+ All Categories
Home > Documents > Numerical Solution of NTH

Numerical Solution of NTH

Date post: 06-Dec-2015
Category:
Upload: editor-ijritcc
View: 250 times
Download: 9 times
Share this document with a friend
Description:
In this paper, a numerical method for Nth - order fuzzy initial value problems (FIVP) based on Seikkala derivative of fuzzy process is studied. The fourth order Runge-Kutta method based on Contra-harmonic Mean (RKCoM4) is used to find the numerical solution of this problem and the convergence and stability of the method is proved. This method is illustrated by solving second and third order FIVPs. The results show that the proposed method suits well to find the numerical solution of Nth – order FIVPs.
Popular Tags:
17
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 2218 _______________________________________________________________________________________________ 2202 IJRITCC | August 2014, Available @ http://www.ijritcc.org _______________________________________________________________________________________ Numerical Solution of N TH - Order Fuzzy Initial Value Problems by Fourth Order Runge-Kutta Method Basesd On Contrahamonic Mean R. Gethsi Sharmila and E. C. Henry Amirtharaj Department of Mathematics, Bishop Heber College(Autonomous), Tiruchirappalli -17, India. Email: [email protected] +91-94438-34101 Abstract--In this paper, a numerical method for N th - order fuzzy initial value problems (FIVP) based on Seikkala derivative of fuzzy process is studied. The fourth order Runge-Kutta method based on Contra-harmonic Mean (RKCoM4) is used to find the numerical solution of this problem and the convergence and stability of the method is proved. This method is illustrated by solving second and third order FIVPs. The results show that the proposed method suits well to find the numerical solution of N th order FIVPs. Keywords - Fuzzy numbers, N th - order Fuzzy Initial Value Problems, Runge-Kutta method, Contra-harmonic Mean, Lipschitz condition. __________________________________________________*****_________________________________________________ 1. INTRODUCTION The research work on Fuzzy Differential Equations (FDEs) has been rapidly developing in recent years. The concept of the fuzzy derivative was first introduced by Chang and Zadeh[9], it was followed up by Dubois and Prade [10] by using the extension principle in their approach. Other methods have been discussed by Puri and Ralescu [23] and Goetschel and Voxman [16]. Kandel and Byatt [21] applied the concept of fuzzy differential equation to the analysis of fuzzy dynamical problems. The FDE and the initial value problem (Cauchy problem) were rigorously treated by Kaleva [19, 20], Seikkala [24], He and Yi [17], and by other researchers [6, 8]. The numerical methods for solving fuzzy differential equations are introduced by Abbasbandy et.al. and Allahviranloo et.al. in [1, 2, 5]. Buckley and Feuring [7] introduced two analytical methods for solving N th - order linear differential equations with fuzzy initial value conditions. Their first method of solution was to fuzzify the crisp solution and then check to see if it satisfies the differential equation with fuzzy initial conditions; and the second method was the reverse of the first method, they first solved the fuzzy initial value problem and the checked to see if it defined a fuzzy function. Allahviranloo et.al [3, 4] proposed the methods for solving N th order fuzzy differential equations. Jayakumar et.al [18] used the Runge - Kutta Nystrom method for solving N th order fuzzy differential equations. Gethsi Sharmila and Henry Amirtharaj [14, 15] introduced the explicit third order Runge-Kutta method based on Centroidal Mean (CeM) to solve IVPs and developed a numerical algorithm for finding the solution of Fuzzy Initial Value Problems by Fourth Order Runge-Kutta Method Based on Contra- harmonic Mean. In this paper, a numerical method to solve N th - order linear fuzzy initial value problem is presented using the fourth order Runge Kutta method based on Contra-harmonic Mean. The structure of the paper is organized as follows: In Section 2, some basic results on fuzzy numbers and fuzzy derivative are given. Then the fuzzy initial value problem is treated in Section 3 using the extension principle of Zadeh and the concept of fuzzy derivative. It is shown that the fuzzy initial value problem has a unique fuzzy solution when f satisfies Lipschitz condition which guarantees a unique solution to the deterministic initial value problem. In Section 4, the fourth order Runge-Kutta method based on Contra-harmonic Mean for solving N th - order fuzzy initial value problems is introduced. In Section 5 convergence and stability are illustrated. In Section 6 the proposed method is illustrated by solving two examples, and the conclusion is drawn in Section 7. 2. PRELIMINARIES An arbitrary fuzzy number is represented by an ordered pair of functions , ur ur for all 0,1 r , which satisfy the following requirements: (i) ur is a bounded left continuous non-decreasing function over [0,1] , (ii) ur is a bounded left continuous non-increasing function over [0,1] , (iii) , 0 1. ur ur r Let E be the set of all upper semi-continuous normal convex fuzzy numbers with bounded level intervals.
Transcript
Page 1: Numerical Solution of NTH

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 – 2218

_______________________________________________________________________________________________

2202 IJRITCC | August 2014, Available @ http://www.ijritcc.org

_______________________________________________________________________________________

Numerical Solution of NTH

- Order Fuzzy Initial Value Problems by Fourth Order

Runge-Kutta Method Basesd On Contrahamonic Mean

R. Gethsi Sharmila and E. C. Henry Amirtharaj

Department of Mathematics, Bishop Heber College(Autonomous),

Tiruchirappalli -17, India.

Email: [email protected] +91-94438-34101

Abstract--In this paper, a numerical method for Nth - order fuzzy initial value problems (FIVP) based on Seikkala derivative of fuzzy process is

studied. The fourth order Runge-Kutta method based on Contra-harmonic Mean (RKCoM4) is used to find the numerical solution of this

problem and the convergence and stability of the method is proved. This method is illustrated by solving second and third order FIVPs. The

results show that the proposed method suits well to find the numerical solution of Nth – order FIVPs.

Keywords - Fuzzy numbers, Nth - order Fuzzy Initial Value Problems, Runge-Kutta method, Contra-harmonic Mean, Lipschitz condition.

__________________________________________________*****_________________________________________________

1. INTRODUCTION

The research work on Fuzzy Differential Equations (FDEs) has been rapidly developing in recent years. The concept of the fuzzy

derivative was first introduced by Chang and Zadeh[9], it was followed up by Dubois and Prade [10] by using the extension

principle in their approach. Other methods have been discussed by Puri and Ralescu [23] and Goetschel and Voxman [16]. Kandel

and Byatt [21] applied the concept of fuzzy differential equation to the analysis of fuzzy dynamical problems. The FDE and the

initial value problem (Cauchy problem) were rigorously treated by Kaleva [19, 20], Seikkala [24], He and Yi [17], and by other

researchers [6, 8]. The numerical methods for solving fuzzy differential equations are introduced by Abbasbandy et.al. and

Allahviranloo et.al. in [1, 2, 5]. Buckley and Feuring [7] introduced two analytical methods for solving Nth

- order linear

differential equations with fuzzy initial value conditions. Their first method of solution was to fuzzify the crisp solution and then

check to see if it satisfies the differential equation with fuzzy initial conditions; and the second method was the reverse of the first

method, they first solved the fuzzy initial value problem and the checked to see if it defined a fuzzy function. Allahviranloo et.al

[3, 4] proposed the methods for solving Nth

– order fuzzy differential equations. Jayakumar et.al [18] used the Runge - Kutta

Nystrom method for solving Nth

– order fuzzy differential equations. Gethsi Sharmila and Henry Amirtharaj [14, 15] introduced

the explicit third order Runge-Kutta method based on Centroidal Mean (CeM) to solve IVPs and developed a numerical

algorithm for finding the solution of Fuzzy Initial Value Problems by Fourth Order Runge-Kutta Method Based on Contra-

harmonic Mean.

