+ All Categories
Home > Documents > OFC 2004, Los Angeles, CA Restorable Mesh Network Design under Demand Uncertainty: Toward “Future...

OFC 2004, Los Angeles, CA Restorable Mesh Network Design under Demand Uncertainty: Toward “Future...

Date post: 21-Dec-2015
Category:
View: 214 times
Download: 1 times
Share this document with a friend
Popular Tags:
12
OFC 2004, Los Angeles, CA Restorable Mesh Network Design under Demand Restorable Mesh Network Design under Demand Uncertainty: Uncertainty: Toward Toward “Future Proofed” “Future Proofed” Transport Investments Transport Investments Dion Leung, Wayne Grover Network Systems, TRLabs University of Alberta, Edmonton {dion.leung, grover}@trlabs.ca
Transcript

OFC 2004, Los Angeles, CA

Restorable Mesh Network Design under Demand Uncertainty:Restorable Mesh Network Design under Demand Uncertainty:Toward Toward “Future Proofed”“Future Proofed” Transport Investments Transport Investments

Dion Leung, Wayne GroverNetwork Systems, TRLabs

University of Alberta, Edmonton

{dion.leung, grover}@trlabs.ca

OFC 2004, Los Angeles, CA

N1 N2 N3 N4 N5 N6 N7 N8 N9

N1 - 6 4 7 1 5 4 2 1

N2 - - 7 5 5 7 4 1 6

N3 - - - 5 5 12 3 4 2

N4 - - - - 5 2 5 8 2

N5 - - - - - 9 7 2 6

N6 - - - - - - 3 4 5

N7 - - - - - - - 6 1

N8 - - - - - - - - 6

N9 - - - - - - - - -Actual Demand

Increasing Uncertainty in Demand ForecastIncreasing Uncertainty in Demand Forecast

Physical Topology

Optimize…

Deregulation?

New data applications?

Economic variability?Customer churn?

N1 N2 N3 N4 N5 N6 N7 N8 N9

N1 - 3 7 3 1 5 1 2 5

N2 - - 7 5 2 4 1 1 2

N3 - - - 10 5 15 3 4 8

N4 - - - - 6 9 2 2 3

N5 - - - - - 9 3 2 2

N6 - - - - - - 9 7 8

N7 - - - - - - - 3 2

N8 - - - - - - - - 6

N9 - - - - - - - - -Demand Forecast

Network Survivability:• span restoration • path protection

Minimum Cost Design

The min-cost design is no longer optimal…

?

OFC 2004, Los Angeles, CA

Analyzing Uncertainty Using Post-Verification Techniques Analyzing Uncertainty Using Post-Verification Techniques

Minimum Cost Design

Analyze…

N1 N2 N3 N4 N5 N6 N7 N8 N9

N1 - 3 7 3 1 5 1 2 5

N2 - - 7 5 2 4 1 1 2

N3 - - - 10 5 15 3 4 8

N4 - - - - 6 9 2 2 3

N5 - - - - - 9 3 2 2

N6 - - - - - - 9 7 8

N7 - - - - - - - 3 2

N8 - - - - - - - - 6

N9 - - - - - - - - -

What-if Scenario 1

N1 N2 N3 N4 N5 N6 N7 N8 N9

N1 - 3 7 3 1 5 1 2 5

N2 - - 7 5 2 4 1 1 2

N3 - - - 10 5 15 3 4 8

N4 - - - - 6 9 2 2 3

N5 - - - - - 9 3 2 2

N6 - - - - - - 9 7 8

N7 - - - - - - - 3 2

N8 - - - - - - - - 6

N9 - - - - - - - - -

N1 N2 N3 N4 N5 N6 N7 N8 N9

N1 - 3 7 3 1 5 1 2 5

N2 - - 7 5 2 4 1 1 2

N3 - - - 10 5 15 3 4 8

N4 - - - - 6 9 2 2 3

N5 - - - - - 9 3 2 2

N6 - - - - - - 9 7 8

N7 - - - - - - - 3 2

N8 - - - - - - - - 6

N9 - - - - - - - - -

What-if Scenario 2

What-if Scenario 3

Sensitivity Report:

• Scenario 1

• Scenario 2

• Scenario 3

OFC 2004, Los Angeles, CA

Re-define Capacity Planning as Two-stage Decision ProblemRe-define Capacity Planning as Two-stage Decision Problem

