+ All Categories
Home > Documents > NUMEN - Front-end and Read-out Electronics for the FPD · 2015. 12. 4. · OVERVIEW •NUMEN ->...

NUMEN - Front-end and Read-out Electronics for the FPD · 2015. 12. 4. · OVERVIEW •NUMEN ->...

Date post: 11-Feb-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
23
FRONT - END AND READ - OUT ELECTRONICS FOR THE NUMEN FPD D. LO PRESTI D. BONANNO, F. LONGHITANO , D. BONGIOVANNI, S. REITO INFN - SEZIONE DI CATANIA D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 1
Transcript
  • FRONT-END AND READ-OUT ELECTRONICS FOR THE NUMEN FPD

    D. LO PRESTI

    D. BONANNO, F. LONGHITANO, D. BONGIOVANNI, S. REITO

    INFN- SEZIONE DI CATANIA

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 1

  • OVERVIEW• NUMEN -> Upgrade of Cyclotron and Detector -> Higher Event rate

    • Needed upgrade of the front-end and read-out electronics for the Focal Plane Detector (FPD):

    • Tracker;

    • DE-E Telescopes;

    • Definition of the front-end and read-out architecture:• Choice of the technologies;

    • Design and test of the building blocks:• Front-end based on the VMM2 chip by BNL;

    • Read-out based on the SOM by National Instruments.

    • Design and construction of the FPD detector:• Detector interface to front-end;

    • Interconnections, cabling…

    • Power distribution;

    • Slow control;

    • …D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 2

  • FOCAL PLANE DETECTOR (FPD)specifications

    • Tracker: • 16 layers, 1 m width, segmented in 0,5 mm steps =32000 channels

    • DE-E Telescopes :• 40*100 DE-E SiC Telescopes (1x1 cm2)= 4000 channels

    Event Rate foreseen after the upgrade of the cyclotron: 100 KHz/cm

    • Modularity

    • Ease of maintenance

    • Re-configurability

    • Radiation Tolerance

    • Low Power

    • Low Cost

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 3

  • * ASIC for ATLAS Muon Spectrometer Upgrade

    New Small Wheels

    • sTGCSmall Strip Thin Gap Chamber

    • MMMicroMegas(MICROMEsh GAseous Structure)

    Front-end Electronics (ASIC)• more than 2.3 million channels total• operate with both charge polarities• sensing element capacitance 10-200 pF• charge meas. up to 2 pC @ < 1 fC rms• time meas. ~ 100 ns @ < 1 ns rms• trigger primitives, neighbor logic• low power, programmable

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015

    4

  • VMM2 CHIP BROOKHAVEN NATIONAL LABORATORIES

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 20155

    • Selected after a deep survey between available front-end ASICs;

    • Designed for MicroMegas detectors in ATLAS;

    • Collaboration established with the designer: Prof. G. De Geronimo;

    • Radiation Tolerant;

    • New version VMM3 could take in account the NUMEN specifications;

    • Available in the future in big volume;

    • All digital read-out compliant with the foreseen event rate;

    • Suitable for all the detector types foreseen in the final FPD:

    • Tracker (GEM, MicroMegas);

    • Calorimeter- particle identification (SiC DE-E);• APD.

  • • 64 linear front‐end channels:• low‐noise charge amplifier (CA) with adaptive feedback;• test capacitor and pulse generator for calibration;

    • adjustable polarity;

    • optimized for a capacitance of 200pF and a peaking time of 25 ns.

    • third‐order shaper (DDF) - adjustable peaking time in four values (25, 50, 100, and 200 ns);• Stabilized band‐gap referenced baseline;• Gain adjustable in eight values (0.5, 1, 3, 4.5, 6, 9, 12, 16 mV/fC).

    • Many mode of operation, selected “continuous digital”:

    • 38 bit generated for each event read-out @ about 200 MHz;

    • Id channel-peak amplitude (10b) - time stamp (10b);

    • 4-event deep de-randomizing FIFO per channel, read-out token ring;

    • 8 LVDS digital channel required for the read-out and control of the chip;

    • Power dissipation 4 mW per channel.