In this paper, a numerical method to solve Nth

- order linear fuzzy initial value problem is presented using the fourth order

Runge – Kutta method based on Contra-harmonic Mean. The structure of the paper is organized as follows: In Section 2, some

basic results on fuzzy numbers and fuzzy derivative are given. Then the fuzzy initial value problem is treated in Section 3 using

the extension principle of Zadeh and the concept of fuzzy derivative. It is shown that the fuzzy initial value problem has a unique

fuzzy solution when f satisfies Lipschitz condition which guarantees a unique solution to the deterministic initial value problem.

In Section 4, the fourth order Runge-Kutta method based on Contra-harmonic Mean for solving Nth

- order fuzzy initial value

problems is introduced. In Section 5 convergence and stability are illustrated. In Section 6 the proposed method is illustrated by

solving two examples, and the conclusion is drawn in Section 7.

2. PRELIMINARIES

An arbitrary fuzzy number is represented by an ordered pair of functions

,u r u r for all 0,1r , which satisfy the following requirements:

(i) u r is a bounded left continuous non-decreasing function over [0,1] ,

(ii) u r is a bounded left continuous non-increasing function over [0,1] ,

(iii) , 0 1.u r u r r

Let E be the set of all upper semi-continuous normal convex fuzzy numbers with

bounded level intervals.

Page 2: Numerical Solution of NTH

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 – 2218

_______________________________________________________________________________________________

2203 IJRITCC | August 2014, Available @ http://www.ijritcc.org

_______________________________________________________________________________________

Lemma 2.1

Let ( ), ( ) , (0,1]v v be a given family of non-empty intervals. If

( ) [ ( ), ( )] [ ( ), ( )] for 0 < , and

( ) [lim ( ), lim ( )] [ ( ), ( )], k kk k

i v v v v

ii v v v v

whenever ( )k is a non-decreasing sequence converging to (0,1] , then the family[ ( ), ( )], (0,1]v v , represent the

level set of fuzzy number v in E. Conversely if [ ( ), ( )], (0,1]v v , are level set of fuzzy number v E then

the conditions (i) and (ii) hold true.

Definition 2.1

Let I be a real interval. A mapping :v I E is called a fuzzy process and denote the level set by

[ ] [ ( , ), ( , )].v t v t v t The Seikkala derivative 'v t of v is defined by [ ' ] [ '( , ), '( , )],v t v t v t provided that is

a equation defines a fuzzy number '( )v t E .

Definition 2.2

Suppose u and v are fuzzy sets in E. Then their Hausdorff

: 0 ,D E E R [0, 1]

( , ) sup max ( ) ( ) , ( ) ( ) ,D u v u v u v

i.e ( , )D u v is maximal distance between α level sets of u and v .

3. FUZZY INITIAL VALUE PROBLEM Now we consider the initial value problem

1 ( 1)

1 ,( ) ( , , ,..., ), (0) ,..., (0)n n n

nx t t x x x x a x a (3.1)

where is a continuous mapping from nR R into R and (0 )ia i n are fuzzy numbers in E . The mentioned N

th - order

fuzzy differential equation by changing variables ( 1)

1 2( ) ( ), y ( ) ( ),..., y ( ) ( ),n

ny t x t t x t t x t

converts to the following fuzzy system

1 1 1

1

[0] [0]

1 1 1

( ) ( , ,..., y ),

( ) ( , ,..., y ),

(0) ,..., y (0) ,

n

n n n

n n n

y t f t y

y t f t y

y y a y a

(3.2)

where (1 i n)if are continuous mapping from nR R into R and

[0]

iy are fuzzy numbers in E with α - level intervals.

[0][0][0][ ] [ ( ), ( )] for i = 1,..., n and 0 1i iiy y y

We call 1( ,..., y )T

ny y is a fuzzy solution of (3.2) on an interval I, if

1

1

( , ) = min ( , ,..., u ); u [ ( , ), ( , ) ] ( , ( , )),

( , ) = max ( , ,..., u ); u [ ( , ), ( , ) ] ( , ( , )) ,

i n j ji j i

i n ji j ij

y t f t u y t y t f t y t

y t f t u y t y t f t y t

(3.3)

and [0][0]

(0, ) ( ), (0, ) ( )i ii i

y y y y (3.4)

Page 3: Numerical Solution of NTH

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 – 2218

_______________________________________________________________________________________________

2204 IJRITCC | August 2014, Available @ http://www.ijritcc.org

_______________________________________________________________________________________

Thus for fixed we have a system of initial value problem in 2nR . If we can solve it (uniquely), we have only to verify that the

intervals, [ ( , ), ( , )]jjy t y t define a fuzzy number ( ) .iy t E Now let

[0] [0] [0]

1( ) ( ( ),..., ( ))T

ny y y and

[0] [0] [0]

1( ) ( ( ),..., ( ))T

ny y y with respect to the above mentioned indicators, system (3.2) can be written as with

assumption

[0]

( ) ( , ( )),

(0) .n

y t F t y t

y y E

(3.5)

With assumption

( , ) [ ( , ), ( , )] y ( , ) [ ( , ), ( , )]y t y t y t and t y t y t

where

(3.6)

( , ) [ ( , ),..., ( , )] ,Ty t y t y t

(3.7)

( , ) [ ( , ),..., ( , )] ,Ty t y t y t (3.8)

( , ) [ ( , ),..., ( , )] ,Ty t y t y t (3.9)

and with assumption ( , ( , )) [ ( , ( , ))), ( , ( , ))]F t y t F t y t F t y t , where

1( , ( , )) [ ( , ( , ))),..., ( , ( , ))]T

nF t y t f t y t f t y t , (3.10)

1( , ( , )) [ ( , ( , ))),..., ( , ( , ))]T

nF t y t f t y t f t y t , (3.11)

y (t) is a fuzzy solution of (3.5) on an interval I for all α (0,1], if

[0][0]

( , )) ( , ( , ));

( , )) ( , ( , ))

(0, ) ( ), (0, ) ( )

y t F t y t

y t F t y t

y y y y

(3.12)

or

[0]

( , )) ( , ( , )),

(0, ) ( ).

y t F t y t

y y

(3.13)

Now we show that under the assumptions for functions , i=1,..., nif for how we can

obtain a unique fuzzy solution for system (3.2).

Theorem 3.1

If 1( , ,..., u )i nf t u for 1,..., ni are continuous function of t and satisfies the

Lipschitz condition in 1 ( ,..., u )T

nu u in the region

, [0,1], i=1,..., niD t u t I u for with constant iL then the initial

value problem (3.2) has a unique fuzzy solution in each case.

