+ All Categories
Home > Documents > OFDMA Cross Layer Resource ControlOFDMA Cross Layer Resource Control 3/20 System Model (𝑴 users,...

OFDMA Cross Layer Resource ControlOFDMA Cross Layer Resource Control 3/20 System Model (𝑴 users,...

Date post: 15-Mar-2020
Category:
Upload: others
View: 8 times
Download: 0 times
Share this document with a friend
20
OFDMA Cross Layer Resource Control Gwanmo Ku Adaptive Signal Processing and Information Theory Research Group Jan. 25, 2013
Transcript

OFDMA Cross Layer

Resource Control

Gwanmo Ku

Adaptive Signal Processing and Information Theory Research Group

Jan. 25, 2013

Outline

OFDMA Cross Layer Resource Control

Objective Functions

- System Throughput (L1), Total Transmit Power (L1)

Constraints

- Transmit Power Constraint (L1)

- Quality of Service (User Demand, Fairness), Buffer Status (L2-3)

- Stability (L2-3)

Generalized Cross Layer Control (GCLC)

Stochastic Network Optimization (SNO)

Network Utility Maximization (NUM)

2/20

OFDMA Cross Layer Resource Control

3/20

System Model (𝑴 users, 𝑲 subcarriers)

Base Station (eNB)

Mobile (UE)

𝒖𝟏

𝒖𝑴

Higher Layer

Buffer

PHY

Higher Layer

Buffer

PHY

OFDMA

Ian Wong & Brian Evans

GCLC

𝒓𝒎

OFDMA Resource Control

4/20

Objective Functions

System Throughput Maximization

Transmit Power Minimization

Constraints

Transmit Power Constraint

Quality of Service

User Demands : Each User Required Data Rate

Fairness : Minimum User Data Rate

Stability based on Buffer Status

OFDMA Resource Allocation

5/20

Notations

𝒎 ∈ {𝟏,… ,𝑴} User Index

𝒌 ∈ {𝟏,… ,𝑲} Subcarrier Index

𝒑𝒎,𝒌 : Power Control Coefficient

𝜸𝒎,𝒌 : SINR for user index 𝒎 and subcarrier index 𝒌

𝑷𝑻 Total Transmit Power Constraint

𝒓𝒎 Required Each User Data Rate

𝒓𝟎 Required Minimum User Data Rate

𝒃𝒎 Buffer Service Rate

𝑹𝒎 Overall Coding Rate for User 𝒎

OFDMA Resource Allocation

6/20

System Throughput Maximization

Power Control

𝒑𝒎,𝒌 = argmaxE 𝑤𝑚

𝑀

𝑚=1

log(1 + 𝑝𝑚,𝑘𝛾𝑚,𝑘)

𝐾

𝑘=1

𝐒𝐲𝐬𝐭𝐞𝐦 𝐓𝐡𝐫𝐨𝐮𝐠𝐡𝐩𝐮𝐭

𝐸 𝑝𝑚,𝑘

𝐾

𝑘=1

𝑀

𝑚=1

≤ 𝑃𝑇

s.t

max (𝛽𝑚𝑅𝑚𝑟0, 𝛽𝑚𝑅𝑚𝑟𝑚) ≤ 𝑤𝑚 log(1 + 𝑝𝑚,𝑘𝛾𝑚,𝑘)

𝐾

𝑘=1

Stability

OFDMA Resource Allocation

7/20

Work by Ian Wong and Brian Evans

System Throughput Maximization with Tx. Power Constraint

𝑝𝑚,𝑘 = argmax 𝐄 𝑤𝑚

𝑀

𝑚=1

log(1 + 𝑝𝑚,𝑘𝛾𝑚,𝑘)

𝐾

𝑘=1

𝐄 𝑝𝑚,𝑘

𝐾

𝑘=1

𝑀

𝑚=1

≤ 𝑃𝑇

𝑤𝑚

𝑀

𝑚=1

= 1

s.t

OFDMA Resource Allocation

8/20

Optimization Framework

Dual Optimization

𝐿 𝑝 ⋅ , 𝜆 = 𝐄 𝑤𝑚

𝑀

𝑚=1

log(1 + 𝑝𝑚,𝑘𝛾𝑚,𝑘)

