+ All Categories
Home > Documents > of Finite Elemente Method · Cooling compressor 3D- CATIA Model. Cooling compressor FE- Volume...

of Finite Elemente Method · Cooling compressor 3D- CATIA Model. Cooling compressor FE- Volume...

Date post: 15-Feb-2019
Category:
Upload: dangkhanh
View: 230 times
Download: 1 times
Share this document with a friend
89
CAX 2018/19 LV 313.006 Introduction into Application of Finite Elemente Method CAX in Automotive Engineering LV 313.006 Dr. techn. Stephan Schmidt [email protected] Institute for Internal Combustion Engines & Thermodynamics Research Area Design
Transcript

CAX 2018/19LV 313.006

Introduction into

Applicationof

Finite Elemente Method

CAX in Automotive EngineeringLV 313.006

Dr. techn. Stephan [email protected]

Institute for Internal Combustion Engines & ThermodynamicsResearch Area Design

CAX 2018/19LV 313.006

The Finite Element MethodThe Theory of the Finite ElementThe major finite elements in structural mechanicsProcedure of the der FE-Analysis Pre-Processing Solution Post-ProcessingApplication examples

Content

CAX 2018/19LV 313.006 Content

The Finite Element MethodThe Theory of the Finite ElementThe major finite elements in structural mechanicsProcedure of the der FE-Analysis Pre-Processing Solution Post-ProcessingApplication examples

CAX 2018/19LV 313.006 Finite Element Method

Substitution of real structures which can not be solved in an analytic way by a simplified model.

The model consists of simple finite Elements, for which analytically solvable equations (element formulation) can be formulated.

Every FE calculation is an approximation of the reality.

The accuracy of the FE-calculation depends on the assumptions of boundary conditions, the discretisation, the element formulation, the mesh quality and the interpretation of the results.

The finite element method can be applied to structural mechanic, electrical, fluid dynamic and other problems.

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Finite Element Method

Substitution of real structure by a calculation model

Real Structure

Finite Element Mesh

Finite Element Model

Calculation Model

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Discretisation Finite elements

Substitiution of the real structur by a simplified model

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Element formulation

lcF =

( )( )2122

2111

uuclcFuuclcF+==

==

=

2

1

2

1

1111

uu

cFF

u1 u2

1 2F1 F2

{ } [ ] { }uKF =

CAX 2018/19LV 313.006 Content

The Finite Element MethodThe Theory of the Finite ElementThe major finite elements in structural mechanicsProcedure of the der FE-Analysis Pre-Processing Solution Post-ProcessingApplication examples

CAX 2018/19LV 313.006 Theory of the finite elements

Mathematical description of the element displacement

Composition of the single stiffness matrices to one global stiffness matrix [K]

Displacement of the nodes are unknown

Each degree of freedom at a node results in one equation

The equation {F} = [K] * {u} equilibrates the displacements with the forces

The solution of the equation for the whole system results in displacements and hence in stresses.

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Content

The Finite Element MethodThe Theory of the Finite ElementThe major finite elements in structural mechanicsProcedure of the der FE-Analysis Pre-Processing Solution Post-ProcessingApplication examples

CAX 2018/19LV 313.006 Discretisation by finite elements

Rigid: rigid connection of two nodes

Beam: elastic connection of two nodes

Shell: thin-wall surface element

Solid: volume element

Gap: gap element

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Finite elements: 1-dimensional

Rigid element: 2 nodes 6 degrees of freedom per node

Linear beam element:2 nodes & 6 degrees of freedom per node

CAX 2018/19LV 313.006 Finite elements: 2-dimensional

Linear triangle shell element, 3 nodes 3x6 degree of freedom

linear quad shell element4 nodes 4x6 degree of freedom

parabolic quad shell element, 8 nodes 8x6 degree of freedom

CAX 2018/19LV 313.006 Finite elements: 3-dimensional

linear tetraeder element4 nodes 4x6 degree of freedom

linear wedge element6 nodes 6x6 degree of freedom

linear brick element (hexaeder)8 nodes 8x6 degree of freedom

CAX 2018/19LV 313.006 Content

The Finite Element MethodThe Theory of the Finite ElementThe major finite elements in structural mechanicsProcedure of the der FE-Analysis Pre-Processing Solution Post-ProcessingApplication examples

CAX 2018/19LV 313.006 Procedure of the FE Analysis

geometry

discretisatoin / mesh generation

problem definition =boundary condition

solution

evaluation

Preprocessing

Solution

Postprocessing

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Procedure of the FE Analysis

Pre-Processing: Generation or import of geometry data Simplification of the real structure Transition of the simplified structure in a FE model (meshing) Assignment of element properties Assignment of material properties Definition of boundary conditions

Solution: solution of the equation {F} = [K] * {d}

Post-Processing: evaluation and display of the results displacements stresses forces etc.

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Procedure of the FE Analysis

Pre-Processing: Generation or import of geometry data Simplification of the real structure Transition of the simplified structure in a FE model (meshing) Assignment of element properties Assignment of material properties Definition of boundary conditions

Solution: solution of the equation {F} = [K] * {d}

Post-Processing: evaluation and display of the results displacements stresses forces etc.