Proof. Denote 11

( , ) ( ,..., , ,..., )T T

nnG F F f f f f where

1( , ) min{ ( , ,..., ); u [ , ], 1,..., n}i n j ji jf t u f t u u y y for j , (3.14)

1( , ) max{ ( , ,..., ); u [ , ], 1,..., n}i i n j jjf t u f t u u y y for j , (3.15)

( , ) [ ( , ),..., ( , )] ,Ty t y t y t

Page 4: Numerical Solution of NTH

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 – 2218

_______________________________________________________________________________________________

2205 IJRITCC | August 2014, Available @ http://www.ijritcc.org

_______________________________________________________________________________________

Denote 2

1( , ) ( ,..., y , ,..., ) RT T n

n nny y y y y y . It can be shown that Lipschitz condition

of functions if imply

( , ) ( , )F t z F t z L z z

This guarantees the existence and uniqueness solution of

[0][0][0] 2 2

( )) ( , ( )),

(0) ( , ) t n

y t F t y t

y y y y R

(3.16)

Also for any continuous function [1] 2: ny R R the successive approximations

[ 1] [0] [ ]

0

( ) ( , ( )) , t 0, m =1,2,...

t

m my t y F s y s ds (3.17)

converge uniformly on closed subintervals of R to the solution of (3.16). In other

word we have the following successive approximations

[ 1] [0] [ ]( ) ( , ( )) , for i=1,..., n,

tm m

i i io

y t y f s y s ds

(3.18)

[ 1] [0][ ]( ) ( , ( )) , for i=1,..., n.

tm

m

i i i

o

y t y f s y s ds

(3.19)

By choosing[0][0][0] ( ( ), ( ))y y y in (3.16) we get a unique solution

( ) ( ( , ), ( , ))y t y t y t to (3.3) and (3.4) for each (0,1].

Next we will show that the ( , ) ( ( , ), ( , )),y t y t y t defines a fuzzy number innE for

each 0 ,t T i.e. that 1( ,..., y )T

ny y is a fuzzy solution to (3.14) and (3.15). Thus we

will show that the intervals [ ( , ), ( , )],ii

y t y t for 1,..., ni satisfy the conditions of Lemma (2.1). The successive

approximations [ ] [0] ,m ny y E

[ 1] [0] [ ]( ) ( , ( )) , t 0, m=1,2,...,

t

m m

o

y t y F s y s ds

(3.20)

where the integrals are the fuzzy integrals, define a sequence of fuzzy numbers[ ] [ ] [ ]

1( ) ( ( ),..., ( ))m m m T

ny t y t y t for each

0 .t T Hence [ ] [ ][ ( )] ( ( )] , if o< 1,m m

i iy t y t which implies that

[ ] [ ][ ] [ ][ ( , ), ( , )] [ ( , ), ( , )], (0 < 1),

m mm m

i ii iy t y t y t y t since, by the convergence of sequences (3.16) and

(3.19) , the end points of [ ][ ( )]m

iy t converge to ( , ) ( , )ii

y t and y t that means

[ ][ ]( , ) ( , ) and ( , ) ( , ).

mm

i ii iy t y t y t y t

(3.21)

Thus the inclusion property (i) of Lemma (2.1) holds for the intervals [ ( , ), ( , )] for 0 < 1.ii

y t y t For the proof of the

property (ii) of Lemma (2.1), let ( )p be a non-decreasing sequence in (0,1] converging to α. Then

[0] [0][0] [0]( ) ( ) and ( ) ( ) p py y y y , because of

[0].ny E But by the continuous dependence on the initial value

of the solution (3.16), ( , ) ( , )py t y t and ( ) ( ),py y this means (ii) holds for the intervals [ ( , ), ( , )],y t y t for

0 1. Hence by Lemma (2.1), ( ) ny t E and so y is a fuzzy solution of (3.1). The uniqueness follows from the uniqueness

of the solution of (3.16).

4. THE FOURTH ORDER RUNGE - KUTTA METHOD BASED ON CONTRAHARMONIC MEAN (RKCOM) TO

SOLVE FUZZY INITIAL VALUE PROBLEMS

Page 5: Numerical Solution of NTH

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 – 2218

_______________________________________________________________________________________________

2206 IJRITCC | August 2014, Available @ http://www.ijritcc.org

_______________________________________________________________________________________

4.1. RKCoM formula for Solving system of IVPs

Evans and Yaakub[11] have developed a new RK method of order 4 based on Contra-harmonic Mean (RKCoM) to solve first

order equation and it is to be noted that the Contra-harmonic Mean of two points x1 and x2 is defined as

2 2

1 2

1 2

x x

x x

Murugesan et.al. [22] extended the fourth order RK formula based on Contra-harmonic Mean to solve system of IVPs (3.2) as

follows:

2 2 2 2 2 2

1 2 2 3 3 4

1

1 2 2 3 3 4

1 1 2

2 1 1 1 11 2 1 12 1 1

3 2 3 1 2 11 3 21 2 2 12

, 13

, , ,...,

, , ,...,

, ,

j j j j j j

n j nj

j j j j j j

j j n n n nm

j j n n n nm m

j j n n n

k k k k k khy y j m

k k k k k k

where

k f x y y y

k f x a h y a hk y a hk y a hk

k f x a a h y a hk a hk y a hk

3 22 2 1 3 2

4 5 6 1 4 11 5 21 6 31 2 4 12 5 22 6 32

4

4 1 5 2 6 3

,...,

, , ,...,

nm m m

n n n

j j

nm m m m

a hk y a hk a hk

x a a a h y a hk a hk a hk y a hk a hk a hkk f

y a hk a hk a hk

The parameters are:

1 2 3 4 5 6

1 1 3 1 3 3, , , , ,

2 8 8 4 4 2a a a a a a

(4.2)

4.2. Procedure for Solving FIVPs

We consider fuzzy initial value problem (3.2) with the unique solution 1,( ,..., y )T n

ny y E . For finding an approximate

solution of (3.2) with the fourth order Runge- Kutta method based on Contra-harmonic Mean, we first define

4

1

1

4

1

1

( ; ) ( ; ) ( , ( ; ), ),

( ; ) ( ; ) ( , ( ; ), ),

in n i n n

i

in n i n n

i

y t r y t r w k t y t r h

y t r y t r w k t y t r h

(4.3)

where the wi’s are constants and

[ ( , ( ; ), )] [ ( , ( ; ), ), ( , ( ; ), )], 1, 2, 3, 4i r i ik t y t r h k t y t r h k t y t r h i

1

1

1

1

( , ( ; ), ) ( , ( ) ( , ( ; ), )),

( , ( ; ), ) ( , ( ) ( , ( ; ), )),

i

i jn n n i n ij n n

j

i

i jn n n i n ij n n

j

k t y t r h f t c h y t a k t y t r h

k t y t r h f t c h y t a k t y t r h

(4.4)

1 1

1 1

( , ( ; ), ) min{ ( , s ,..., s ) \ [ ( ; ), ( ; )]}, (1 i, j n)

( , ( ; ), ) max{ ( , s ,..., s ) \ [ ( ; ), ( ; )]},

i i n j j j

i i n j j j

k t y t r h f t s y t r y t r

k t y t r h f t s y t r y t r

Page 6: Numerical Solution of NTH

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 – 2218

_______________________________________________________________________________________________

2207 IJRITCC | August 2014, Available @ http://www.ijritcc.org

_______________________________________________________________________________________

112 1

12 11

223 1

( , ( ; ), ) min{ ( , s ,..., s ) \ [ ( ; ), ( ; )]}2

( , ( ; ), ) max{ ( , s ,..., s ) \ [ ( ; ), ( ; )]}2

( , ( ; ), ) min{ ( , s ,..., s ) \ [ ( ; ), ( ; )]2

jji i n j

ji ji n j

jji i n j

hk t y t r h f t s z t r z t r

hk t y t r h f t s z t r z t r

hk t y t r h f t s z t r z t r

23 21

334 1

34 31

}

( , ( ; ), ) max{ ( , s ,..., s ) \ [ ( ; ), ( ; )]}2

( , ( ; ), ) min{ ( , s ,..., s ) \ [ ( ; ), ( ; )]}

( , ( ; ), ) max{ ( , s ,..., s ) \ [ ( ; ), ( ; )]}

ji ji n j

jji i n j

ji ji n j

hk t y t r h f t s z t r z t r

k t y t r h f t h s z t r z t r

k t y t r h f t h s z t r z t r

(4.5)

such that ,

1 1

1 1

2 1 2

2 1 2

( , ( ; ), ) ( ; ) ( , ( ; ))2

( , ( ; ), ) ( ; ) ( , ( ; ))2

3( , ( ; ), ) ( ; ) ( , ( ; ), ) ( , ( ; ), )

