+ All Categories
Home > Documents > Numerical Modeling of Rectangular Quantum Dot · InGaAs/GaAsQuantum dot** ΔEc = 0.324 eV Result...

Numerical Modeling of Rectangular Quantum Dot · InGaAs/GaAsQuantum dot** ΔEc = 0.324 eV Result...

Date post: 07-Aug-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
14
Numerical Modeling of Rectangular Quantum Dot Chatdanai Lumdee Natapong Thongkamkoon International School of Engineering, Chulalongkorn University May, 2010
Transcript
Page 1: Numerical Modeling of Rectangular Quantum Dot · InGaAs/GaAsQuantum dot** ΔEc = 0.324 eV Result E1= 0.2310 eV E2= 0.2887 eV E3= 0.2887 eV **N. Thudsalingkarnsakul, Master’s Thesis,

Numerical Modeling of

Rectangular Quantum Dot

Chatdanai Lumdee

Natapong Thongkamkoon

International School of Engineering, Chulalongkorn UniversityMay, 2010

Page 2: Numerical Modeling of Rectangular Quantum Dot · InGaAs/GaAsQuantum dot** ΔEc = 0.324 eV Result E1= 0.2310 eV E2= 0.2887 eV E3= 0.2887 eV **N. Thudsalingkarnsakul, Master’s Thesis,

Outline

Introduction

Modeling

Result

One-Dimensional Structure

Three-Dimensional Structure

Conclusion

Page 3: Numerical Modeling of Rectangular Quantum Dot · InGaAs/GaAsQuantum dot** ΔEc = 0.324 eV Result E1= 0.2310 eV E2= 0.2887 eV E3= 0.2887 eV **N. Thudsalingkarnsakul, Master’s Thesis,

Quantum Dot

Introduction

nm

nm

Ee

E

enm

Page 4: Numerical Modeling of Rectangular Quantum Dot · InGaAs/GaAsQuantum dot** ΔEc = 0.324 eV Result E1= 0.2310 eV E2= 0.2887 eV E3= 0.2887 eV **N. Thudsalingkarnsakul, Master’s Thesis,

Schrödinger equation

Introduction

)()()()(*

1

2

2

rErrVrm

h

E )(r

2

)()( rrp

Page 5: Numerical Modeling of Rectangular Quantum Dot · InGaAs/GaAsQuantum dot** ΔEc = 0.324 eV Result E1= 0.2310 eV E2= 0.2887 eV E3= 0.2887 eV **N. Thudsalingkarnsakul, Master’s Thesis,

Rectangular Quantum Dot

Introduction

)()()(~)( zVyVxVrV zyx

Vx

x

ΔEc

Lx

xxxx EVdx

d

mdx

dh

*

1

2

2

)()()()( zyxr zyx

zyx EEEE

)()()()(*

1

2

2

rErrVrm

h

Ly

LzLx

Page 6: Numerical Modeling of Rectangular Quantum Dot · InGaAs/GaAsQuantum dot** ΔEc = 0.324 eV Result E1= 0.2310 eV E2= 0.2887 eV E3= 0.2887 eV **N. Thudsalingkarnsakul, Master’s Thesis,

Finite Difference Method

Modeling

x

xxfxxfxf

2

)()()( 2

)()(2)()(

x

xxfxfxxfxf

xxxx EVdx

d

mdx

d

mdx

dh

2

22

*

1

*

1

2

Boundary condition for bound states

xxxx EVdx

d

mdx

dh

*

1

2

2

Page 7: Numerical Modeling of Rectangular Quantum Dot · InGaAs/GaAsQuantum dot** ΔEc = 0.324 eV Result E1= 0.2310 eV E2= 0.2887 eV E3= 0.2887 eV **N. Thudsalingkarnsakul, Master’s Thesis,

Modified 1D Schrödinger equation

Modeling

EM

otherwise

jimmm

jimmm

jiVhm

hM

iii

iii

ii

ij

0

111

4

11

111

4

11

22

2

11

11

2

2

Page 8: Numerical Modeling of Rectangular Quantum Dot · InGaAs/GaAsQuantum dot** ΔEc = 0.324 eV Result E1= 0.2310 eV E2= 0.2887 eV E3= 0.2887 eV **N. Thudsalingkarnsakul, Master’s Thesis,

GaAs/AlGaAs Quantum well*

Result (1D Schrödinger)

Exact solutions (meV)* Numerical solutions (meV) Error (%)64.2 64.6 0.62

220.8 221.1 0.14

*H. Tan, G. L. Snider, L. D. Chang, and E. L. Hu, J. Appl. Phys., vol.68, no.8, 1990.

