+ All Categories
Home > Documents > Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar,...

Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar,...

Date post: 16-Mar-2020
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
18
Numerical Simulations of a Stratified Oceanic Bottom Boundary Layer John R. Taylor - MIT Advisor: Sutanu Sarkar - UCSD Copyright John R. Taylor, 2008
Transcript
Page 1: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

Numerical Simulations of

a Stratified Oceanic

Bottom Boundary Layer

John R. Taylor - MIT

Advisor: Sutanu Sarkar - UCSD

Copyright John R. Taylor, 2008

Page 2: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

Motivation

• Numerical ocean models are very important to accurate weather and climate prediction.

• Ocean models cannot resolve three!dimensional turbulence in the bottom boundary layer.

Objective I: Assess and improve parameterizations of the bottom boundary layer in ocean models.

Velocity magnitude, MITgcm

(Chris Hill personal communication)

Copyright John R. Taylor, 2008

Page 3: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

Oceanic Bottom Boundary Layer

Viscous (Roughness)

Sublayer

Bottom mixed layer

O(10m)

Outer layer,

Stable Stratification

Q = 0

!(z)

Logarithmic

Layer ?l ! z

! 4000

! 3500

! 3000

! 2500

! 2000

! 1500

! 1000

! 500

0

Dep

th (

m)

U!

Mean / Tidal currents

Copyright John R. Taylor, 2008

Page 4: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

0 0.2 0.4 0.6 0.8 110

!-1

100

101

Velocity (m/s)

Met

ers

abo

ve

bo

tto

m

Field Observations

The seafloor stress is often estimated by fitting a logarithmic profile to the observed velocity profile.

Data from: Johnson et al. JPO 24, 1994

Mixedlayer height

Objective II: Provide a database to help interpret field data

Copyright John R. Taylor, 2008

Page 5: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

0 0.2 0.4 0.6 0.8 110

!-1

100

101

Velocity (m/s)

Met

ers

above

bott

om

Data from: Johnson et al. JPO 24, 1994

Best fit 0-5mu*=4.83 cm/s

Best fit 5-20mu*=8.56 cm/s

Mixedlayer height

!w = "0u2! = 7.5 N/m2

!w = "0u2! = 2.4 N/m2

• Shear is larger at the top of the mixed layer.

• Can lead to a dramatic overestimate in the wall stress.

Field Observations

Copyright John R. Taylor, 2008

Page 6: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

Computational Domain

0

100

1000

5625

Ri! = N2

"/f2

d!

dz!

d!

dz= 0

U!

Impose: U!,d!

dz!, f

!N2! = !g

d"

dz!

"

Geostrophy: fU! =dP

dy

Seafloor: Non-sloping,

hydrodynamically rough wall

Periodicin x, y

xy

z

Temperature

Gradient

Radiation Condition

Open Boundary:

+ Sponge layer

Ekman

Spiral

Free-stream

Velocity

Copyright John R. Taylor, 2008

Page 7: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

Turbulent Ekman Layer

Copyright John R. Taylor, 2008

Page 8: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

Density, Velocity

N!/f 0 32 75

u!/U" 0.0488 0.0490 0.0497

Mixed layer, Ekman height are limited by stratification.

! Associated with a small increase in the drag coefficient

Drag Coefficient

f

!!

0

< v > dz = !w

0

10

20

02

46

0

0.2

0.4

0.6

0.8

1

<u>/u*

<v>/u*

z/!

N"

/f =0

N"

/f =75

0 0.2 0.40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

<!>/(" d<!>/dz|#

)

z/"

N/f = 32

N/f = 75

Steady state balance:

Copyright John R. Taylor, 2008

Page 9: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

Density, Velocity Gradients

! =

!

!z

u!

"

d !|u|"

dzDensity gradient

Stratification causes an increase in the mean shear.

0 0.5 1 1.5 20

0.05

0.1

0.15

0.2

0.25

!

z/"

0.3

N/f = 32

N/f = 75

N/f = 0

0 1 2 3 4

z/"

N/f = 32

N/f = 75

d<#>/dz|$

d<#>/dz

0

0.05

0.1

0.15

0.2

0.25

0.3

Copyright John R. Taylor, 2008

Page 10: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

Friction Velocity Estimates

Profile Method, fit to:

Modified-Profile Method

,1l

=1!z

+N

u!

d !|u|"dz

=u!l

0 32 750

0.02

0.04

0.06

0.08

0.1

0.12

N!

/f

u*/U

!

u*/U!

Profile Method

Modified-Profile Method

Profile Method (upper 1/2 ML)

Modified-Profile Method (upper 1/2 ML)

!|u|" =u!!

log

!z

z0

"

!|u|" =u!!

log

!z

z0

"+

# z

0N(z")dz"

Copyright John R. Taylor, 2008

Page 11: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

N/f = 32 dw/dz

x/!

z/!

