+ All Categories
Home > Documents > Ocean Science Class 18

Ocean Science Class 18

Date post: 18-Feb-2016
Category:
Upload: zachary-fisher
View: 13 times
Download: 0 times
Share this document with a friend
Description:
.
Popular Tags:
20
11/3/2014 1 SMS SMS-100 100 Class Class 18 18 T d T d Tuesday Tuesday November November 4, 2014 4, 2014 Herbivores, Carnivores & Omnivores Herbivores, Carnivores & Omnivores Etc. Trophic Level #2, 3, 4 & 5 Trophic Level #2&3 Trophic Level #2, 3 &4 Plants (algae) Primary Producers Herbivores Omnivores Trophic Level #1 Trophic Level #2
Transcript

11/3/2014

1

SMSSMS--100100

Class Class 1818

T dT dTuesday Tuesday November November 4, 20144, 2014

Herbivores,Carnivores &Omnivores

Herbivores,Carnivores &Omnivores

Etc. Trophic Level #2, 3, 4 & 5

Trophic Level #2&3

Trophic Level #2, 3 &4

Plants (algae)Primary Producers

Herbivores

Omnivores

Trophic Level #1

Trophic Level #2

Food chains and food webs
Simple Food Chain ex. algae -> herbivore - carnivore

11/3/2014

2

LowerBiomass at higher trophiclevelslevels

Energy (carbon)Ingested (I)

Energy inFeces (E) Energy Assimilated (AR)

Energy for Metabolism (M)1 Activity (metabolic heat)

Energy forG th (G)

What happens when an organisms eats something:

1. Activity (metabolic heat)2. Maintenance3. Metabolism of growth &

digestion

Growth (G)

MoltingReproduction

Energy Excreted

= Growth + Metabolism - ExcretionFood Ingested

I = G + M - E

Lower biomass at higher trophic levels
due to inefficiencies in tropic transfers.
G will always be smaller than I
10-20%

11/3/2014

3

Palagic Realm - stuff up in the water
Benthic Realm - stuff at the bottom of the ocean on the ground

11/3/2014

4

The The “Bathysphere”,“Bathysphere”,the first Deep Seathe first Deep Seathe first Deep Seathe first Deep Sea

SubmersibleSubmersible

Live NBC Radio coverage…Live NBC Radio coverage…September 22, 1932 September 22, 1932

off Bermudaoff Bermuda

“Final” fate of the “Final” fate of the Bathysphere:Bathysphere:A junk pile behind A junk pile behind the the CycloneCyclone, Coney Island , Coney Island

11/3/2014

5

The bathyscape“TRIESTE”

(ca. 1958-59)

Swiss scientist Jacques Piccard (above) and Navy lieutenant Donald Walsh, on their historic dive to the Challenger Deep in 1960.

The Mariana Trench, and the “Challenger

Deep”

11/3/2014

6

James Cameron (March 2012)

http://oceanexplorer.noaa.gov/explorations/04titanic/media/titanic_bow_railing.html

Factors-
Light, nutrients, temperature.
…and pressure.
Atm P.=14.7
1 atm. = 10 m of water
example: 100 m underwater = 10atm + 1atm = 11atm
and......... (next slide)

11/3/2014

7

Osmosis:

….and Salinity

11/3/2014

8

Carl LinnaeusCarl Linnaeus(Carl von Linné)(Carl von Linné)

1707 1707 -- 17781778

“Binomial Nomenclature”“Binomial Nomenclature”(developed some 200 yrs(developed some 200 yrsearlier…)earlier…)

A page from of the 1760 A page from of the 1760 edition of edition of SystemaSystema NaturaeNaturae

•• 4,400 animal species4,400 animal species•• 7,700 plant species7,700 plant species

3 Domains –I. Domain Archaea: Archea is Greek for “ancient”;

1. The Archaebacteria

II. Domain Bacteria: These are the “True” bacteria;2. The Eubacteria

III. Domain Eukarya: This includes all other living things on Earth:3. The Protista (mostly single-celled organisms);4. The Plantae (plants);5. The Fungi (molds, mushrooms, yeast, heterotrophs that “absorb” food);6. The Animalia (animals, which are heterotrophs that “ingest” their food)

Primary Producers:
Phytoplankton, Macroalgae, Sea Grass
Plankton- Living organisms that have no control of their movement
Detritus- dead small organic particles in the oceans
Phytoplankton - Autotrophs
Zooplankton - Heterotrophs

11/3/2014

9

Typical of the many “Pen-and-Ink” drawings of phytoplankton by early taxonomists…

From Fritsch (1935)

Haeckel (1904) Diatoms Copepods

Students looking at“live” plankton at sea

11/3/2014

10

There are ~50 slides that go here.

All are color photomicrographs of live plankton which we’ll show rapid-fire in p pclass.

Phytoplankton: autotrophs, all small,
Prokaryotic Phytoplankton
Bacteria typed plankton
1. Archea - <1 micrometer
2. True Bacteria - Cyanobacteria (thought to create oxygen)

11/3/2014

11

Archaea: Genus Halobacterium

ca. 5 µm

The Eubacteria: Cyanobacteria (bluegreen algae),such as stromatolites:

Freshwater cyanobacteria: Microcystis

11/3/2014

12

Marine cyanobacteria: Trichodesmium sp.

ca. 5 mm

Marine cyanobacteria: Trichodesmium sp.

From a ship:

From space:

Marine cyanobacteria: Synechococcus sp.

ca. 5 µm

Responsible for half of the oxygen in the World

11/3/2014

13

The tiniest marine cyanobacterium:

Prochlorococcus sp.

ca. 1 µm

Scanning electron micrograph…Cells are too small to be viewed with a light microscope (cells are same size scale as wavelength of visible light);

Fluorescence photomicrograph of phytoplankton cells:

(Red colors are chlorophyll)

ca. 5 µm

Eucaryotic Phytoplankton:

Green algae (examples)

ca. 5 µm

… and “Nanoflagellates”

Eukaryotic Phytoplankton:
Green Algae
Nanoflagellates, Heterotropic,Autotrophic, Mixotrophic

11/3/2014

14

Silicoflagellates:

Coccolithophores:

Emiliania huxleyii

Diatoms:

Centric Pennate

Most important group in regards to the marine food web

11/3/2014

15

Chain of pennate diatoms “swimming”

Reproduction in Diatoms:

1. Vegetative cell division

2. Sexual reproduction

Vegetative Cell Division:

11/3/2014

16

Examples: Various Body FormsDinoflagellates:

General cell design

Alexandrium fundyense

Swimming Polykrikos, a colonial, phagotrophic dinoflagellate, with ingested Alexandrium cells

Another dinoflagellate feeding mode:

11/3/2014

17

Ecological Challenges to Phytoplankton:

Light limitation: Nutrient limitation:

Importance of Cell Size:

Plankton Nets

11/3/2014

18

Paired“Bongo Net”

1- m2 “MOCNESS”(Multiple nets…)

A 10-m “MOCNESS”

11/3/2014

19

Oct. 2, 2013: The Gulf of Maine

11/3/2014

20

In the case of Chlorophyll:


Recommended