8 8

3( , ( ; ), ) ( ; ) ( , ( ; ), ) ( , (

8 8

j jj

j jj

j j jj

j j jj

hz t y t r h y t r k t y t r

hz t y t r h y t r k t y t r

hz t y t r h y t r k t y t r h hk t y t r h

hz t y t r h y t r k t y t r h hk t y t

3 2 2 3

3 2 2 3

; ), )

3 3( , ( ; ), ) ( ; ) ( , ( ; ), ) ( , ( ; ), ( , ( ; ))

4 4 2

3 3( , ( ; ), ) ( ; ) ( , ( ; ), ) ( , ( ; ), ( , ( ; ))

4 4 2

j j j jj

j j j jj

r h

hz t y t r h y t r k t y t r h hk t y t r h hk t y t r

hz t y t r h y t r k t y t r h hk t y t r h hk t y t r

now we consider the following relations

2 2 2 2

1 2 2 3

1 2 2 3

2 2

3 4

( , ( ; ), ) ( , ( ; ), ) ( , ( ; ), ) ( , ( ; ), ), ( ; ),

( , ( ; ), ) ( , ( ; ), ) ( , ( ; ), ) ( , ( ; ), )

( , ( ; ), )

i i i ii

i i i i

i i

k t y t r h k t y t r h k t y t r h k t y t r hF t y t r h

k t y t r h k t y t r h k t y t r h k t y t r h

k t y t r h k

3 4

2 2 2 2

1 2 2 3

1 2 2 3

( , ( ; ), )

( , ( ; ), ) ( , ( ; ), )

( , ( ; ), ) ( , ( ; ), ) ( , ( ; ), ) ( , ( ; ), ), ( ; ),

( , ( ; ), ) ( , ( ; ), ) ( , ( ; ), ) ( , ( ; ), )

i i

i i i i

ii i i i

t y t r h

k t y t r h k t y t r h

k t y t r h k t y t r h k t y t r h k t y t r hG t y t r h

k t y t r h k t y t r h k t y t r h k t y t r h

2 2

3 4

3 4

( , ( ; ), ) ( , ( ; ), )

( , ( ; ), ) ( , ( ; ), )

i i

i i

k t y t r h k t y t r h

k t y t r h k t y t r h

and suppose that the discrete equally spaced grid points 0 10, ,..., tNt t T is a partition for interval [0, T]. If the exact and

approximate solution in the i-th α cut at ,0mt m N

are denoted by [ ] [ ][ ] [ ]

[ ( ), ( )] and [ ( ), ( )]m mm m

iiiiy y w w

respectively, then the numerical method for solution approximation in the i-th coordinate cut, with the Runge-Kutta method

based on contra-harmonic Mean is

[ 1] [ ] [0] [0]

[ 1] [ ] [0] [0]

( ) ( ) ( , ( ), ), ( ) ( ),3

( ) ( ) ( , ( ), ), ( ) ( ),3

m m m

ii i im i

m mm

i i ii m i

hw w F t w h w y

hw w F t w h w y

Where

Page 7: Numerical Solution of NTH

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 – 2218

_______________________________________________________________________________________________

2208 IJRITCC | August 2014, Available @ http://www.ijritcc.org

_______________________________________________________________________________________

[ ][ ][ ][ ( )] [ ( , ), ( , )], w ( ) [ ( ) ( )]mmm

iiiw t w t w t w w

[ ] [ ] [ ][ ] [ ] [ ]w ( ) ( ( ),..., ( )) , w ( ) ( ( ),..., ( ))

m m mm m m T Ti ni nw w and w w

Now we input

* [ ] [ ] [ ]

1

1( , ( ), ) ( ( , ( ), ),..., ( , ( ), ) ,

3

m m m T

nF t w h F t w h F t w h (4.22)

* [ ] [ ] [ ]

1

1( , ( ), ) ( ( , ( ), ),..., G ( , ( ), )

3

m m m T

nG t w h G t w h t w h . (4.23)

The Runge-Kutta method based on Contra-harmonic Mean for solutions approximation -cut of differential equation (3.13) is

as follow

[ 1] [ ] [0] [0]( ) ( ) ( , ( ), ), w ( ) ( )m m m

mw w hH t w h y (4.24)

where

[ ] * [ ] * [ ] * [ ]( , ( ), ) ( , ( ), ) [ ( , ( ), ),..., G ( , ( ), )]m m m m

m m mH t w h F t w h F t w h t w h

and

2 22 22 3* [ ] 1 2

1 2 2 3

2 2

3 4

( , ( ; ), ) ( , ( ; ), )1 ( , ( ; ), ) ( , ( ; ), )( , ( ), ) [

3 ( , ( ; ), ) ( , ( ; ), ) ( , ( ; ), ) ( , ( ; ), )

( , ( ; ), ) ( ,

mk t y t r h k t y t r hk t y t r h k t y t r h

F t w hk t y t r h k t y t r h k t y t r h k t y t r h

k t y t r h k t

3 4

( ; ), )]

( , ( ; ), ) ( , ( ; ), )

y t r h

k t y t r h k t y t r h

(4.25)

22 2 221 2* [ ] 3

1 2 2 3

2

3

( , ( ; ), ) ( , ( ; ), )1 ( , ( ; ), ) , ( , ( ; ), )G ( , ( ), )] [

3 ( , ( ; ), ) ( , ( ; ), ) ( , ( ; ), ) ( , ( ; ), )

( , ( ; ), )

m

m

k t y t r h k t y t r hk t y t r h k t y t r ht w h

k t y t r h k t y t r h k t y t r h k t y t r h

k t y t r h

2

4

3 4

( , ( ; ), )]

( , ( ; ), ) ( , ( ; ), )

k t y t r h

k t y t r h k t y t r h

(4.26)

and also

[ ] [ ] [ ]

1

[ ] [ ] [ ]1

( , ( ), ) ( ( , ( ), ),..., ( , ( ), )) ,

( , ( ), ) ( ( , ( ), ),..., ( , ( ), )) . (j=1,2,3,4)

m m m T

j j nj

m m m Tj j nj

k t w h k t w h k t w h

k t w h k t w h k t w h

5. CONVERGENCE AND STABILITY

Definition 5.1

A one-step method for approximating the solution of a differential equation

[0]

( )) ( , ( )),

(0) n

y t F t y t

y y R

(5.27)

Page 8: Numerical Solution of NTH

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 – 2218

_______________________________________________________________________________________________

2209 IJRITCC | August 2014, Available @ http://www.ijritcc.org

_______________________________________________________________________________________

which F is a Nth

- ordered as follow 1( ,..., )T

nf f f and 1 : R (1 ),nf R R i n is a method which can be written in the

form

[ 1] [ ] ( , , ),n n n

nw w h t w h (5.28)

where the increment function ψ is determined by F and is a function of [ ], n

nt w and h only.