Studies of turbulence-generated IWs

Grid-generated Turbulence (Linden 1975, E&Hopfinger 1986, Dohan+Sutherland 2003,2005, etc.)Shear Layers (Sutherland & Linden 1988, Sutherland et al. 1994, Basak & Sarkar 2006, etc.)Gravity Currents (Flynn & Sutherland 2004, etc.)Rough Topography BL (Aguilar & Sutherland 2006, etc.)Wakes (Bonneton et al. 1993, Gourlay et al. 2001, Spedding 2002, Diamessis et al. 2005, etc.)

42-55º

45-60º

41-64º

40-46º

!

Outer-layer Internal Waves

!2 = N2cos2(!) + f2sin2(!)

Copyright John R. Taylor, 2008

Page 12: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

1. Start with the equations for the turbulent kinetic

energy and the perturbation potential energy.

2. Obtain an expression for the rate of change in wave

energy owing to viscous dissipation (neglecting wave-

wave interactions)

3. Given an initial wave amplitude and propagation

speed, what is the expected amplitude at a height z

following viscous dissipation.

Viscous Decay Model

Copyright John R. Taylor, 2008

Page 13: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

Define wave energy, W=KE+PE

!W

!t+ ! · (Wcg) = "

d2W

dz2" 2"|k|2W

Viscous Decay Model

Neglect viscous diffusion, assume ! · cg " 0

DW

Dt= !2!|k|2W D/Dt is time derivative following cg

In a stationary frame in terms of vertical velocity amplitude:

A(z) = A0

|k0|

|k|exp[

!!"

kh("2 ! f2)!1/2

! z

0

|k|4(N2 ! "2)!1/2dz"]

Given the initial amplitude, , we can predict A0(kh, !) A(kh,!, z)

(linearized)

Copyright John R. Taylor, 2008

Page 14: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

!

"

k

#

!w

!z

$2%1/2

Viscous Decay Model

0 10 20 300

0.2

0.4

0.6

0.8

!/f

z0/"=0.45

z/"=8

N/f=10

0 10 20 30 40 500

0.2

0.4

0.6

0.8

!/f

z/"=8

z0/"=0.26

N/f=31.6

LES Viscous Decay Model

45˚45˚

Copyright John R. Taylor, 2008

Page 15: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

Looking Ahead...

Consider a time-dependent outer layer flow (tides or waves).

How is the bottom boundary layer affected by lateral density gradients?

Study the stability of a directional shear in a stratified fluid.

Apply the internal wave model to other flows, e.g. stratified wakes, topographic generation.

Copyright John R. Taylor, 2008

Page 16: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

Development of a CFD Code

Developed in collaboration with Prof. Tom Bewley

User selected combination of pseudo-spectral, finite differences.

Large Eddy Simulation model (LES) using dynamic eddy-viscosity and/or scale-similar terms.

Capable of considering an arbitrary number of passive and/or active scalars

Parallelized using MPI

Source code available from:

numerical-renaissance.com/Diablo.html

Copyright John R. Taylor, 2008

Page 17: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

Acknowledgments

Advisor: Sutanu Sarkar

Thesis committee: Tom Bewley, Paul Linden, Rob Pinkel, Bill Young

Collaborator: Vincenzo Armenio

Family: Erin, George + Cindy, Annie + Tim

Funding from NDSEG Fellowship

ONR, Physical Oceanography

Copyright John R. Taylor, 2008

Page 18: Numerical Simulations of a StratiÞed Oceanic Bottom ... · References • Taylor J.R., S. Sarkar, and V. Armenio (2005).Large eddy simulation of stably stratified open channel flow.Phys.

References• Taylor J.R., S. Sarkar, and V. Armenio (2005). Large eddy simulation of stably stratified

open channel flow. Phys. Fluids 17, 116602.

• Taylor J.R., and S. Sarkar (2007). Internal gravity waves generated by a turbulent bottom

Ekman layer. Journal of Fluid Mechanics 590, 1, 331-354.

• Taylor J.R., and S. Sarkar (2007). Direct and large eddy simulations of a bottom Ekman

layer under an external stratification. Int. J. Heat and Fluid Flow, 29, 3, 721-732.

• Taylor J.R., and S. Sarkar (2007). Stratification effects in a bottom Ekman layer. Journal of

Physical Oceanography, in press.

• Taylor J.R., and S. Sarkar (2007). Internal wave generation by a turbulent bottom boundary

layer. Proceedings of the Fifth International Symposium on Environmental Hydraulics.

• Taylor J.R., and S. Sarkar (2007). Near-wall modeling for LES of an oceanic bottom

boundary layer. Proceedings of the Fifth International Symposium on Environmental

Hydraulics.

• Taylor J.R., and S. Sarkar (2007). Large eddy simulation of a stratified benthic boundary

layer. Turbulence and Shear Flow Phenomena-5 Proceedings.

• Taylor J.R., S. Sarkar, and V. Armenio (2005) Open channel flow stratified by a surface heat

flux. Turbulence and Shear Flow Phenomena-4 Proceedings.

Copyright John R. Taylor, 2008


Recommended