    130nm 1.2V 8‐metal CMOS technology from IBM

    VMM2 CHIP BROOKHAVEN NATIONAL LABORATORIES

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 6

  • Resolution Measurements (VMM2)

    • timing resolution < 1 ns

    (at peak-detect)

    • charge resolution ENC < 5,000 e- at 25 ns, 200 pF

    • analog dynamic range Qmax / ENC > 12,000 → DDF

    charge resolution timing resolution

    σt ≈ENC τP

    Q ρP

    λP≈ 0.3-0.8

    G. De Geronimo, in “Medical Imaging” by Iniewski

    1p 10p 100p 200p 1n100

    1k

    5k

    10k

    25ns, 9mV/fC

    50ns, 9mV/fC

    100ns, 9mV/fC

    200ns, 9mV/fC

    Me

    asu

    red

    EN

    C [e

    lectr

    on

    s]

    Input capacitance [F]

    0.0 0.2 0.4 0.6 0.8 1.0100p

    1n

    10n

    200pF, 200ns

    200pF, 100ns

    200pF, 50ns

    200pF, 25ns

    2pF, 25ns

    Me

    asu

    red

    tim

    ing

    re

    so

    lutio

    n [s]

    Output pulse amplitude [V]

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 20157

  • 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    Gain

    0.5,1,3,4.5,6,9,12,16 mV/fC

    Peaking time

    200ns

    100ns

    50ns

    25ns

    Am

    plitu

    de [V

    ]

    Time [µs]

    Input charge: ~ 36 fC

    Charge polarity: negative

    Input capacitance: ~ 5 pF

    Measured Pulse Response

    Peak-time ~26 ns

    @ Cin = 240 pF

    0 25 50 75 100 125 150 175 200

    0.2

    0.4

    0.6

    0.8

    Input capacitance

    ~ 5pF

    ~ 40pF

    ~ 243 pF

    Am

    plitu

    de [V

    ]

    Time [ns]

    Input charge: ~ 36 fC

    Charge polarity: negative

    Peaking time: 25 ns

    Gain: 16 mV/fC

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015

    8

    • Suitable for different

    detector capacitances

    • Wide range of

    measurement parameters

    • Test pulse pattern

    embedded

  • ENC ~4,7k e- (0.75 fC) at 25 ns, 226 pF (~5.6k at 0.5 mV/fC)

    10 100 1000

    102

    103

    104

    MOSFETpara

    llelshaper

    Gain 16 mV/fC

    Qin = 30 fC

    Cin

    = 6 pF

    Cin

    = 226 pF

    PD + ADC

    peak rms (PD)

    Eq

    uiv

    ale

    nt

    No

    ise C

    harg

    e [

    e- ]

    Peaking Time [ns]

    baseline rms

    theoretical

    Measured ENC

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015

    9

  • 1 10 1000.01

    0.1

    1

    10

    TAC + ADC

    TAC rmsC

    in= 6 pF

    Tim

    ing

    Re

    so

    luti

    on

    t [

    ns

    ]

    Input Charge [fC]

    Cin

    = 226 pF

    Peaking Time 25ns

    Gain 16 mV/fC

    TAC rms

    theoretical*

    PtQ

    ENC8.0

    σt within few ns @ 25 ns, 226 pF

    Measured Timing Resolution

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 201510

  • VMM2 Test board Thanks to the collaboration with G. De

    Geronimo a complete FE-RO chain for one

    VMM2 chip is available from sept 2015.

    Control and read-out software included.

    Continuous digital mode:

    38 bit/event

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 201511

  • • first ck of CKBC after peak-found stops ramp

    • first ck of CKBC after latcheswrites FIFO

    • 8-bit ADC starts at stop oframp, latches after conversion,resets at next rising edge ofCKBC (after latch)

    • 10-bit ADC starts at peak,latches after conversion, resetsat next rising edge of CKBC(after latch)

    • timing ramp starts at peak-found; the next rising edge ofCKBC arms the stop circuit; thenext falling edge stops the rampand starts the 8-bit ADCconversion

    peak-found

    CKBC

    stop armedramp stop

    timing ramp

    conversion

    data latch

    data latch

    reset 10-bit

    reset 8-bit

    FIFO writeFIFO ready & advance

    conversion

    8-bit ADC (timing)

    10-bit ADC (peak)

    Timing Ramp Optimization

    charge eventanalog pulse

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 12

  • D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 13

    Read-out of VMMx chips will be

    performed by a SOM based

    board, custom designed for the

    experimental demands:

    • Low Power;

    • Radiation Tolerance;

    • Low Cost;

    • Re-configurability;

    Re-programmable Intelligence on

    board will allow for:

    • composite trigger strategies;

    • Slow control;

    • Calibration;

    • Overall synchronization;

    • Gigabit Ethernet to maximize

    data throughput.

