+ All Categories
Home > Documents > Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7 ...

Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7 ...

Date post: 20-Apr-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
32
B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de Bernd Brügmann University of Jena Kyoto, 6.6.2013 Outline: 1. Gravitational waves and the two-body problem in general relativity 2. Black hole binaries 3. Neutron star binaries Black Hole (and Neutron Star) Binaries in Numerical Relativity
Transcript
Page 1: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Bernd BrügmannUniversity of Jena

Kyoto, 6.6.2013

Outline: 1. Gravitational waves and the two-body problem in general relativity 2. Black hole binaries 3. Neutron star binaries

Black Hole (and Neutron Star) Binaries in Numerical Relativity

Page 2: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Any non-uniform and non-spherical motion of massgenerates gravitational waves

Thorne­Carnahan

aLIGO, aVirgo GEO-HFKAGRA

ET, eLISAPTA

• speed of light, long range, no shielding F_gravity = F_electric / 10^36• everyday waves are exceedingly weak → black holes, neutron stars, supernovae, big bang, ...• hard to detect, hard to block• no direct detection yet (!!)

Page 3: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Gravitational wavesare a new windowinto the universe:

WHAT WILLWE SEE?

S. Rowan, GWIC

Gravitational Wave Astronomy

Page 4: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Theory and Observation

Solve Einstein equations 1. theory of the sources2. templates to filter waves from noise (typically required)3. physical parameters from analysis of waves

GR eqns and GR hydro require advances in analytics, numerics, computationswell-posedness, gauge, BH singularities, microphysics, rotation, magnetic fields, ...

Observe AND UNDERSTAND what is not visible by other means:

black holes e.g. in binaries, mergers/collisions, mass censusneutron stars e.g. equation of state via oscillations, tidal dis., gamma ray burstssupernovae e.g. GW from interior of type-II, convectioncosmology e.g. big bang to within 10-24 secondsthe unknown e.g. a surprise, at least a test of relativity

GW are complementary to all other fields/particles (multi-messenger astronomy)

Page 5: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Einstein Equation in Vacuum

R (g, ∂g, ∂∂g) = 0

- black holes, gravitational waves

- neutron stars etc. with stress energy tensor on right hand side

- reformulation required to obtain standard PDE evolution problem

Page 6: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Numerical Relativity = Spacetime Engineering, R = 0

Page 7: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Some milestones of 3d black hole evolutions

Last missing pieces of BBH puzzle: 2005: Pretorius: constraint damping (Gundlach et al) for harmonic code 2006: Campanelli, Lousto, Marronetti, Zlochower; Baker, Centrella, Choi, Koppitz, Meter: moving puncture 'gauge'

1995: Schwarzschild in 3d NCSA1999: Grazing Collision AEI, Texas/PSU2001: Plunge from ISCO AEI2004: One Orbit PSU/Jena2005: Orbit, Merger, Waves Pretorius, Brownsville, Goddard2006: Several orbits before merger2007: Kicks, Spin-Kicks2010: Rochester, Goddard, Georgia Tech, AEI, LSU, (Maryland) Caltech, Cornell, Florida Atlantic, Sperhake, Pretorius, Jena

Page 8: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Parameters of Black Hole BinariesIgnore field content (waves)Ignore deformations (quasi-normal ringing)

Position: separation, varies along orbit

Mass: M = m1+m2, q = m1/m2 kicks

Momentum bound: eccentric, quasi-circular unbound: collisions, scattering

Spin spin-orbit, spin-spin coupling precession, spin-flips, hang-up/speed-up, kicks

Emission of gravitational waves accelerating inspiral precession of “orbital plane” motion of “center of mass”

m1

P1

S1

m2

P2

S2

L

Page 9: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Twisted pair of pants: orbits and merger of

two black holes

event horizon (!)in x-y-t diagram

unequal massno spin

M. Thierfelder

Page 10: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Orbits and merger oftwo black holes

gravitational wavesr Re(Psi4)

masses 1:1.5no spininitial d = 7M

volumeisosurfacesprojection on spherez=0 plane

min/max = 0.005box -96 to +96time step 1M

Page 11: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Binary Black Hole Simulations 2007 - 2013