Theorem 5.1

If ( , , )t y h satisfies a Lipschitz condition in y, then the method given by (5.28) is stable.

Theorem 5.2

In relation (3.5), if F(t, y) satisfies a Lipschitz condition in y, then the method given by (4.24) is stable.

Theorem 5.3

If [ 1] [ ] [0] [ ]( ) ( ) ( , ( ), ), w ( ) ( )m m m m

mw w h t w h y (5.29)

where 1 2 ( , ( ), ) [ ( , ( ), ), ( , ( ), )]m m m

m m mt w h t w h t w h is a numerical method for approximation of differential

equation (3.13), and 1 2 and are continuous in t, y, h for 00 , 0t T h h and all y, and if they satisfy a Lipschitz

condition in the region 0, , , ) 0 , , , 0 i=1,..., n ,i i iD t u v h t T u v v h h necessary and

sufficient conditions for convergence above mentioned method is ( , ( , ), ) ( , ( , )).t y t h F t y t

(5.30)

Proof: Suppose that ( , ( , ),0) ( , ( , )),t y t F t y t since, ( , ( , ))F t y t satisfying the conditions of theory (3.1), then the

following equation

[0]

( )) ( , ( )),

(0) ( )

y t F t y t

y y

(5.31)

has a unique solution such as ( , ) ( ( , ) , ( , )),y t y t y t where

( , ) ( ( , ),..., ( , )) and ( , ) ( ( , ),..., ( , )) .T Ty t y t y t y t y t y t We will show that the numerical solutions given by

(5.29) convergent to the y(t) . By the mean value theorem,

(5.32) [ 1] [ ]

( , ( )), for 0< <1m m

i i ii i i m my y h f t h y t h

(5.33)

with assumption 11( ,..., ) and ( ,..., ) .T T

nn From equation (5.29) obtain the following relations

[ 1] [ ]

( ) ( ) ( , ( ), ),m m

mi i i mw w h t w h

and subtracting (5.32) , (5.33) from (5.34) , (5.35) respectively, and setting

[ ][ ][ ]( ) [ ( ), ( )],mmme e e where

[ ] [ ] [ ][ ] [ ] [ ]( ) ( , ) ( ) ( ) and ( ) ( , ) ( ) ( ),

m m mm m m

m me e t w y e e t w y we get

[ 1] [ ]( , ( )), for 0< <1,

m m

i i ii i i m my y h f t h y t h

[ 1] [ ]( ) ( ) ( , ( ), ),

m m m

i i i mw w h t w h

Page 9: Numerical Solution of NTH

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 – 2218

_______________________________________________________________________________________________

2210 IJRITCC | August 2014, Available @ http://www.ijritcc.org

_______________________________________________________________________________________

[ 1] [ ] [ ] [ ] [ ] [ ]

[ ]

( ) ( ) { ( , ( ), ) ( , ( ), ) ( , ( ), ) ( , ( ),0)

( , ( ),0) ( , ( ))}

m m m m m m

i i m i m i m i m

m

i ii m m mi

e e h t w h t w h t w h t w

t w f t h y t h

on the other

way, with respect to the relation of

[ ] [ ]( , ( ),0) ( , ( ))m m

i m mit w f t y we can write

[ ]

1 1 1

1 1

1 1 1 2

1 1

( , ( ),0) ( , (

( ) ( ) ( ) ( )

( ) ( ) ,

m

i im m mi i

n n

ii im i m m mi iii i

n n

ii i i im i m iiii i

t w f t h y t h

hL L y t h y t L y t h y t

hL L y t h h L y t h h hL

then

[ ][ ][ 1] [ ] 2 2

1 1 2

1

[ ][ ] 2

1 1 21

( ) ( ) ( ) ( )

( ) max ( ) ( )

nmmm m

jji

j

mm

jjj n

e e hL e e h L h L

e nhL e h L L

On the other hand

[ ] [ ][ ] [ ]

1 1max ( ) ( ) , max ( ) ( ) ,

m mm m

ii ii jjj n j ne k e e k e

with assumption 1 1 21max , and M=L +L ,i i

i nk k k

we can write

[ ][ ][ 1] [ ] [ ] 2

1 1 1

[ ][ ] [ ] 2

1 1 1

( ) ( ) ( ) ( ) ( )

( ) 2 ( ) ( ) ,

mmm m mii ii i

mm m

ii i

e e e nhk L e e M h

e nhk L e e M h

(5.36)

similarly, we can obtain the following relation

[ ][ ][ 1] [ ] 2

2 1 2( ) ( ) 2 max ( ) ( )mmm m

ii i ie e nhk L e e M h (5.37)

Now, we input 1 1 1 2max , and M=max ,L L L M M the relations (5.36) and (5.37) can be written as follow

[ ][ ][ 1] [ ] 2

1

[ ][ 1] [ ] [ ] 2

( ) ( ) 2 max ( ) ( ) ,

( ) ( ) 2 max ( ) ( )

mmm mii

i

mm m m

i ii i

e e nhkL e e Mh

e e nhkL e e Mh

Denote [ ][ ][ ] ( ) ( ) .mmm

iiie e e Then By virtue of lemma (5.7)

[ ] [0] 2 (1 4 ) 1( ) (1 4 ) ( ) 2 ,

4

mm m

i i

nhkLe nhkL e Mh

nhkL

where [0][0][0] ( ) ( ) .iiie e e Then

4 4[ ][ ] 4 [0] 4 [0]( ) and ( ) .

2 2

mnklh mnklhmm mnkh mnkh

ii ii

e ee e e M h e e e M h

nhkl nhkL

In particular 4 4

[ ][ ] 4 [0] 4 [0]( ) and ( ) .2 2

Nnklh NnklhNN Nnkh Nnkh

ii ii

e ee e e M h e e e M h

nhkl nhkL

Since

Page 10: Numerical Solution of NTH

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 – 2218

_______________________________________________________________________________________________

2211 IJRITCC | August 2014, Available @ http://www.ijritcc.org

_______________________________________________________________________________________

[0][0]( ) ( ) 0, and h= we obtainii

Te e

N

Then

4 4 4[ ] [ ] [ ]

1 2( ) , and ( ) . Then ( ) 2 , 2 2 2

Nnklh Nnklh NnklhN N Ne e e

e M h e M h e M hnhkL nhkL nhkL

if 0h we get

[ ]( ) 0,Ne so the numerical solution (5.29) converge to the solutions (5.31). Conversely, suppose that the numerical method

(5.29) convergent to the solution of the system (5.31). With absurd hypothesis we suppose that (5.30) is not correct. Then

, ( , ),0 , ( , ) , ( , ) .t y t g t y t F t y t Similarly, we can prove that the numerical method of (5.29) is convergent

to the solution of following system

[0]

( )) ( , ( )),

(0) ( ),

u t g t y t

u y

Then

( , ) ( ). Since g(t,y(t, )) F(t,y(t, )),y t u t

suppose that F and g differ at some point ( , ( , )).a at y t If we

consider the initial values problem (5.31) and (5.38) starting from ( , ( , ))a at y t we have

( , ) ( , ( , )) ( , ( , )) ( , ( )) ( ),a a a a a a a ay t F t y t g t y t g t u t u t which is a contradiction.