Page 9: Numerical Modeling of Rectangular Quantum Dot · InGaAs/GaAsQuantum dot** ΔEc = 0.324 eV Result E1= 0.2310 eV E2= 0.2887 eV E3= 0.2887 eV **N. Thudsalingkarnsakul, Master’s Thesis,

Quantum Dot (3D)

Modeling: continue

)()()()( zyxr zyx

zyx EEEE

2)()( rrp

Page 10: Numerical Modeling of Rectangular Quantum Dot · InGaAs/GaAsQuantum dot** ΔEc = 0.324 eV Result E1= 0.2310 eV E2= 0.2887 eV E3= 0.2887 eV **N. Thudsalingkarnsakul, Master’s Thesis,

InGaAs/GaAs Quantum dot**

ΔEc = 0.324 eV

Result

E1 = 0.2310 eV E2 = 0.2887 eV E3 = 0.2887 eV** N. Thudsalingkarnsakul, Master’s Thesis, Faculty of Engineering, 2008.

Ly = 19.4 nm

Lz = 2.5 nm Lx = 19.4 nm

Page 11: Numerical Modeling of Rectangular Quantum Dot · InGaAs/GaAsQuantum dot** ΔEc = 0.324 eV Result E1= 0.2310 eV E2= 0.2887 eV E3= 0.2887 eV **N. Thudsalingkarnsakul, Master’s Thesis,

Result

E1 = 0.2310 eV E2 = 0.2887 eV E3 = 0.2887 eV

Page 12: Numerical Modeling of Rectangular Quantum Dot · InGaAs/GaAsQuantum dot** ΔEc = 0.324 eV Result E1= 0.2310 eV E2= 0.2887 eV E3= 0.2887 eV **N. Thudsalingkarnsakul, Master’s Thesis,

The model can solve for

The energy states

The wave functions

The probability distributions

Analytical tool for the electronic structure of a quantum dot

Conclusion

Page 13: Numerical Modeling of Rectangular Quantum Dot · InGaAs/GaAsQuantum dot** ΔEc = 0.324 eV Result E1= 0.2310 eV E2= 0.2887 eV E3= 0.2887 eV **N. Thudsalingkarnsakul, Master’s Thesis,

[1] G. W. Bryant and G. S. Solomon, Optics of Quantum Dots and Wires, 1st ed. Norwood, MA: Artech House, Inc., 2005.

[2] G. A. Narvaez, G. Bester, and A. Zunger, “Dependence of the electronic structure of self-assembled (In,Ga)As/GaAs quantum dots on height and composition,” J. Appl. Phys., vol. 98, 043708, 2005.

[3] O. L. Lazarenkova and A. A. Balandin, “Miniband formation in a quantum dot crystal,” J. Appl. Phys., vol. 89, no. 10, 2001.

[4] I. H. Tan, G. L. Snider, L. D. Chang, and E. L. Hu, “A Self-Consistent solution of Schrodinger-Poisson Equation Using a Nonuniform Mesh,” J. Appl. Phys., vol.68, no.8, 1990.

[5] N. Thudsalingkarnsakul, Effective One-Dimensional Electronic Structure of

InGaAs Quantum Dot Molecules, Master’s Thesis, Department of Electrical Engineering, Faculty of Engineering, 2008.

References

Page 14: Numerical Modeling of Rectangular Quantum Dot · InGaAs/GaAsQuantum dot** ΔEc = 0.324 eV Result E1= 0.2310 eV E2= 0.2887 eV E3= 0.2887 eV **N. Thudsalingkarnsakul, Master’s Thesis,

Thank you

Q&A


Recommended