Mathematical, numerical,computational work

GOLD-RUSH in PARAMETER-SPACE

Gravitational wave templates including fully relativistic merger

General relativity and astrophysics of blackhole mergers

• analytic moving puncture gauge• validation: Samurai project

• templates: post-Newtonian (EOB) heuristic/hybrid templates• data analysis: NINJA, NRDA, NRAR

• kicks: unequal mass (10:1), spin kicks super-kicks of up to 4000km/s• eccentricity, zoom-whirl orbits• horizons; N-black-hole

new directions:• extreme spin, 100:1 • matter, electromagnetic counterparts• high energy black hole collisions• AdS, higher dimensions

Page 12: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Binary Black Hole Simulations 2013

Mathematical, numerical,computational work

GOLD-RUSH in PARAMETER-SPACE

Gravitational wave templates including fully relativistic merger

General relativity and astrophysics of blackhole mergers

Current capability of BH-BH simulationscmp. NRAR (NINJA-2, Samurai)

• 20 GW cycles before merger (< 40)• Δφ < 0.25 radian at merger• ΔA/A < 1%• e < 0.002 (quasi-circular) • q ≤ 4 (≤ 10, max 100)• s ≤ 0.8 (approaching max spin, 'linear')

high-order finite diff. and spectral methods

Page 13: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Some recent examples, BHs and NSs, Jena et al.

Mathematical, numerical,computational work

GOLD-RUSH in PARAMETER-SPACE

Gravitational wave templates including fully relativistic merger

General relativity and astrophysics of mergers

• Trumpet initial data: solving the constraints in the moving puncture gauge• Matter collapse in puncture gauge• PDE formulation: Z4c system• Spectral method

• Templates: NRDA• Accurate/long NS-NS inspirals• NS+EOB → talk by Bernuzzi

• Eccentric BH-BH orbits, zoom-whirl at intermediate momenta• Eccentric NS-NS orbits, orbit induced oscillations

Page 14: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

2 black holes, equal masses, no spin (numerical relativity) Müller, Gold, BB 09

Page 15: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Orbital precession due to general relativity

Kepler, Newton Einstein

(BR96)

Page 16: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Special/extreme eccentricity: zoom-whirl orbits

Newton: Kepler orbits, ellipses for bound orbits

Einstein: precessing ellipses, but also fine-tuned orbits in Schwarzschild and Kerr show zoom-whirl behavior

→ Easily exceed the 5% radiated energy of equal mass binaries (15-30% reported) How many whirls are possible for comparable masses? Relevance for astrophysics? High energy collisions?

Many refs on geodesics and post-Newtonian; numerical relativity:Pretorius, Khuranna 07; Healy et al 08/09;Sperhake et al 09; Gold, BB 09+12

Page 17: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Zoom-whirl, equal mass/no spin, low momentum (NR) Gold, BB 12

Page 18: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Puncture method for black holes

Moving puncture gauge surprisingly successful!

Analytic/geometric understanding: Wormhole puncture initial data evolves to trumpet data Hannam, Husa, Pollney, BB, O'Murchadha 2007; Brown 2008; ... Brandt, BB 1997

Basic idea: the conformal factor absorbs the coordinate singularity (pole) that encodes the black hole

Page 19: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Puncture method for black holes

Page 20: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Puncture method for black holes

Page 21: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Puncture method for black holes

New: Solve constraints for trumpet (!) initial data Rewrite Hamiltonian constraint with ψ→1/ψ Gundermann 2010, Dietrich, BB 2012/13: 1+log trumpets, K ≠ 0 Baumgarte 2012: maximal trumpets, K = 0

Page 22: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Trumpet solution from spherical gravitational collapse with puncture gauges Thierfelder, Bernuzzi, Hilditch, BB, Rezzolla 2011

Page 23: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Spectral methods for black hole spacetimes

Vacuum spacetimes: smoothness of metric variables allow high order methods→ spectral methods can be optimal if applicable

