+ All Categories
Home > Documents > Nuclear Structure (I) Single-particle...

Nuclear Structure (I) Single-particle...

Date post: 21-Mar-2019
Category:
Upload: vumien
View: 215 times
Download: 0 times
Share this document with a friend
36
NSDD Workshop, Trieste, February 2006 Nuclear Structure (I) Single-particle models P. Van Isacker, GANIL, France
Transcript

NSDD Workshop, Trieste, February 2006

Nuclear Structure(I) Single-particle models

P. Van Isacker, GANIL, France

NSDD Workshop, Trieste, February 2006

Overview of nuclear models• Ab initio methods: Description of nuclei

starting from the bare nn & nnn interactions.• Nuclear shell model: Nuclear average

potential + (residual) interaction betweennucleons.

• Mean-field methods: Nuclear averagepotential with global parametrisation (+correlations).

• Phenomenological models: Specific nuclei orproperties with local parametrisation.

NSDD Workshop, Trieste, February 2006

Nuclear shell model• Many-body quantum mechanical problem:

• Independent-particle assumption. Choose Vand neglect residual interaction:

!

ˆ H =pk

2

2mkk=1

A

" + ˆ V 2rk,rl( )

k< l

A

"

=pk

2

2mk

+ ˆ V rk( )#

$ %

&

' (

k=1

A

"

mean field

1 2 4 4 3 4 4

+ ˆ V 2rk,rl( )

k< l

A

" ) V rk( )k=1

A

"#

$ %

&

' (

residual interaction

1 2 4 4 4 3 4 4 4

!

ˆ H " ˆ H IP

=pk

2

2mk

+ ˆ V rk( )#

$ %

&

' (

k=1

A

)

NSDD Workshop, Trieste, February 2006

Independent-particle shell model• Solution for one particle:

• Solution for many particles:

!

p2

2m+ ˆ V r( )

"

# $

%

& ' (i r( ) = Ei(i r( )

!

"i1i2Ki

A

r1,r

2,K,r

A( ) = #ik

rk( )

k=1

A

$

ˆ H IP"

i1i2KiA

r1,r

2,K,r

A( ) = Eik

k=1

A

%&

' (

)

* + "i1i2Ki

A

r1,r

2,K,r

A( )

NSDD Workshop, Trieste, February 2006

Independent-particle shell model• Anti-symmetric solution for many particles

(Slater determinant):

• Example for A=2 particles:

!

"i1i2Ki

A

r1,r2,K,r

A( ) =1

A!

#i1r1( ) #

i1r2( ) K #

i1rA( )

#i2r1( ) #

i2r2( ) K #

i2rA( )

M M O M

#iA

r1( ) #

iA

r2( ) K #

iA

rA( )

!

"i1i2r1,r2( ) =

1

2#i1r1( )#i2 r2( ) $#i1 r2( )#i2 r1( )[ ]

NSDD Workshop, Trieste, February 2006

Hartree-Fock approximation• Vary φi (ie V) to minize the expectation value

of H in a Slater determinant:

• Application requires choice of H. Many globalparametrizations (Skyrme, Gogny,…) havebeen developed.

!

"#

i1i2KiA

*r1,r

2,K,r

A( ) ˆ H #i1i2Ki

A

r1,r

2,K,r

A( )dr1dr2KdrA$

#i1i2Ki

A

*r1,r

2,K,r

A( )#i1i2KiA

r1,r

2,K,r

A( )dr1dr2KdrA$

= 0

NSDD Workshop, Trieste, February 2006

Poor man’s Hartree-Fock• Choose a simple, analytically solvable V that

approximates the microscopic HF potential:

• Contains– Harmonic oscillator potential with constant ω.– Spin-orbit term with strength ζ.– Orbit-orbit term with strength κ.

• Adjust ω, ζ and κ to best reproduce HF.

!

ˆ H IP

=pk

2

2m+

m" 2

2rk

2 #$ lk % sk #& lk

2'

( )

*

+ ,

k=1

A

-

NSDD Workshop, Trieste, February 2006

Harmonic oscillator solution• Energy eigenvalues of the harmonic oscillator:

!