Corollary 5.1

The proposed Runge-Kutta method based on Contra-harmonic Mean by (4.24) and is convergent to the solution of the system

(3.13) respectively.

6. NUMERICAL EXAMPLE

Example 6.1

Consider the following fuzzy differential equation with fuzzy initial value

( ) 4 ( ) 4 ( ) 0 (t 0)

(0) (2 ,4 )

(0) (5 ,7 )

y t y t y t

y

y

The exact solution is as follows:

2 2

2 2

( , ) (2 ) (1 ) )

( , ) (4 ) ( 1) )

t t

t t

y t r r e r te

y t r r e r te

The solution of the fourth order Runge - Kutta method based on Contra-harmonic Mean is as follows:

[ 1] [ ]

1 1

2 22 3 4 5 3 4 5

2 1

2 3 4 5

1 2

2 2

2 1

2 22 3 3 2 3

2 1 1 2

( ) ( )

2 8 25 27 8[ 3 ] [ 4 3 ]3 3 6 16 3

8 22 9[ 7 ]3 3 2

9[2 4 ] [4 3 ]

4

2 4 4 4 4 8[ ] [ ] [ ]3 3 3 3 3 3

m mw w

w h h h h h w h h h

w w h h h h

w h h w h h

w h h h w h w w h h

w

2 1

2 2 3 4 5 6 7

2

2 3 4 5 6 7 2 3 4 5 6 7

1 1 2

2 3 2 3

2 1

[2 2 ] 2

2 67 519[ 4 21 27 27 ]3 6 16

20 243 58 165 153[ 20 51 54 ] [4 44 81 ]

3 4 3 2 2 27 27

[2 6 9 ] [6 9 ]4 2

h hw

w h h h h h h h

w h h h h h w w h h h h h h

w h h h w h h h

Page 11: Numerical Solution of NTH

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 – 2218

_______________________________________________________________________________________________

2212 IJRITCC | August 2014, Available @ http://www.ijritcc.org

_______________________________________________________________________________________

[ 1] [ ]

1 1

2 22 3 4 5 3 4 52 1

2 3 4 51 2

2 22 1

2 22 3 3 2 3

2 1 1 2

( ) ( )

2 8 25 27 8[ 3 ] [ 4 3 ]3 3 6 16 3

8 22 9[ 7 ]3 3 2

9[2 4 ] [4 3 ]

4

2 4 4 4 4 8[ ] [ ] [ ]3 3 3 3 3 3

m m

w w

w h h h h h w h h h

w w h h h h

w h h w h h

w h h h w h w w h h

w

2 1

22 3 4 5 6 7

2

23 4 5 6 7 2 3 4 5 6 7

1 1 2

2 3 2 32 1

[2 2 ] 2

2 67 519[ 4 21 27 27 ]3 6 16

20 243 58 165 153[ 20 51 54 ] [4 44 81 ]

3 4 3 2 2 27 27

[2 6 9 ] [6 9 ]4 2

h hw

w h h h h h h h

w h h h h h w w h h h h h h

w h h h w h h h

[ 1] [ ]

2 2

2 22 3 2 3 2 3

2 1 2 1

2 1

2 22 3 4 5 2 3 4 5

2 1

( ) ( )

32 32 64 64 64 112[ 16 12 ] [ ] [ 32 ]

3 3 3 3 3 3 [8 6 ] [8 8 ]

32 32 128 200[ 32 40 24 12 ] [ 48 27 ]

3 3 3 3

m mw w

w h h h w h h h w w h h h

w h w h

w h h h h h w h h h h h

2 3 4 5

2 1

2 2

2 1

2 22 3 4 5 6 7 3 4 6

2 1

2 3 4 5 6

2 1

64 224[ 104 68 36 ]

3 3

[8 12 6 ] [8 16 9 ]

32 675 486 19303 85264[ 48 108 180 240 180 ] [48 ]

3 4 3 9 81

64[ 112 280 496 708 558 54

3

w w h h h h h

w h h w h h

w h h h h h h h w h h h

w w h h h h h h

7

2 3 2 3

2 1

0 ]

45[8 18 18 ] [8 24 27 36 ]

2

h

w h h h w h h h

[ 1] [ ]

2 2

2 22 3 2 3 2 32 1 2 1

2 1

2 22 3 4 5 2 3 4 5

2 1

( ) ( )

32 32 64 64 64 112[ 16 12 ] [ ] [ 32 ]

3 3 3 3 3 3 [8 6 ] [8 8 ]

32 32 128 200[ 32 40 24 12 ] [ 48 27 ]

3 3 3 3

m m

w w

w h h h w h h h w w h h h

w h w h

w h h h h h w h h h h h

2 3 4 52 1

2 22 1

2 22 3 4 5 6 7 3 4 6

2 1

2 3 4 5 62 1

64 224[ 104 68 36 ]

3 3

[8 12 6 ] [8 16 9 ]

32 675 486 19303 85264[ 48 108 180 240 180 ] [48 ]

3 4 3 9 81

64[ 112 280 496 708 558 54

3

w w h h h h h

w h h w h h

w h h h h h h h w h h h

w w h h h h h h

7

2 3 2 32 1

0 ]

45[8 18 18 ] [8 24 27 36 ]

2

h

w h h h w h h h

Page 12: Numerical Solution of NTH

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 – 2218

_______________________________________________________________________________________________

2213 IJRITCC | August 2014, Available @ http://www.ijritcc.org

_______________________________________________________________________________________

Table 1 shows the obtained results by the proposed method for r=0 to 1 and compared with the fourth order Runge – Kutta

method(Table 2)

Table 1 (for ex 6.1)

FIVPRKCoM4SYS2

h=0.1, t=1 h=0.1, t=2 h=0.01, t=1 h=0.01, t=2

error in w error in w error in w

error in w error in w error in w error in w

error in w

2.79E-03 1.99E-03 3.98E-02 3.85E-02 1.70E-05 2.36E-05 1.82E-04 5.23E-04

2.49E-03 1.68E-03 3.63E-02 3.02E-02 1.41E-05 1.88E-05 1.56E-04 3.94E-04

2.21E-03 1.43E-03 3.29E-02 2.37E-02 1.13E-05 1.46E-05 1.30E-04 2.92E-04

1.95E-03 1.22E-03 2.96E-02 1.88E-02 8.85E-06 1.10E-05 1.05E-04 2.10E-04

1.71E-03 1.05E-03 2.64E-02 1.52E-02 6.64E-06 7.96E-06 8.15E-05 1.46E-04

1.50E-03 9.19E-04 2.34E-02 1.27E-02 4.73E-06 5.46E-06 6.00E-05 9.59E-05

1.31E-03 8.29E-04 2.06E-02 1.12E-02 3.12E-06 3.47E-06 4.10E-05 5.86E-05

1.15E-03 7.76E-04 1.80E-02 1.05E-02 1.84E-06 1.96E-06 2.50E-05 3.18E-05

1.01E-03 7.58E-04 1.57E-02 1.05E-02 8.99E-07 9.14E-07 1.27E-05 1.42E-05

9.01E-04 7.74E-04 1.37E-02 1.10E-02 3.17E-07 3.05E-07 4.64E-06 4.55E-06

8.22E-04 8.22E-04 1.21E-02 1.21E-02 1.12E-07 1.12E-07 1.66E-06 1.66E-06

Table 2 (for ex 6.1)