Pilot projects bam → bampsBB 2013: Stability of Schwarzschild black hole in 3d spin-weighted spherical harmonics, tensor filters, GPU computingWeyhausen, Hilditch, BB (in prep 2013): 3d Nonlinear Waves

Nonlinear waves on fixed 2d background:Harms, Bernuzzi, BB 2013: Numerical solution of the 2+1 Teukolsky equation on a hyperboloidal and horizon penetrating foliation of Kerr and application to late time decays→ time domain integration→ first results on |s| = 2

Page 24: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Tails for 2+1 Teukolsky equation, time domain, |s|=0,1,2Harms, Bernuzzi, BB 2012

Scri: hyperboloidal foliation, Rasz Toth 2011

Additional regularization neededfor |s| > 0, cmp. Zenginoglu 2012

Quadruple precision required

Confirms analytic calculationsby Hod 2000 (case distinctions!)

s=-2 numerical time integration, Krivan,Laguna, Papadopoulos, Andersson 1997

Page 25: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Tails for 2+1 Teukolsky equation, time domain, |s|=0,1,2Harms, Bernuzzi, BB 2012

Price 1972: late time decay ∼ t -µHere: s=-2, finite | null infinity, time splitting bold, various ID→ preparatory for BH-test mass calculations (Bernuzzi, Nagar)→ extremal spin, superradiance cavity (Andersson, Glampedakis 1999, Yang et al. 2012)

Page 26: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Z4c Formulation for 3d BHs and NSsHilditch, Bernuzzi, Thierfelder, Cao, Tichy, BB 2012

NS-NS

Page 27: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Neutron Star Binary: long/accurate quasicircular inspiralBernuzzi, Thierfelder, BB 12

Catching up:

Simplest model: equal mass, Γ=2 polytrope, no MHD, no neutrinos …Focus on accurate simulations suitable for gravitational wave analysis

Longest and most accurate simulation of the simplest typeAlso Baiotti et al 2011, Hotokezaka et al 2013

Page 28: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Neutron Star Binary: eccentric inspiralsGold, Bernuzzi, Thierfelder, BB, Pretorius 12

First simulations studying eccentricity in significant detail

Superposition of boosted TOV stars – constraints not solved (cmp. Lehner et al., new project C. Markakis, N. Moldenhauer)

Features:- Orbit Induced Oscillations Turner 1977 Newtonian; Kokkotas, Schäfer 1995 post-Newtonian- Large disk mass of about 10% of total initial mass

Compare eccentric BH-BH and BH-NS (e.g. Pretorius et al 2012, masses different)

Compare Newtonian simulations (e.g. Rosswog, Piran, Nakar 2012)

Population of eccentric NS-NS is very uncertain. Small to extremely small?

Page 29: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Neutron Star Binary: eccentric inspirals induce oscillationsGold, Bernuzzi, Thierfelder, BB, Pretorius 12

Tracks for model 1, 2, 3 Waveform and instantaneous frequencyModel 3, f-mode in green

Page 30: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Neutron Star Binary: eccentric inspirals induce oscillations

cmp. e.g.Kokkotas et al.

Gold, Bernuzzi, Thierfelder, BB, Pretorius 12

Model 2 and 3, rest-mass density andpower-spectral density, l=m=2, f-mode

Page 31: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Gold, Bernuzzi, Thierfelder, BB, Pretorius 12Neutron Star Binary: eccentric inspirals increase disk mass

eccentricity can lead to significantly larger disk mass

Page 32: Numerical Relativity of Black Holes€¦ · B. Brügmann, University of Jena, SFB/Transregio 7  Theory and Observation

B. Brügmann, University of Jena, SFB/Transregio 7 http://www.tpi.uni-jena.de

Summary

●Numerical relativity is reaching long-standing goals:●

●Insights for general relativity●Astrophysics of black holes

●and neutron stars●Gravitational wave templates

1995: Schwarzschild in 3d1999: Grazing collision2002: plunge from ISCO 2004: one orbit2006: several orbits2009: physics: spins, kicks, wave templates ...2013: more realistic matter


Recommended