Enlj = N +3

2( )h" #$ h2l l +1( ) + % h

2# 1

2l j = l +

1

2

1

2l +1( ) j = l # 1

2

& ' (

N = 2n + l = 0,1,2,K : oscillator quantum number

n = 0,1,2,K : radial quantum number

l = N,N # 2,K,1or 0 : orbital angular momentum

j = l ±1

2: total angular momentum

m j = # j,# j +1,K,+ j : z projection of j

NSDD Workshop, Trieste, February 2006

Energy levels of harmonic oscillator• Typical parameter

values:

• ‘Magic’ numbers at 2,8, 20, 28, 50, 82, 126,184,…

!

h" # 41 A$1/ 3

MeV

% h2# 20 A

$2 / 3MeV

& h2# 0.1MeV

'b #1.0 A1/ 6fm

NSDD Workshop, Trieste, February 2006

Why an orbit-orbit term?• Nuclear mean field is

close to Woods-Saxon:

• 2n+l=N degeneracy islifted ⇒ El < El-2 < …

!

ˆ V WS r( ) =V0

1+ expr " R0

a

NSDD Workshop, Trieste, February 2006

Why a spin-orbit term?• Relativistic origin (ie Dirac equation).• From general invariance principles:

• Spin-orbit term is surface peaked ⇒diminishes for diffuse potentials.

!

ˆ V SO

= " r( ) l # s, " r( ) =r

0

2

r

$V

$r= " in HO[ ]

NSDD Workshop, Trieste, February 2006

Evidence for shell structure• Evidence for nuclear shell structure from

– 2+ in even-even nuclei [Ex, B(E2)].– Nucleon-separation energies & nuclear masses.– Nuclear level densities.– Reaction cross sections.

• Is nuclear shell structuremodified away from theline of stability?

NSDD Workshop, Trieste, February 2006

Ionisation potential in atoms

NSDD Workshop, Trieste, February 2006

Neutron separation energies

NSDD Workshop, Trieste, February 2006

Proton separation energies

NSDD Workshop, Trieste, February 2006

Liquid-drop mass formula• Binding energy of an atomic nucleus:

• For 2149 nuclei (N,Z ≥ 8) in AME03: avol≈16, asur≈18, acou≈0.71, asym≈23, apai≈13 ⇒ σrms≈2.93 MeV.

!

B N,Z( ) = avolA " asurA2 / 3" acou

Z Z "1( )A1/ 3

" asymN " Z( )

2

A

+ apai# N,Z( )A1/ 2

C.F. von Weizsäcker, Z. Phys. 96 (1935) 431H.A. Bethe & R.F. Bacher, Rev. Mod. Phys. 8 (1936) 82

NSDD Workshop, Trieste, February 2006

Deviations from LDM

NSDD Workshop, Trieste, February 2006

Modified liquid-drop formula• Add surface, Wigner and ‘shell’ corrections:

• For 2149 nuclei (N,Z ≥ 8) in AME03: avol≈16, asur≈18, acou≈0.72, avsym≈32, assym≈79,

apai≈12, af≈0.14, aff≈0.0049, r≈2.5 ⇒ σrms≈1.28 MeV.

!

B N,Z( ) = avolA " asurA2 / 3" acou

Z Z "1( )A1/ 3

" avsym4T T + r( )

A

+ assym4T T + r( )A4 / 3

+ apai# N,Z( )A1/ 2

" afFmax + affFmax2

NSDD Workshop, Trieste, February 2006

Deviations from modified LDM

NSDD Workshop, Trieste, February 2006

NSDD Workshop, Trieste, February 2006

Shell structure from Ex(21)

NSDD Workshop, Trieste, February 2006

Evidence for IP shell model• Ground-state spins and

parities of nuclei:j in !nljmj

" J

l in !nljmj" #( )l = $

% & ' " J

$

NSDD Workshop, Trieste, February 2006

Validity of SM wave functions• Example: Elastic

electron scattering on206Pb and 205Tl,differing by a 3s proton.

• Measured ratio agreeswith shell-modelprediction for 3s orbit.

J.M. Cavedon et al., Phys. Rev. Lett. 49 (1982) 978

NSDD Workshop, Trieste, February 2006

Variable shell structure

NSDD Workshop, Trieste, February 2006

Beyond Hartree-Fock• Hartree-Fock-Bogoliubov (HFB): Includes

pairing correlations in mean-field treatment.• Tamm-Dancoff approximation (TDA):

– Ground state: closed-shell HF configuration– Excited states: mixed 1p-1h configurations

• Random-phase approximation (RPA): Cor-relations in the ground state by treating it onthe same footing as 1p-1h excitations.