FIVPRK4SYS2

h=0.1, t=1 h=0.1, t=2 h=0.01, t=1 h=0.01, t=2

error in w

error in w

error in w

error in w

error in w

error in w

error in w

error in w

1.25E-05 4.09E-06 1.58E-02 1.03E-03 1.06E-07 9.85E-09 1.86E-06 1.41E-07

1.20E-05 4.51E-06 1.50E-02 1.86E-04 1.02E-07 1.47E-08 1.76E-06 4.08E-08

1.16E-05 4.93E-06 1.41E-02 6.57E-04 9.68E-08 1.95E-08 1.66E-06 5.92E-08

1.12E-05 5.35E-06 1.33E-02 1.50E-03 9.19E-08 2.43E-08 1.56E-06 1.59E-07

1.08E-05 5.76E-06 1.25E-02 2.34E-03 8.71E-08 2.92E-08 1.46E-06 2.59E-07

1.04E-05 6.18E-06 1.16E-02 3.18E-03 8.23E-08 3.40E-08 1.36E-06 3.59E-07

9.95E-06 6.60E-06 1.08E-02 4.03E-03 7.74E-08 3.88E-08 1.26E-06 4.59E-07

9.53E-06 7.02E-06 9.93E-03 4.87E-03 7.26E-08 4.37E-08 1.16E-06 5.59E-07

9.11E-06 7.44E-06 9.08E-03 5.71E-03 6.78E-08 4.85E-08 1.06E-06 6.59E-07

8.69E-06 7.86E-06 8.24E-03 6.55E-03 6.30E-08 5.33E-08 9.59E-07 7.59E-07

8.27E-06 8.27E-06 7.40E-03 7.40E-03 5.81E-08 5.81E-08 8.59E-07 8.59E-07

Example 6.2

Consider the following fuzzy differential equation with fuzzy initial value

( ) 2 ( ) 3 ( ) (0 t 1)

(0) (3 ,5 )

(0) ( 3 , 1 )

(0) (8 ,10 )

y t y t y t

y

y

y

the eigenvalue-eigenvector solution is as follows:

3 31 7 11 1 7 19( , ) ( ( ) , ( ) ).

3 12 4 3 12 4

t t t ty t r e r e e r e

The solution of the fourth order Runge - Kutta method based on Contra-harmonic Mean is as follows :

Page 13: Numerical Solution of NTH

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 – 2218

_______________________________________________________________________________________________

2214 IJRITCC | August 2014, Available @ http://www.ijritcc.org

_______________________________________________________________________________________

[ 1] [ ]

1 1

2 23 5 3 4 5 2 3 4 5

2 3 2 3

2 2

2 3

2 23 4 5 6 7

2 3

( ) ( )

2 3 27 1 1 3 2 1 3 9[ ] [ ] [ ]3 8 256 3 8 64 3 4 16 64

9 3[2 ] [ ]

16 8

2 9 9 135 81 243 5[ ] [3 8 8 256 64 256 12

m mw w

w h h h w h h h w w h h h h

w h w h h

w h h h h h h w

3 4 5 6 7

2 3 4 5 6 7

2 3

2 3 2 3

2 3

3 22 2

2 3 2 3

2 3

5 99 63 1323]

8 64 64 1024

3 9 117 297 567[ ]

4 4 64 128 25627 27 3 9 63

[2 ] [ ]16 16 2 8 32

2

3 12 3

22

h h h h h

w w h h h h h h

w h h w h h h

h h hw w w w

hw w

[ 1] [ ]

1 1

2 23 5 3 4 5 2 3 4 5

2 3 2 3

2 22 3

2 23 4 5 6 7

2 3

( ) ( )

2 3 27 1 1 3 2 1 3 9[ ] [ ] [ ]3 8 256 3 8 64 3 4 16 64

9 3[2 ] [ ]

16 8

2 9 9 135 81 243 5[ ] [3 8 8 256 64 256 12

m m

w w

w h h h w h h h w w h h h h

w h w h h

w h h h h h h w

3 4 5 6 7

2 3 4 5 6 72 3

2 3 2 32 3

3 22 2

2 3 2 3

2 3

5 99 63 1323]

8 64 64 1024

3 9 117 297 567[ ]

4 4 64 128 25627 27 3 9 63

[2 ] [ ]16 16 2 8 32

2

3 12 3

22

h h h h h

w w h h h h h h

w h h w h h h

h h hw w w w

hw w

Page 14: Numerical Solution of NTH

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 – 2218

_______________________________________________________________________________________________

2215 IJRITCC | August 2014, Available @ http://www.ijritcc.org

_______________________________________________________________________________________

[ 1] [ ]

2 2

2 3 4 5 6 7

2

2 2 3 4 5 6 7

3

2 3 4 5 6

2 3

( ) ( )

15 45 189 567 11907[ ]

4 8 64 64 1024

2 343 226 33301 140525 133225[ 2 ]3 72 27 3456 15552 23328

29 57 1539 2403 2835[3

4 4 64 128 128

m mw w

w h h h h h

w h h h h h h h

w w h h h h h

7

2 3 2 3

2 3

2 23 2 3 2 3

2 3 2 3

2 3

2 23 4 5 2 3 4 5

2 3

2

2 3

]

9 27 189 63 45[ ] [2 3 ]2 8 32 16 8

3 2 2 1[ ] [ ] [ ]4 3 3 3

3[2 ]

2

3 9 27 11 33 63[ ] [ ]2 8 64 4 16 64

11[

4

h

w h h h w h h h

w h w h h h w w h h

hw h w

w h h h w h h h h

w w h

3 4 5

2 2

2 3

33 63]

16 649 21

[3 ] [2 2 ]8 16

h h h

w h h w h h

[ 1] [ ]

2 2

23 4 5 6 7

2

22 3 4 5 6 7

3

2 3 4 5 62 3

( ) ( )

15 45 189 567 11907[ ]

4 8 64 64 1024

2 343 226 33301 140525 133225[ 2 ]3 72 27 3456 15552 23328

29 57 1539 2403 2835[3

4 4 64 128 128

m m

w w

w h h h h h

w h h h h h h h

w w h h h h h

7

2 3 2 32 3

2 23 2 3 2 3

2 3 2 3

2 3

2 23 4 5 2 3 4 52 3

22 3

]

9 27 189 63 45[ ] [2 3 ]2 8 32 16 8

3 2 2 1[ ] [ ] [ ]4 3 3 3

3[2 ]

2

3 9 27 11 33 63[ ] [ ]2 8 64 4 16 64

11[

4

h

w h h h w h h h

w h w h h h w w h h

hw h w

w h h h w h h h h

w w h

3 4 5

2 22 3

33 63]

16 649 21

[3 ] [2 2 ]8 16

h h h

w h h w h h

Page 15: Numerical Solution of NTH

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 – 2218

_______________________________________________________________________________________________

2216 IJRITCC | August 2014, Available @ http://www.ijritcc.org

_______________________________________________________________________________________

[ 1] [ ]

3 3

2 2 3 4 5 6 7

2

2 2 3 4 5 6 7

3

2 3 4 5 6

2 3

( ) ( )

309 585 23895 2835 6075[6 18 ]

8 8 256 32 64

8 425 533 207 2745 100467[ 14 ]3 12 8 2 32 1024

293 561 6291 22329 247[8 33

4 4 32 128

m mw w

w h h h h h h h

w h h h h h h h

w w h h h h h h

7

2 3 2 3

2 3

2 22 3 4 5 2 3 4 5

2 3

2 3 4 5

2 3

2

2 3

05]