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Pre-Processing

Generation of the geometry in theFE-program packages

CAX 2018/19LV 313.006 Pre-Processing

Import of the geometry from a CAD-Program

Interfaces:

IGESVDATranslator / Direct Import

CAX 2018/19LV 313.006 Procedure of the FE Analysis

Pre-Processing: Generation or import of geometry data Simplification of the real structure Transition of the simplified structure in a FE model (meshing) Assignment of element properties Assignment of material properties Definition of boundary conditions

Solution: solution of the equation {F} = [K] * {d}

Post-Processing: evaluation and display of the results displacements stresses forces etc.

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Procedure of the FE Analysis

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Procedure of the FE Analysis

Pre-Processing: Generation or import of geometry data Simplification of the real structure Transition of the simplified structure in a FE model (meshing) Assignment of element properties Assignment of material properties Definition of boundary conditions

Solution: solution of the equation {F} = [K] * {d}

Post-Processing: evaluation and display of the results displacements stresses forces etc.

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Pre-Processing

CAX 2018/19LV 313.006 Procedure of the FE Analysis

Pre-Processing: Generation or import of geometry data Simplification of the real structure Transition of the simplified structure in a FE model (meshing) Assignment of element properties Assignment of material properties Definition of boundary conditions

Solution: solution of the equation {F} = [K] * {d}

Post-Processing: evaluation and display of the results displacements stresses forces etc.

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Pre-Processing

Technical Data / Material PropertiesElement Definition

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Procedure of the FE Analysis

Pre-Processing: Generation or import of geometry data Simplification of the real structure Transition of the simplified structure in a FE model (meshing) Assignment of element properties Assignment of material properties Definition of boundary conditions

Solution: solution of the equation {F} = [K] * {d}

Post-Processing: evaluation and display of the results displacements stresses forces etc.

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Pre-Processing

Boundary Conditions

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Pre-Processing

Component Vector

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Pre-Processing

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Procedure of the FE Analysis

Pre-Processing: Generation or import of geometry data Simplification of the real structure Transition of the simplified structure in a FE model (meshing) Assignment of element properties Assignment of material properties Definition of boundary conditions

Solution: solution of the equation {F} = [K] * {d}

Post-Processing: evaluation and display of the results displacements stresses forces etc.

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Solution

Equation solver

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Procedure of the FE Analysis

Pre-Processing: Generation or import of geometry data Simplification of the real structure Transition of the simplified structure in a FE model (meshing) Assignment of element properties Assignment of material properties Definition of boundary conditions

Solution: solution of the equation {F} = [K] * {d}

Post-Processing: evaluation and display of the results displacements stresses forces etc.

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Post-Processing

Display of results

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Post-Processing

Display of results: Deformation

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Post-Processing

Display of results: Stress

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Post-Processing

Display of results: Stress

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Post-Processing

Display of results: structure borne errors

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Application examples

Simple beam

Cylinder Normal modes for accustic analysis

Cover Normal modes for accustic analysis

Piston Cylinder deformation by operating conditions

Transient analysis of a compressor housing

Vibration analysis of a Scooter powertrain

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006

3D CAD structure

Application examples

CAX 2018/19LV 313.006

FE model based on linear beam elements

Application examples

CAX 2018/19LV 313.006

FE model based on linear shell elements

Application examples

CAX 2018/19LV 313.006

FE model based on linear hexaeder

Application examples

CAX 2018/19LV 313.006

Deformation

Application examples

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006

Stress (von Misses)

Application examples

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006

Stress in axial direction

Application examples

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006

Distortion energy

Application examples

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Application examples

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006

Cylinder CATIA-Model

Application examples

CAX 2018/19LV 313.006

Cylinder Normal modes

Application examples

CAX 2018/19LV 313.006 Application examples

CAX 2018/19LV 313.006

Cover CATIA-Model

Application examples

CAX 2018/19LV 313.006

Cover Normal modes

Application examples

CAX 2018/19LV 313.006 Application examples

CAX 2018/19LV 313.006

Piston-Cylinder

FE-Model

mechanical load:ignition pressure 27 bar

Thermal load:piston: 200C - 335Ccylinder: 155C - 225C

Temperatur distributionat piston pin

Application examples

CAX 2018/19LV 313.006

Piston - Cylinder

Application examples

CAX 2018/19LV 313.006

Cooling compressor 3D- CATIA Model

Cooling compressor FE- Volume model

Application examples

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006

Cooling compressor view bottom up locations of force introduction

Application examples

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006

Cooling compressor MBS-Model

Application examples

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

Stator

Rotor

CAX 2018/19LV 313.006

Loadfunction Point 1 x-Direction

-2.00E+02

-1.50E+02

-1.00E+02

-5.00E+01

0.00E+00

5.00E+01

10.00000 10.01000 10.02000 10.03000 10.04000 10.05000 10.06000 10.07000 10.08000 10.09000 10.10000