NSDD Workshop, Trieste, February 2006

Nuclear shell model• The full shell-model hamiltonian:

• Valence nucleons: Neutrons or protons thatare in excess of the last, completely filled shell.

• Usual approximation: Consider the residualinteraction VRI among valence nucleons only.

• Sometimes: Include selected core excitations(‘intruder’ states).

!

ˆ H =pk

2

2m+ ˆ V rk( )

"

# $

%

& '

k=1

A

( + ˆ V RIrk,rl( )

k< l

A

(

NSDD Workshop, Trieste, February 2006

Residual shell-model interaction• Four approaches:

– Effective: Derive from free nn interaction takingaccount of the nuclear medium.

– Empirical: Adjust matrix elements of residualinteraction to data. Examples: p, sd and pf shells.

– Effective-empirical: Effective interaction withsome adjusted (monopole) matrix elements.

– Schematic: Assume a simple spatial form andcalculate its matrix elements in a harmonic-oscillator basis. Example: δ interaction.

NSDD Workshop, Trieste, February 2006

Schematic short-range interaction• Delta interaction in harmonic-oscillator basis:• Example of 42Sc21 (1 neutron + 1 proton):

NSDD Workshop, Trieste, February 2006

Large-scale shell model• Large Hilbert spaces:

– Diagonalisation : ~109.– Monte Carlo : ~1015.– DMRG : ~10120 (?).

• Example : 8n + 8p inpfg9/2 (56Ni).

M. Honma et al., Phys. Rev. C 69 (2004) 034335

!

"i'1 i' 2Ki'A

ˆ V RIr

k,r

l( )k< l

n

# "i1i2KiA

NSDD Workshop, Trieste, February 2006

The three faces of the shell model

NSDD Workshop, Trieste, February 2006

Racah’s SU(2) pairing model• Assume pairing interaction in a single-j shell:

• Spectrum 210Pb:

!

j2JMJ

ˆ V pairing r1,r2( ) j2JMJ =

" 1

22 j +1( )g0, J = 0

0, J # 0

$ % &

NSDD Workshop, Trieste, February 2006

Solution of the pairing hamiltonian• Analytic solution of pairing hamiltonian for

identical nucleons in a single-j shell:

• Seniority υ (number of nucleons not in pairscoupled to J=0) is a good quantum number.

• Correlated ground-state solution (cf. BCS).!

jn"J ˆ V pairing rk,rl( )

1#k< l

n

$ jn"J = %g0

1

4n %"( ) 2 j % n %" + 3( )

G. Racah, Phys. Rev. 63 (1943) 367

NSDD Workshop, Trieste, February 2006

Nuclear superfluidity• Ground states of pairing hamiltonian have the

following correlated character:– Even-even nucleus (υ=0):– Odd-mass nucleus (υ=1):

• Nuclear superfluidity leads to– Constant energy of first 2+ in even-even nuclei.– Odd-even staggering in masses.– Smooth variation of two-nucleon separation

energies with nucleon number.– Two-particle (2n or 2p) transfer enhancement.

!

ˆ S +( )n / 2

o , ˆ S + = ˆ a m"+ ˆ a ̇ ̇ ̇ m #

+

m

$

!

ˆ a mb+ ˆ S +( )

n / 2

o

NSDD Workshop, Trieste, February 2006

Two-nucleon separation energies• Two-nucleon

separation energies S2n:(a) Shell splitting

dominates overinteraction.

(b) Interaction dominatesover shell splitting.

(c) S2n in tin isotopes.

NSDD Workshop, Trieste, February 2006

Pairing gap in semi-magic nuclei• Even-even nuclei:

– Ground state: υ=0.– First-excited state: υ=2.– Pairing produces

constant energy gap:

• Example of Sn isotopes:

!

Ex21

+( ) =1

22 j +1( )G

NSDD Workshop, Trieste, February 2006

Elliott’s SU(3) model of rotation• Harmonic oscillator mean field (no spin-orbit)

with residual interaction of quadrupole type:

!

ˆ H =pk

2

2m+

1

2m" 2

rk

2#

$ %

&

' (

k=1

A

) * g2

ˆ Q + ˆ Q ,

ˆ Q µ , rk

2Y

2µˆ r k( )

k=1

A

)

+ pk

2Y

2µˆ p k( )

k=1

A

)

J.P. Elliott, Proc. Roy. Soc. A 245 (1958) 128; 562


Recommended