+ All Categories
Home > Documents > NXP Semiconductors Germany Feinmetall Feinmetall GmbH ...

NXP Semiconductors Germany Feinmetall Feinmetall GmbH ...

Date post: 15-Mar-2022
Category:
Upload: others
View: 8 times
Download: 0 times
Share this document with a friend
46
Methodologies for Assessing On Methodologies for Assessing On - - line line Probe Process Parameters Probe Process Parameters June 8 June 8 - - 11, 2008 11, 2008 San Diego, CA USA San Diego, CA USA Jan Martens Jan Martens NXP Semiconductors Germany NXP Semiconductors Germany Simon Simon Allgaier Allgaier Feinmetall Feinmetall GmbH GmbH Jerry Broz, Ph.D. Jerry Broz, Ph.D. International Test Solutions International Test Solutions
Transcript
Podium Presentation TemplateMethodologies for Assessing OnMethodologies for Assessing On--line line Probe Process ParametersProbe Process Parameters
June 8June 8--11, 200811, 2008 San Diego, CA USASan Diego, CA USA
Jan MartensJan Martens NXP Semiconductors GermanyNXP Semiconductors Germany
Simon Simon AllgaierAllgaier FeinmetallFeinmetall GmbHGmbH
Jerry Broz, Ph.D.Jerry Broz, Ph.D. International Test SolutionsInternational Test Solutions
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 222
ContentContent
• Contact Resistance and Fritting Theory • Experimental Data • Production Data • Results & Future Work
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 333
MotivationMotivation Joint Venture Joint Venture OverviewOverview
FM: Probe MaterialsFM: Probe Materials ITS: Lab ITS: Lab CapabilitiesCapabilities
NXP: NXP: ProductionProduction EnvironmentEnvironment
ResultsResults & & Future WorkFuture Work
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 444
MotivationMotivation • Production sort floors are often manpower, materials,
and financially limited for fundamental characterization studies which could lead to process understanding and improvement.
• Testing with “full-build” probe cards is expensive and often not feasible, particularly with large array probe cards.
• Assessing combinations of key parameters, such as current amplitude and directionality, probe needle materials, and FAB processing effects on bond pads, requires substantial resource allocation.
• Bench-top testing with a single probe or reduced probe count test vehicles can be performed quickly under known and controlled conditions.
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 555
MotivationMotivation
NXP: NXP: ProductionProduction EnvironmentEnvironment
ResultsResults & & Future WorkFuture Work
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 666
Feinmetall Feinmetall ViProbeViProbe®®
- low voltage/current applications - electrical resistivity: 0.12 Ω.mm2/m
• Both materials (existing and new one) are palladium - silver alloys
• Mechanical behaviour of the new beams similar to the existing beams with 2.0 mil, 2.5 mil and 3.0 mil diameter
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 777
Feinmetall ViProbeFeinmetall ViProbe®®
New Beam MaterialNew Beam Material • Probe Force vs. Applied Current
Current Carrying Capacity (3-mil ViProbe Beams at 100-um OT)
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
0 100 200 300 400 500 600 700 800 900 1000
Applied Current (mA)
20% Reduction ~ 6.50 g
New Material Exist Material
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 888
ViProbeViProbe®® TestvehicleTestvehicle
Probe Head
Connector
Beams
• Smallest ViProbe® test head ever designed and built – 2mil, 2.5mil and 3mil ViProbe compatibility
25-PIN D-Sub Connector
Electrical Connection
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 999
Controlled Test ConditionsControlled Test Conditions • Bench-top instrument for material characterization and probe
performance testing.
still image capture. – Current forcing and measurement
with Keithley 2400 source-meter. – Micro-stepping capable to maximize
number of touchdowns. – Multi-zone cleaning functionalities.