  • Adapter SOM

    Schematic View

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 14

    Design and Test SOM-VMM2 board by

    D. Bonanno and D. Bongiovanni.

    Full custom board hosting SOM and

    interfacing VMM2 Board through Molex

    twin-ax cable.

    Measured Performance: Sampling of 128 digital input SE @230MHz

    Sampling of 64 digital input SE @350MHz

    Applications: Real – Time characterization of a proton

    beam (position, size, fluence, energy);

    Imaging and radiography;

    Interfacing with:

    DAC

    ASICs (VMM2, MAROC)

    SD – Cards, USB – HDD

    Data transfer through Gigabit LAN

  • SD-CARD

    LAN

    USB

    SOM

    POWER

    CONNECTORS

    Adapter SOM

    To VMM2

    To VMM2

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 15

  • Test SOM-VMM2D. Bonanno, D. Bongiovanni

    • SOM-VMM2 board fully

    functional:

    • Firmware SOM ready for:

    • Configuration:

    • Calibration;

    • Synchronization:

    • Read-out;

    • LabView GUI:

    • Slow control;

    • DAQ

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 16

  • • 8 VMMx chip read-out by 1 SOM is one FE-RO Module;

    • Possible increase to 10 VMMx, to be confirmed!

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 17

    FE-RO Module

    SOMXilinx-Zynq7020

    667 MHz Dual Core Arm

    Cortex A9

    Artix7 FPGA Fabric

    VMMx_1

    VMMx_2

    VMMx_3

    VMMx_4

    VMMx_5

    VMMx_6

    VMMx_7

    VMMx_8

    Conne

    ctor

    64 Sig IN

    64 Sig IN

    64 Sig IN

    64 Sig IN

    64 Sig IN

    64 Sig IN

    64 Sig IN

    64 Sig IN

    GbE

    SPI Config10

    BC ck/ En2

    6

    6

    6

    6

    6

    6

    6

    6

    D0,

    D1

    From Synchro Som

  • FE-RO ARCHITECTURE

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 18

    SOM

    VMMx VMMx VMMxVMMx

    DATA MANAGER

    (storage)

    SYNCHRO

    SOM

    BC ckEnableGb Ethernet

    1 event (Tracker 1 strip per event):

    • FE-RO Board id;

    • Chip id;

    • Channel id;

    • BC ck count;

    • Fine Timestamp;

    • Charge measurement;

    BC counter resetGb Ethernet

    switch

    twisted cables

    FE-RO Module

    x8

  • FE-RO ARCHITECTURE• FE-RO Module:

    • 8 VMM2 chip -> 1 SOM

    • 512 input -> 1 Gb/s Ethernet

    • If 0,5 mm pad -> 320 kHz average event rate per Module;

    • 38 bit/event *number of strips involved = 38 bit/event

    (extra id chip and id Module);

    • Data Throughput = 20 Mb/s per Module;

    • Timing strategy

    • Synchro SOM:• BC clock to all Modules = 10 MHz;

    • Enable all Modules;

    • Each Module (SOM): • counts BC clock edges up to 4096 = 409.6 m s;

    • Each VMMx chip measures time from peak to next BC edge @ 488 psresolution.

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 19

  • CONCLUSIONS

    • Design of a complete VMM2-SOM system, now under test;

    • For the FE-RO Module final design we need:• the VMM3 details:

    • Definition of the overall architecture;

    • The FPD tracker final design:• Pitch, capacitance and interconnections;

    • (Vacuum sealing,…)

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 20

  • (ALMOST) EVERY NEW IDEA IS WELCOME…

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 21

  • THANK YOU

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 22

  • THANK YOU

    CONTACTS

    [email protected]: DOMENICO.LO.PRESTI

    D. Lo Presti, NUMEN2015 LNS, 1-2 December 2015 23

    mailto:[email protected]

Recommended