+ All Categories
Home > Documents > OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Date post: 14-Jan-2016
Category:
Upload: toni
View: 39 times
Download: 1 times
Share this document with a friend
Description:
OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes. J A Nichols and T R Camp, Garrad Hassan and Partners Ltd. J Jonkman and S Butterfield, NREL T Larsen and Anders Hansen, Risø J Azcona, A Martinez and X Munduate, CENER F Vorpahl and S Kleinhansl, CWMT - PowerPoint PPT Presentation
19
OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes J A Nichols and T R Camp, Garrad Hassan and Partners Ltd. J Jonkman and S Butterfield, NREL T Larsen and Anders Hansen, Risø J Azcona, A Martinez and X Munduate, CENER F Vorpahl and S Kleinhansl, CWMT M Kohlmeier, T Kossel and C Böker, Leibniz University of Hannover D Kaufer, SWE University of Stuttgart
Transcript
Page 1: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

OC3: Benchmark Exercise of Aero-elastic Offshore Wind

Turbine CodesJ A Nichols and T R Camp, Garrad Hassan and Partners Ltd.

J Jonkman and S Butterfield, NREL

T Larsen and Anders Hansen, Risø

J Azcona, A Martinez and X Munduate, CENER

F Vorpahl and S Kleinhansl, CWMT

M Kohlmeier, T Kossel and C Böker, Leibniz University of Hannover

D Kaufer, SWE University of Stuttgart

Page 2: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Outline

• Background and partners

• Objectives

• Project phases and approach

• Phase III: offshore tripod

• Results

• Future work

Page 3: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Background and PartnersThe Offshore Code Comparison Collaboration (OCCC) has been coordinated within the IEA Wind Annex XXIII by the National Renewable Energy Laboratory (NREL).

Project group consists of research bodies, universities and partners from industry. Phase III includes contributions from:

• National Renewable Energy Laboratory (NREL) (USA)• Endowed Chair of Wind Energy of the Universität

Stuttgart (D)• Garrad Hassan (UK)• Risø National Laboratory (DK)• National Renewable Energies Center (CENER) (ESP). • Fraunhofer Centre for Wind Energy and Maritime

Engineering (D)• Leibniz University of Hannover (D)

Simulation tools:• Bladed, Flex5, FAST, HAWC2, ADCoS, WaveLoads and ANSYS

Page 4: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Objectives

• Establishment of a suite of benchmark simulations to test new codes and for training of new analysts

• Identification and verification of code capabilities and limitations of implemented theories

• Investigation and refinement of applied analysis methodologies

• Investigation on the accuracy and reliability of results obtained by simulations to establish confidence in the predictive capabilities of the codes

• Identification of further research and development needs

Page 5: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Project Phases

Phase I

Phase II

Phase III

Phase IV

Page 6: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Approach

• At each stage simulations are selected to highlight different areas of interest

• To start with, only basic models are used

• Then more features are added

• This facilitates identifying the differences between the different codes

Basic Structure

Wind Loads Wave Loads

Full simulation

Dynamics

Static Simulation

Page 7: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Phase III: Offshore Tripod

• Significant jump in complexity from monopile substructure.

• Statically indeterminate

• Loads influenced by relative deflection of members

Page 8: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Modelling – wave loads

• Importance of modelling the structure near the sea surface in detail

• Without a fine discretisation, sharp jumps are seen in load signals

-4000.0000

-3500.0000

-3000.0000

-2500.0000

-2000.0000

-1500.0000

-1000.0000

-500.0000

0.0000

0 5 10 15 20 25 30 35

Time [s]

Shea

r F

orce

[kN

m]

Upwind leg axial shearforce (coarsediscretisation)

Upwind leg axial shearforce (finediscretisation)

Axia

l Fo

rce (

kN)

Page 9: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Modelling – overlapping members

• It is important to take account of the overlapping regions when structure members join at nodes

• In this case, the volume which could be double-counted would be 8% of the total volume below sea level having a significant effect on buoyancy and wave loads.