ITS LTU Probe-Gen System
Data Acquisition
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 101010
Test VehicleTest Vehicle ViProbe Test vehicle installed
onto 50 gram load cell
High resolution imaging system for video acquisition
Probe / Material Interaction and Buckling Visualization
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 111111
NXP Testcenter Hamburg NXP Testcenter Hamburg ProductionProduction EnvironmentEnvironment
• Mass production and engineering site for Automotive and Identification business, digital and mixed signal
• Applications with high multisite factors and small pad pitch
• Capability to collect contact resistance data within production environment
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 121212
MotivationMotivation Joint Venture Joint Venture OverviewOverview
FM: Probe MaterialsFM: Probe Materials ITS: Lab ITS: Lab CapabilitiesCapabilities
NXP: NXP: ProductionProduction EnvironmentEnvironment
Experimental Experimental DataData ProductionProduction DataData
ResultsResults & & Future WorkFuture Work
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 141414
• Contact Resistance is a combination two main parameters – Localized physical mechanisms … metallic contact – Non-conductive contribution … film resistance
• Model for CRES has two main factors
• ρpad , ρprobe , σfilm = resistivity values • H = hardness of softer material • P = contact pressure
– Contact pressure (P) applied force normalized by true contact area
• Unstable CRES is dominated by the film contribution term due to the accumulation of non-conductive materials
( ) P
FILM RESISTANCE
METALLIC CONTACT
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 151515
Key Factors that affect CRESKey Factors that affect CRES • Presence of contamination, e.g. debris, oxides, residues, etc.
– Film resistance eventually dominates the magnitude and stability of the CRES
• Probe tip shape plays an important role in displacing the contaminants from the true contact area – True Contact Area = F (Tip Shape, Applied Force, Surface Finish)
• True contact are is “large” applied pressure and a-Spot density are “low” • True contact area is “small” applied pressure and a-Spot density are “large”
• Probe tip surface characteristics affect the “a-Spot” density – Asperity density depends on the microscopic surface roughness
• Smooth surfaces have a high asperity density • The increase in asperity density decreases the electrical CRES • A “rough” finish facilitates material accumulation on contact surface
• Amplitude and directionality of the voltage or current applied. – Voltage or current must be sufficient to breakdown the oxide.
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 161616
FrittingFritting –– TheoryTheory
• The vertical Probe tip touches the contact pad.
• Depending on the contact pressure the oxide film is broken partly and electrical bridges arise.
• The number and size of the bridges is equivalent to the CRES quality
Contact Pad
Probe Tip
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 171717
FrittingFritting –– TheoryTheory • What happens, if bridges
are only few and small?
Small bridge through oxide film. Before high current flow.
Probe tip
Contact pad
Oxide film
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 181818
FrittingFritting –– TheoryTheory • Current must flow through small bridge. • Bridge and neighbourhood are heated up • Contact Pad material migrates to the bridge.
High current flow situation: Black Lines of current flow.
White Lines of equipotential surface.
Probe tip
Contact pad
Oxide film
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 191919
FrittingFritting –– TheoryTheory • Bridge is widened CRES decreased • Contact pad material migrated to the bridge and tip
surface
Tip surface is contaminated.
Probe tip
Contact pad
Oxide film
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 202020
FrittingFritting –– WhatWhat‘‘ss thatthat?? • Fritting is a kind of electrical breakdown at the
contact surface between the probe tip and the contact pad of the IC.
• It improves the electrical contact by building or stabilizing bridges through the oxide film, if the film was not mechanically broken completely.
• After Fritting the probe tip is welded with the contact pad. After removing the contact residuals of the welding remain at the probe tip and will oxidize.