Time[sec]

Forc

e[m

N]

Result of MBS-Analysis = Input to FE-Analysis

Application examples

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

Loadfunction Point 1 x-Direction

-2.00E+02

-1.50E+02

-1.00E+02

-5.00E+01

0.00E+00

5.00E+01

10.00000

10.01000

10.02000

10.03000

10.04000

10.05000

10.06000

10.07000

10.08000

10.09000

10.10000

Time[sec]

Force[mN]

CAX 2018/19LV 313.006

Cooling compressordeformation

Application examples

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006

Cooling compressor points of evaluation

Application examples

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006

point 6 displacement y

-2.E-03

-1.E-03

0.E+00

1.E-03

2.E-03

3.E-03

4.E-0310.00000 10.01000 10.02000 10.03000 10.04000 10.05000 10.06000 10.07000 10.08000 10.09000 10.10000

time [sec]

disp

lace

men

t y [m

m]

Gehusepunkt 6 OrigGehusepunkt 6 New AGehusepunkt 6 New B ypoint 6 velocity y

-3.E+00

-2.E+00

-2.E+00

-1.E+00

-5.E-01

0.E+00

5.E-01

1.E+00

2.E+00

2.E+00

3.E+00

10.00000 10.01000 10.02000 10.03000 10.04000 10.05000 10.06000 10.07000 10.08000 10.09000 10.10000

time [s]

velo

city

[mm

/s]

Gehusepunkt 6 Orig vyGehusepunkt 6 New AGehusepunkt 6 New B

Cooling compressorevaluation:

displacement / time

Application examples

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

point 6 displacement y

-2.E-03

-1.E-03

0.E+00

1.E-03

2.E-03

3.E-03

4.E-03

10.00000

10.01000

10.02000

10.03000

10.04000

10.05000

10.06000

10.07000

10.08000

10.09000

10.10000

time [sec]

displacement y [mm]

Gehusepunkt 6 Orig

Gehusepunkt 6 New A

Gehusepunkt 6 New B y

point 6 velocity y

-3.E+00

-2.E+00

-2.E+00

-1.E+00

-5.E-01

0.E+00

5.E-01

1.E+00

2.E+00

2.E+00

3.E+00

10.00000

10.01000

10.02000

10.03000

10.04000

10.05000

10.06000

10.07000

10.08000

10.09000

10.10000

time [s]

velocity [mm/s]

Gehusepunkt 6 Orig vy

Gehusepunkt 6 New A

Gehusepunkt 6 New B

CAX 2018/19LV 313.006 Application examples

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Application examples

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006

Procedure FEM-Analysis usingANSYS

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Ansys Workbench

1 234567

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Ansys Workbench

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

1. Type of AnalysisStructural, Thermal ,

2. Basic Engineering DataMaterial,

3. GeometryImport, direct generation,

4. ModelMeshing

5. SetupBoundaries, Loads,

5. SolutionSolution Control

5. ResultsStresses, Deformation

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Engineering Data

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Geometry generation with Design Modeler

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Model Generation

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Setup

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Solution

Insert Path (Construction Geometry) Insert Solution Output

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Results

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Results

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Plate 2D

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Plate 2D

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Plate

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Plate

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Plate

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Plate

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Plate

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Plate

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Plate

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Bracket

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Bracket

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Bracket

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

CAX 2018/19LV 313.006 Ablauf FEM mit ANSYS

Bracket Modal

Dr. Stephan Schmidt / Institut fr Verbrennungskraftmaschinen und Thermodynamik TU-Graz

Introduction intoApplicationof Finite Elemente MethodContentContentFinite Element MethodFinite Element MethodDiscretisation Finite elementsElement formulationContentTheory of the finite elementsContentDiscretisation by finite elementsFinite elements: 1-dimensionalFinite elements: 2-dimensionalFinite elements: 3-dimensionalContentProcedure of the FE AnalysisProcedure of the FE AnalysisProcedure of the FE AnalysisPre-ProcessingPre-ProcessingProcedure of the FE AnalysisProcedure of the FE AnalysisProcedure of the FE AnalysisPre-ProcessingProcedure of the FE AnalysisPre-ProcessingProcedure of the FE AnalysisPre-ProcessingPre-ProcessingPre-ProcessingProcedure of the FE AnalysisSolutionProcedure of the FE AnalysisPost-ProcessingPost-ProcessingPost-ProcessingPost-ProcessingPost-ProcessingApplication examplesFoliennummer 40Foliennummer 41Foliennummer 42Foliennummer 43Foliennummer 44Foliennummer 45Foliennummer 46Foliennummer 47Foliennummer 48Foliennummer 49Foliennummer 50Foliennummer 51Foliennummer 52Foliennummer 53Foliennummer 54Foliennummer 55Foliennummer 56Foliennummer 57Foliennummer 58Foliennummer 59Foliennummer 60Foliennummer 61Foliennummer 62Foliennummer 63Foliennummer 64Foliennummer 65Foliennummer 66Ablauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYSAblauf FEM mit ANSYS


Recommended