Page 10: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Modelling – shear deflection

• Bernoulli-Euler theory only considers pure bending of a beam.

• One side is compressed while the other is stretched.

• In real beams, there is some shear deformation of the material.

• This becomes important once relative deflection of joined members becomes important.

x

MP

MPl

EI

lx 6)4(

12

2

l

2

12

lGA

EI

S

Page 11: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Modelling – shear deflection

Page 12: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Results - Eigenanalysis

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

1st T

ower

For

e-Aft

1st T

ower

Side

-to-S

ide

1st D

rivet

rain

Tor

sion

1st B

lade

Collec

tive

Flap

1st B

lade

Asym

met

ric F

lapwise

Pitc

h

1st B

lade

Asym

met

ric F

lapwise

Yaw

1st B

lade

Asym

met

ric E

dgew

ise P

itch

1st B

lade

Asym

met

ric E

dgew

ise Y

aw

2nd

Tower

For

e-Aft

2nd

Tower

Side

-to-S

ide

2nd

Blade

Collec

tive

Flap

2nd

Blade

Asym

met

ric F

lapwise

Pitc

h

2nd

Blade

Asym

met

ric F

lapwise

Yaw

CENER FASTNASTRAN Natural Frequency (Hz)

CENER Bladed Natural Frequency (Hz)

CWMT ADCoS Natural Frequency (Hz)

GH Bladed Natural Frequency (Hz)

GH Bladed (Timoshenko) Natural Frequency (Hz)

LUH WaveLoadsANSYS Natural Frequency (Hz)

Risoe HAWC2 Natural Frequency (Hz)

Risoe HAWC2_BE Natural Frequency (Hz)

SWE FLEX5Poseidon Natural Frequency (Hz)

Page 13: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Results – Output Locations

12

3

4

5

6

12

3

4

5

6

Page 14: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Results – bending moments due to wave loads

-15000

-10000

-5000

0

5000

10000

5 10 15

Simulation Time (s)

Ben

ding

Mom

ent (

kNm

))

-700

-600

-500

-400

-300

-200

-100

0

5 10 15

Simulation Time (s)

Ben

ding

Mom

ent (

kNm

))

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

5 10 15

Simulation Time (s)

Ben

ding

Mom

ent (

kNm

))

-3000

-2500

-2000

-1500

-1000

-500

0

5 10 15

Simulation Time (s)

Ben

ding

Mom

ent (

kNm

))

-1500

-1450

-1400

-1350

-1300

-1250

-1200

5 10 15

Simulation Time (s)

Ben

ding

Mom

ent (

kNm

))

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

5 10 15

Simulation Time (s)

Ben

ding

Mom

ent (

kNm

))

1 2

3 4

5 6

-15000

-10000

-5000

0

5000

10000

5 10 15

Simulation Time (s)

Ben

ding

Mom

ent (

kNm

))

-700

-600

-500

-400

-300

-200

-100

0

5 10 15

Simulation Time (s)

Ben

ding

Mom

ent (

kNm

))

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

5 10 15

Simulation Time (s)

Ben

ding

Mom

ent (

kNm

))

-3000

-2500

-2000

-1500

-1000

-500

0

5 10 15

Simulation Time (s)

Ben

ding

Mom

ent (

kNm

))

-1500

-1450

-1400

-1350

-1300

-1250

-1200

5 10 15

Simulation Time (s)

Ben

ding

Mom

ent (

kNm

))

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

5 10 15

Simulation Time (s)

Ben

ding

Mom

ent (

kNm

))

1 2

3 4

5 6

Page 15: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Results – shear forces due to wave loads

-100

-50

0

50

100

150

5 10 15

Simulation Time (s)

She

ar F

orce

(kN

)

-200-150-100

-500

50100150

200250300

5 10 15

Simulation Time (s)

She

ar F

orce

(kN

)