Probe Tip
Contact Pad
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 212121
MotivationMotivation Joint Venture Joint Venture OverviewOverview
FM: Probe MaterialsFM: Probe Materials ITS: Lab ITS: Lab CapabilitiesCapabilities
NXP: NXP: ProductionProduction EnvironmentEnvironment
Experimental Experimental DataData ProductionProduction DataData
ResultsResults & & Future WorkFuture Work
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 222222
Experimental Data / ParametersExperimental Data / Parameters
• Input Parameters: – Overtravel (OT, µm) – Probe Material – Contact Material (Rhodium, Rh, Aluminum 600nm, Al) – Electrical Conditions (Current and direction, mA) – Number of Touchdowns (TDs)
• Output Measures: – Contact Resistance (Cres, Ohm) – Contact Force (CF, cN) – Visual Inspection (Video Camera System) – Scanning Electron Microscope (SEM)
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 242424
What is a What is a ““BathtubBathtub”” Curve ?Curve ? • A symmetric “bathtub” curve at full overtravel is
preferable.
A shift is indicative of material Accumulation on contact area
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 262626
Bathtub ExperimentsBathtub Experiments
• Test Sequence – CRES vs Overtravel performance tests up to 100µm
overtravel (OT) – CRES measurement Pin-to-Pin with 3mil diameter
• Test Execution for total 30 TDs each – Performed on Rh-Plate and Al-Wafer – Performed with existing and new beam material – Performed at 1mA and 100mA
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 272727
BathtubBathtub ComparisonComparison II
1
10
100
1000
-5 5 15 25 35 45 55 65 75 85 95 105 95 85 75 65 55 45 35 25 15 5 -5
OT [µm]
C on
ta ct
R es
is ta
nc e
C re
s [O
Metallic Contact
Film Resistance
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 282828
BathtubBathtub ComparisonComparison IIII
1
10
100
1000
-5 5 15 25 35 45 55 65 75 85 95 105 95 85 75 65 55 45 35 25 15 5 -5
OT [µm]
C on
ta ct
R es
is ta
nc e
C re
s [O
Difference in CRES New Mat -550 mOhm
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 292929
BathtubBathtub ComparisonComparison IIIIII
1
10
100
1000
-5 5 15 25 35 45 55 65 75 85 95 105 95 85 75 65 55 45 35 25 15 5 -5
OT [µm]
C on
ta ct
R es
is ta
nc e
C re
s [O
Fritting
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 303030
CRESCRES vs.vs. CurrentCurrent • Test Sequence
– 30 TDs at 38µm Overtravel (no intermetallic contact on Al-Wafer)
– CRES measurement Pin-to-Pin with 3mil beam diameter
• Test Execution for total 30 TDs each – Performed for a set of currents (1mA-1A) – Performed on Rh-Plate and on Al-Wafer – Performed with existing and new beam material
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 313131
CRESCRES vs.vs. CurrentCurrent
0
2
4
6
8
10
0 100 200 300 400 500 600 700 800 900 1000
Measurement Current [mA]
]
Exist. Mat on Rhodium @ 38µm OT New Mat on Rhodium @ 38µm OT Exist. Mat on 600nm Al @38µm OT New Mat on 600nm Al @ 38µm OT
Difference in CRES New Mat -550 mOhm
CRES decrease
Because of Fritting
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 323232
Visualization of TestVisualization of Test • Pin-to-Pin CRES across substrates
– NO FRITTING observed on Rhodium plate – FRITTING observed 600nm Aluminum wafer
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 333333
CRES Longterm testsCRES Longterm tests • Test Sequence
– 200 TDs on a 600nm Aluminum Wafer at 38µm Overtravel
– CRES vs Overtravel performance tests up to 100µm overtravel on a Rh-Plate
• Test Execution for total of 20K TDs on wafer – Al-wafer with 1mA and Rh-Plate at 1mA – Al-wafer with 300mA and Rh-Plate at 300mA – Performed with existing and new beam material – Performed Pin-To-Pin – No Cleaning at all
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 343434
CRESCRES LongtermLongterm TestsTests
0
2
4
6
8
10
-5 5 15 25 35 45 55 65 75 85 95 10 5 95 85 75 65 55 45 35 25 15 5 -5
OT [µm]
C on
ta ct
R es
is ta
nc e
C re
s [O
hm ]
Start of Longtermtest 1mA (Exist Mat) Start of Longtermtest 300mA (Exist Mat) End of Longtermtest 1mA (Exist Mat) End of Longtermtest 300mA (Exist Mat)
Fritting
(Film resistance)
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 353535
CRESCRES LongtermLongterm TestsTests
0
2
4
6
8
10
