhan 430079, ChinaYale University, New Haven, Connecticut 06520University of Zagreb, Zagreb, HR-10002, Croatia

Argonne National Laboratory, Argonne, Illinois 60439Brookhaven National Laboratory, Upton, New York 11973University of California, Berkeley, California 94720University of California, Davis, California 95616University of California, Los Angeles, California 90095Universidade Estadual de Campinas, Sao Paulo, BrazilUniversity of Illinois at Chicago, Chicago, Illinois 60607Creighton University, Omaha, Nebraska 68178Czech Technical University in Prague, FNSPE, Prague, 115 19, Czech RepublicNuclear Physics Institute AS CR, 250 68 Řež/Prague, Czech RepublicUniversity of Frankfurt, Frankfurt, GermanyInstitute of Physics, Bhubaneswar 751005, IndiaIndian Institute of Technology, Mumbai, IndiaIndiana University, Bloomington, Indiana 47408Alikhanov Institute for Theoretical and Experimental Physics, Moscow, RussiaUniversity of Jammu, Jammu 180001, IndiaJoint Institute for Nuclear Research, Dubna, 141 980, RussiaKent State University, Kent, Ohio 44242University of Kentucky, Lexington, Kentucky, 40506-0055Institute of Modern Physics, Lanzhou, ChinaLawrence Berkeley National Laboratory, Berkeley, California 94720Massachusetts Institute of Technology, Cambridge, MA Max-Planck-Institut f\"ur Physik, Munich, GermanyMichigan State University, East Lansing, Michigan 48824Moscow Engineering Physics Institute, Moscow Russia

STAR Collaboration

Page 25: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 25

Dataset #2 Run4 Cent<30%

0.2<kT<0.36 GeV/c 0.36<kT<0.48 GeV/c

Fit to correlation moments #2

STAR PRELIMINARYSTAR PRELIMINARY

Page 26: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 26

STAR PRELIMINARY

STAR PRELIMINARY

P. Chung (STAR), WPCF 2010

Peripheral pions in STAR

Page 27: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 27

NA49 pions in Pb+Pb - correlation

Page 28: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 28

NA49 pions in Pb+Pb - sources

Page 29: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 29

Rescattering

Gauss

Simple but smart cascade model• Only a few resonances

(ρ, Δ, K* ; ω ; η, η’, Φ, Λ)• Causality kept in all scatterings• p-dependent cross sectionsShown to be working• Describes spectra, v2, HBT

radii for both SPS and RHIC• Insensitive to initial conditions• Similar predictions to exact hydro• Sensitive to PID (, K, p)

T. J. Humanic, Int. J. Mod. Phys. E 15 (2006)

Hadronic Rescattering Code

Csanád, Csörgő, Nagy, Braz.J.Phys. 37 (2007)

HRC able to describe the observed 1D pion sourceNote: model limitations lead to breakdown for higher kT bin (not shown)

Underlying mechanism: anomalous diffusion Diffusion with fixed mean free path: Central Limit Theorem Gaussian distrib. Expanding system, changing x-section: Gnedenko–Kolmogorov Lévy distrib.

Page 30: Nuclear Physics Institute Czech Academy of Sciences

Zimányi13, 12/02/2013 R. Vértesi, STAR Kaon Femtoscopy 30

Resonances

Cracow Single Freezeout model• Particle phase-space according to

FD, BE distributions• Thermal & chem. eq. same time• Universal T, mI3, mB , mS • Single hyper-ellipsoid FO surfaceHadronic phase• Many resonances (385)• No rescattering

Kisiel et al., Comput.Phys.Commun. 174 (2006)

THERMINATOR Single Freezeout

R.V. (PHENIX), WWND 2007 proc. [arXiv:0706.4409]

Single FO with resonances: also yields a relatively good description Parameters tuned for PHENIX HBTNote: model limitations cause problems at r→0 (not shown)

Underlying mechanism: many long lived resonances Different contributions die out gradually Continuously increasing mean lifetimes provide a random variable with time-

dependent mean and variance similar effect to anomalous diffusion


Recommended