-20

0

20

40

60

80

100

5 10 15

Simulation Time (s)

She

ar F

orce

(kN

)

-20

-10

0

10

20

30

40

50

5 10 15

Simulation Time (s)

She

ar F

orce

(kN

)

-60

-40

-20

0

20

40

60

80

5 10 15

Simulation Time (s)

She

ar F

orce

(kN

)

-15000

-10000

-5000

0

5000

10000

5 10 15

Simulation Time (s)

She

ar F

orce

(kN

)

1 2

3 4

5 6

-100

-50

0

50

100

150

5 10 15

Simulation Time (s)

She

ar F

orce

(kN

)

-200-150-100

-500

50100150

200250300

5 10 15

Simulation Time (s)

She

ar F

orce

(kN

)

-20

0

20

40

60

80

100

5 10 15

Simulation Time (s)

She

ar F

orce

(kN

)

-20

-10

0

10

20

30

40

50

5 10 15

Simulation Time (s)

She

ar F

orce

(kN

)

-60

-40

-20

0

20

40

60

80

5 10 15

Simulation Time (s)

She

ar F

orce

(kN

)

-15000

-10000

-5000

0

5000

10000

5 10 15

Simulation Time (s)

She

ar F

orce

(kN

)

1 2

3 4

5 6

Page 16: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Results – axial forces due to wave loads

-7103

-7102

-7102

-7101

-7101

-7100

-7100

-7099

-7099

5 10 15

Simulation Time (s)

Axi

al F

orce

(kN

)

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

5 10 15

Simulation Time (s)

Axi

al F

orce

(kN

)

-1200

-1000

-800

-600

-400

-200

0

200

400

600

5 10 15

Simulation Time (s)

Axi

al F

orce

(kN

)

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

5 10 15

Simulation Time (s)

Axi

al F

orce

(kN

)

-6000

-5000

-4000

-3000

-2000

-1000

0

5 10 15

Simulation Time (s)

Axi

al F

orce

(kN

)

-7250

-7240

-7230

-7220

-7210

-7200

-7190

-7180

-7170

-7160

5 10 15

Simulation Time (s)

Axi

al F

orce

(kN

)

1 2

3 4

5

6

-7103

-7102

-7102

-7101

-7101

-7100

-7100

-7099

-7099

5 10 15

Simulation Time (s)

Axi

al F

orce

(kN

)

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

5 10 15

Simulation Time (s)

Axi

al F

orce

(kN

)

-1200

-1000

-800

-600

-400

-200

0

200

400

600

5 10 15

Simulation Time (s)

Axi

al F

orce

(kN

)

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

5 10 15

Simulation Time (s)

Axi

al F

orce

(kN

)

-6000

-5000

-4000

-3000

-2000

-1000

0

5 10 15

Simulation Time (s)

Axi

al F

orce

(kN

)

-7250

-7240

-7230

-7220

-7210

-7200

-7190

-7180

-7170

-7160

5 10 15

Simulation Time (s)

Axi

al F

orce

(kN

)

1 2

3 4

5

6

Page 17: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Motion of the dynamic support structure

-0.035

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

5 10 15

Simulation Time (s)

Tow

er T

op D

ispl

acem

ent (

m))

-0.005

-0.004

-0.003

-0.002

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

5 10 15

Simulation Time (s)

Mea

n S

ea L

evel

Dis

plac

emen

t (m

))

Page 18: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Future Work

• Phase IV beginning

• Floating spar-buoy structure

• Stretching the limits of existing wind turbine

codes

• Involvement of codes used by oil and gas companies to model offshore structures

Page 19: OC 3 : Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes

Conclusions

• Identification of important issues for space-frame offshore support structures.

• Encouragement for the development of existing codes to incorporate these features.

• Establishment of baseline load calculations and results for new codes to be tested against.

• A number of engineers are now equipped with experience of modelling offshore structures with greater knowledge of the factors which influence loading results.


Recommended