-5 5 15 25 35 45 55 65 75 85 95 10 5 95 85 75 65 55 45 35 25 15 5 -5
OT [µm]
Co nt
]
Exist. Mat: Start of longtermtest @ 300mA New Mat: Start of longtermtest @ 300mA Exist. Mat: End of longtermtest @ 300mA New Mat: End of longtermtest @ 300mA
Fritting
Exist vs new Mat
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 363636
SEM Images after 20K TD Longterm Test SEM Images after 20K TD Longterm Test @ 1 and 300mA without any Cleaning@ 1 and 300mA without any Cleaning
Existing Material - Initial
New Material - Initial
20K 1mA Al + 1mA Rh
20K 1mA Al + 1mA Rh
20K 300mA Al + 300mA Rh
20K 300mA Al + 300mA Rh
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 373737
CRES Longterm TestsCRES Longterm Tests Pin High / LowPin High / Low
• Test Sequence – 200 TDs on a 600nm Aluminum Wafer at 25µm
Overtravel – CRES vs Overtravel performance tests up to 100µm
overtravel on a Rh-Plate
• Test Execution for total of 20K TDs on wafer – Pin with 300mA (High) and Rh-Plate (Low) – Pin with 300mA (Low) and Rh-Plate (High) – Performed with existing and new probe material – Performed without cleaning
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 383838
CRES Longterm TestsCRES Longterm Tests CRES Histogram after 15K TDs @ 300mA without CleaningCRES Histogram after 15K TDs @ 300mA without Cleaning
0
200
400
600
800
1000
1200
1400
Contact Resistance [Ohm]
s
Exist mat / Pin low Exist Mat / Pin high New Mat / Pin low New Mat / Pin high
Metallic Contact New Mat
Film Resistance Exist Mat
Film Resistance New Mat
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 393939
CRES Longterm testsCRES Longterm tests CRES Cum. Probability after 15K TDs @ 300mA without CleaningCRES Cum. Probability after 15K TDs @ 300mA without Cleaning
0%
20%
40%
60%
80%
100%
Contact Resistance [Ohm]
ty
Exist mat / Pin low Exist Mat / Pin high New Mat / Pin low New Mat / Pin high
Less Film resistance for pos. Volt. at new Mat
Metallic Contact New Mat
90% Film Resistance 90% Film Res.
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 404040
SEM Images after 20K TD Longterm Test SEM Images after 20K TD Longterm Test @ 300mA without any Cleaning@ 300mA without any Cleaning
Pin low Pin High
Exist Mat
New Mat
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 414141
MotivationMotivation Joint Venture Joint Venture OverviewOverview
FM: Probe MaterialsFM: Probe Materials ITS: Lab ITS: Lab CapabilitiesCapabilities
NXP: NXP: ProductionProduction EnvironmentEnvironment
ContactContact ResistanceResistance and and FrittingFritting TheoryTheory Experimental Experimental DataData
ProductionProduction DataData ResultsResults & & Future WorkFuture Work
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 424242
Production CRES MeasurementProduction CRES Measurement • Smartcard application 32x parallel • One Probecard with
16 sites existing Material (red) 16 sites new Material (green) with symmetric pattern
• CRES Monitor on digital channel put into std. Production Test Program
1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 434343
ProductionProduction DataData
Overall Path Resistance [Ohm]
Exist Material New Material
CRES Difference 550 mOhm
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 444444
MotivationMotivation Joint Venture Joint Venture OverviewOverview
FM: Probe MaterialsFM: Probe Materials ITS: Lab ITS: Lab CapabilitiesCapabilities
NXP: NXP: ProductionProduction EnvironmentEnvironment
ResultsResults & & Future WorkFuture Work
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 454545
Results & Future Work IResults & Future Work I • New beam material was evaluated in lab and production
environments – Decrease of resistivity proven: -550 mOhm compared to existing
material – New Beam material shows better film contact resistance and fritting
performance
• Amplitude and directionality of applied current/voltage highly influenced the accumulation of debris as well as the increase of film resistance – Higher currents lead to higher CRES – Positive voltages higher affected than negative voltages
• Off-line testing under controlled conditions with “standardized” methods can provide key insights for understanding CRES behavior that can help a probe engineer develop wafer sort processes and define cleaning practices.