Conventional Design• Use a singlesingle best-guess

forecast for capacity planning

• A single-period planning problem

• Snapshot design optimal to a single moment in time

“Future-Proof” Design• Use multiplemultiple demand scenarios

(e.g. the what-if scenarios) to model demand uncertainty

• Consider “corrective” or recourserecourse action to cope with actual outcome

• Optimize both the presentpresent investment and the expected futurefuture outcomes

Present Investment Future Investment + Recourse

OFC 2004, Los Angeles, CA

Conventional Span-Restorable Capacity Design

Minimize1

( )S

j j jj

C s w

,

1

1,2,...,rQ

r q r

q

g d r D

, ,

1 1

1,2,...,rQD

r q r qj j

r q

w g j S

,1

1,2,...,iP

pi k i

p

f w i S

,1

( , ) 1, 2,..., ,iP

p pj i j i

p

s f i j S i j

Network Cost

Routability Constraint

>> All demands must be routed

Survivability Constraint

>> All demands must be restorable

OFC 2004, Los Angeles, CA

Expected Future Cost

, ,1 1

( ) ( )S U

j j k j kj k

P k R y z

, , ,1

( , ) 1,2,..., , ; 1, 2,...,iP

p pj j k i j i k

p

s z f i j S i j k U

““Future-Proof”Future-Proof” Survivable Network Design

Minimize1

( )S

j j jj

C s w

Initial Design Cost

,

1

1,2,..., ; 1, 2,...,rQ

r q rk k

q

g d r D k U

, ,,

1 1

1,2,..., ; 1, 2,...,rQD

r q r qj j k j k

r q

w y g j S k U

, ,1

1,2,..., ; 1, 2,...,iP

pi k i i k

p

f w y i S k U

Routability Constraint

>> All demands must be routed

Survivability Constraint

>> All demands must be restorable

Allow Recourse: Add Extra Capacity if Needed

OFC 2004, Los Angeles, CA

11 nodes, 26 spans

A Case Study on COST239 NetworkA Case Study on COST239 Network

k = 1

k = 20

P(k=1)

P(k=20)

20 Demand Scenarios Represent Alternate Futures

Prob(k)

For Span APresent Cost, Cspan A

Future Cost, Rspan A= Cspan A*X

For Span BPresent Cost, Cspan B

Recourse Cost, Rspan B*X

OFC 2004, Los Angeles, CA

Comparing Conventional and Future-Proof DesignsComparing Conventional and Future-Proof Designs

Conv. FP-SR Conv. FP-SR Conv. FP-SR Conv. FP-SR

Recourse Cost

Factor 1 * Cj 2 * Cj 3 * Cj 5 * Cj

Initial Cost

202185 203340 202185 644085 202185 703815 202185 789300

Expected Future Cost

407480 405713 814678 132257 1221759 121951 2037106 93781

TotalCost

609665 609053 1016863 776342 1423944 825766 2239291 883081

Difference 0.10% 23.65% 42.01% 60.56%

OFC 2004, Los Angeles, CA

0

200

400

600

800

1000

1200

1400

1600

200 300 400 500 600 700 800 900 1000

Initial Design Cost (in 1000's)

Init

ial +

Ex

pe

cte

d F

utu

re C

os

t (i

n 1

00

0's

)

Recourse = 0.5Recourse = 1Recourse = 2Recourse = 3Recourse = 5Recourse = 10Recourse = 30

Highest Recourse

Tradeoff between Present and Long Term CostsTradeoff between Present and Long Term Costs

Low Recourse

OFC 2004, Los Angeles, CA

Summary and Future WorkSummary and Future Work

• Propose a new approach to design mesh restorable networks under demand uncertaintydemand uncertainty (the model can also be easily adapted to other survivability schemes, such as p-cycles and path protection)

• Define the notion of recourserecourse and show the advantages of considering the design as a two-stagetwo-stage decision problem (possible to extend this problem to a multi-stage problem)

• Suggest a new design strategy of planning against uncertainty for future network planning toolsfuture network planning tools

Present Investment Future Investment + Recourse

OFC 2004, Los Angeles, CA

Thank You.Thank You.

[email protected]

OFC 2004, Los Angeles, CA

Illustration of Span (or Link) Restoration SchemeIllustration of Span (or Link) Restoration Scheme

• Localized restoration between the end nodes of the failed span

• Multiple restoration paths are used for a span failure

span X, w1 = 3

span Y, w2 = 5

1

2

12 3

2

Sharing of spare capacities


Recommended