128189 135 21 45 549

[9 ] [4 ]16 8 2 4 32

111 63 1323 8 28 79 35 75[12 12 ] [ ]

8 8 256 3 3 6 4 16

107 267 315[8 22 ]

4 16 32 63

[6 6 ] [4 716

h

w h h h w h h h

w h h h h h w h h h h h

w w h h h h h

w h h w

2

2 22 3 2 3 2 3

2 3 2 3

2 3

15]

4

8 14 49[6 3 ] [ ] [8 11 7 ]

3 3 12 7

[6 3 ] [4 ]2

h h

w h h w h h h w w h h h

w h w h

[ 1] [ ]

3 3

22 3 4 5 6 7

2

22 3 4 5 6 7

3

2 3 4 5 62 3

( ) ( )

309 585 23895 2835 6075[6 18 ]

8 8 256 32 64

8 425 533 207 2745 100467[ 14 ]3 12 8 2 32 1024

293 561 6291 22329[8 33

4 4 32 128

m m

w w

w h h h h h h h

w h h h h h h h

w w h h h h h h

7

2 3 2 32 3

2 22 3 4 5 2 3 4 5

2 3

2 3 4 52 3

22

24705]

128189 135 21 45 549

[9 ] [4 ]16 8 2 4 32

111 63 1323 8 28 79 35 75[12 12 ] [ ]

8 8 256 3 3 6 4 16

107 267 315[8 22 ]

4 16 32 63

[6 6 ]16

h

w h h h w h h h

w h h h h h w h h h h h

w w h h h h h

w h h

23

2 22 3 2 3 2 3

2 3 2 3

2 3

15[4 7 ]

4

8 14 49[6 3 ] [ ] [8 11 7 ]

3 3 12 7

[6 3 ] [4 ]2

w h h

w h h w h h h w w h h h

w h w h

Figure 1 shows the obtained results and compared with the fourth order Runge – Kutta method for h=0.01 and t = 1.

Page 16: Numerical Solution of NTH

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 – 2218

_______________________________________________________________________________________________

2217 IJRITCC | August 2014, Available @ http://www.ijritcc.org

_______________________________________________________________________________________

Figure 1 (for ex.6.2 h=0.01 and t=1)

7. CONCLUSION

In this paper a numerical method for solving Nth

- order fuzzy initial value problem is presented. In this method Nth

- order fuzzy

linear differential equation is converted to a fuzzy system which will be solved with the fourth order Runge-Kutta method based

on Contra-harmonic Mean. From the numerical examples 6.1 and 6.2, by comparing the absolute error values at t=1 and t=2 i.e.

from the tables 1 and 2 it is concluded that the proposed method gives a good accuracy for solving the FIVPs. The proposed

method also compared with the classical fourth order Runge – Kutta method and presented in table 2 and figure 2.

[1] 8. REFERENCES

[2] Abbasbandy. S, T. Allahviranloo, Numerical solutions of fuzzy differential equations by taylor method, Comput.

Methods Appl. Math. 2 (2002) 113-124.

[3] Abbasbandy. S, T. Allahviranloo, Oscar Lopez-Pouso, J.J. Nieto, Numerical Methods for Fuzzy Differential Inclusions,

Comput. Math. Appl. 48 (2004) 1633-1641.

[4] Allahviranloo. T, N. Ahmady, E. Ahmady, A method for solving n-th order fuzzy linear differential equations, Comput.

Math. Appl 86 (2009) 730-742.

[5] Allahviranloo. T, N. Ahmady, E. Ahmady, Nth-order fuzzy linear differential equations, Information Sciences 178

(2008) 1309–1324.

[6] Allahviranloo. T, N. Ahmady, E. Ahmady, Numerical solution of fuzzy differential equations by predictor–corrector

method, Infor. Sci. 177 (2007) 1633-1647.

[7] Buckley. J.J, T. Feuring, Fuzzy differential equations, Fuzzy sets and Systems 110 (2000) 43-54.

[8] Buckley. J.J, T. Feuring, Fuzzy initial value problem for Nth-order fuzzy linear differential equations, Fuzzy Sets and

Systems 121 (2001) 247-255.

[9] Buckley. J.J, T. Feuring, Introduction to fuzzy partial differential equations, Fuzzy Sets and Systems 105 (1999) 241-

248.

[10] Chang. S.L, L.A. Zadeh, On fuzzy mapping and control, IEEE Trans. Systems Man Cyber-net, 2 (1972) 30-34.

[11] Dubois. D, H. Prade, Towards fuzzy differential calculus, Part 3: Differentiation, Fuzzy Sets and Systems 8 (1982) 225-

233.

[12] Evans, D.J. and Yaacub, A.R. (1993). A new fourth order Runge – Kutta Method based on the Contraharmonic Mean,

Int. J. Computer Math., 57,249-256, 1995.

[13] Friedman. M, M. Ming, A. Kandel, Fuzzy linear systems , Fuzzy Set and Systems 96 (1998) 201-209.

[14] Gear. C.W., Numerical Initial Value Problem In Ordinary Differential Equations, Pren tice Hall, (1971).

Page 17: Numerical Solution of NTH

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 2 Issue: 8 2202 – 2218

_______________________________________________________________________________________________

2218 IJRITCC | August 2014, Available @ http://www.ijritcc.org

_______________________________________________________________________________________

[15] Gethsi Sharmila .R and E.C. Henry Amirtharaj, Implementation of a new third order weighted Runge-Kutta formula

based on Centroidal Mean for solving stiff initial value problems, Recent Research in Science and Technology 3(10)

(2011) 91-97.

[16] Gethsi Sharmila.R and E.C. Henry Amirtharaj, Numerical Solution of Fuzzy Initial Value Problems by Fourth Order

Runge-Kutta Method Based on Contraharmonic Mean, Indian journal of applied research 3(4) (2013) 339-343.

[17] Goetschel. R, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems 18 (1986) 31-43.

[18] He. O, W. Yi, On fuzzy differential equations, Fuzzy Sets and Systems 24 (1989) 321-325.

[19] Jayakumar.T , K.Kanagarajan, S. Indrakumar, Numerical solution of Nth

– order fuzzy differential equation by Runge –

Kutta Nystrome method, International journal of Mathematical Engineering and Science, vol.1 issue 5 (2012) 1-13.

[20] Kaleva. O, The Cauchy problem for fuzzy differential equations, Fuzzy Sets and Systems 35 (1990) 389-396.

[21] Kaleva.O , Fuzzy differential equations, Fuzzy Sets and Systems 24 (1987) 301-317.

[22] Kandel. A, W.J. Byatt, Fuzzy differential equations, in: Proceedings of the International Conference on Cybernetics and

Society, Tokyo, (1978) 1213-1216.

[23] Murugesan. K, Paul Dhayabaran. D, Henry Amirtharaj. E.C and David J. Evans , A Comparison of extended Runge –

Kutta formulae based on Variety of means to solve system of IVPs, Intern.J.Comp.Math.78 (2001), pp.225-252.

[24] Puri. M.L, D.A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl. 91 (1983) 552-558.

[25] Seikkala. S, On the fuzzy initial value problem, Fuzzy Sets and Systems 24 (1987) 319-330.

Yaacub, A.R. and Evans, D.J. The Runge – Kutta Contraharmonic Mean Method with extrapolation for the parallel

solutions of O.D.E’s, Int. J. Computer Math.,6,111-128,1995.


Recommended