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 464646
Results & Future Work IIResults & Future Work II (many interestesting studies !)(many interestesting studies !)
• Evaluate fab processed materials – Shorted wafers and test die
• Define an “Online Cleaning Rules Set” • Investigating the effects and repercussions
of the Fritting mechanisms • Temperature influence on film resistance
– Range similar to production
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 474747
AcknowledgementsAcknowledgements
• ITS Applications Engineering Team – Andrea Haag (Engineering Technician)
June 11 / 2008June 11 / 2008June 11 / 2008 Martens, Allgaier, Broz IEEE SW Test WorkshopMartens, Martens, AllgaierAllgaier, Broz , Broz IEEE SW Test WorkshopIEEE SW Test Workshop 484848
Men AtMen At WorkWork
Content
MotivationJoint Venture OverviewFM: Probe MaterialsITS: Lab CapabilitiesNXP: Production EnvironmentContact Resistance and Fritting TheoryExperimental DataProduction DataResults & Future Work
Motivation
MotivationJoint Venture OverviewFM: Probe MaterialsITS: Lab CapabilitiesNXP: Production EnvironmentContact Resistance and Fritting TheoryExperimental DataProduction DataResults & Future Work
Feinmetall ViProbe®New Beam Material
Feinmetall ViProbe®New Beam Material
ViProbe® Testvehicle
MotivationJoint Venture OverviewFM: Probe MaterialsITS: Lab CapabilitiesNXP: Production EnvironmentContact Resistance and Fritting TheoryExperimental DataProduction DataResults & Future Work
Contact Resistance (CRES)
Fritting – Theory
Fritting – Theory
Fritting – Theory
Fritting – Theory
MotivationJoint Venture OverviewFM: Probe MaterialsITS: Lab CapabilitiesNXP: Production EnvironmentContact Resistance and Fritting TheoryExperimental DataProduction DataResults & Future Work
Experimental Data / Parameters
Bathtub Experiments
Bathtub Comparison I
Bathtub Comparison II
Bathtub Comparison III
CRES vs. Current
CRES vs. Current
Visualization of Test
CRES Longterm tests
CRES Longterm Tests
CRES Longterm Tests
SEM Images after 20K TD Longterm Test @ 1 and 300mA without any Cleaning
CRES Longterm TestsPin High / Low
CRES Longterm TestsCRES Histogram after 15K TDs @ 300mA without Cleaning
CRES Longterm testsCRES Cum. Probability after 15K TDs @ 300mA without Cleaning
SEM Images after 20K TD Longterm Test @ 300mA without any Cleaning
MotivationJoint Venture OverviewFM: Probe MaterialsITS: Lab CapabilitiesNXP: Production EnvironmentContact Resistance and Fritting TheoryExperimental DataProduction DataResults & Future Work
Production CRES Measurement
MotivationJoint Venture OverviewFM: Probe MaterialsITS: Lab CapabilitiesNXP: Production EnvironmentContact Resistance and Fritting TheoryExperimental DataProduction DataResults & Future Work
Results & Future Work I
Acknowledgements

Recommended