𝐾

𝑘=1

+𝜆 𝑃𝑇 − 𝐄( 𝑝𝑚,𝑘

𝐾

𝑘=1

)

𝑀

𝑚=1

𝑔∗ = min𝜆≥0

Θ(𝜆)

Θ 𝜆 = max𝑝 ⋅ ∈𝑃𝑇

𝐿(𝑝 ⋅ , 𝜆)

OFDMA Resource Allocation

9/20

Dual

Θ 𝜆 = max𝑝 ⋅ ∈𝑃𝑇

𝐿(𝑝 ⋅ , 𝜆)

= 𝜆𝑃𝑇 + max𝑝 ⋅ ∈𝑃𝑇

𝐄 𝑤𝑚 log 1 + 𝑝𝑚,𝑘𝛾𝑚,𝑘 − 𝜆𝑝𝑚,𝑘

𝑀

𝑚=1

𝐾

𝑘=1

= 𝜆𝑃𝑇 + max𝑝𝑘 ⋅ ∈𝑃𝑘

𝐄 𝑤𝑚 log 1 + 𝑝𝑚,𝑘𝛾𝑚,𝑘 − 𝜆𝑝𝑚,𝑘

𝑀

𝑚=1

𝐾

𝑘=1

= 𝜆𝑃𝑇 + 𝐸 max𝑝𝑘 ⋅ ∈𝑃𝑘

𝑤𝑚 log 1 + 𝑝𝑚,𝑘𝛾𝑚,𝑘 − 𝜆𝑝𝑚,𝑘

𝑀

𝑚=1

𝐾

𝑘=1

= 𝜆𝑃𝑇 + 𝐾𝐸𝛾𝑘max

𝑚∈{1,…,𝑀}max

𝑝𝑚,𝑘≥0(𝑤𝑚 log 1 + 𝑝𝑚,𝑘𝛾𝑚,𝑘 − 𝜆𝑝𝑚,𝑘)

multilevel water filling

𝑚𝑎𝑥 𝑑𝑢𝑎𝑙 𝑢𝑠𝑒𝑟 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

OFDMA Resource Allocation

10/20

A Simple Closed Form

𝑝 𝑚,𝑘(𝜆) =1

𝛾0,𝑚 𝜆−

1

𝛾𝑚,𝑘

+

𝑥 + = max(0, 𝑥)

𝛾0,𝑚 𝜆 =𝜆 ln 2

𝑤𝑚 Cutoff value

𝑔∗ = min𝜆≥0

[𝜆𝑃𝑇 + 𝐾 𝐄𝛾𝑘𝑔𝑘 𝛾𝑘 , 𝜆 ]

𝑔𝑘 𝛾𝑘 , 𝜆 = max𝑚∈{1,…,𝑀}

{𝑔𝑚,𝑘 𝛾𝑚,𝑘 , 𝜆 }

𝑔𝑚,𝑘 𝛾𝑚,𝑘 , 𝜆 = 𝑤𝑚 log 1 + 𝑝 𝑚,𝑘 𝜆 − 𝜆 𝑝 𝑚,𝑘 𝜆

OFDMA Resource Allocation

11/20

Optimal Solution

𝑔𝑚,𝑘 𝛾𝑚,𝑘 , 𝜆 = 𝑤𝑚 log 1 + 𝑝 𝑚,𝑘 𝜆 − 𝜆 𝑝 𝑚,𝑘 𝜆

=𝑤𝑚

ln 2ln

𝛾𝑚,𝑘

𝛾0,𝑚 𝜆−

𝑤𝑚

ln 2+

𝜆

𝛾𝑚,𝑘𝑢(𝛾𝑚,𝑘 − 𝛾0,𝑚 𝜆 )

𝑢 𝑥 = 0 𝑥 < 01 𝑥 ≥ 0

𝜆∗ = 𝑎𝑟𝑔min𝜆≥0

[𝜆𝑃 + 𝐾 𝑔𝑘𝑓𝑔𝑘𝑔𝑘 𝑑𝑔𝑘

0

]

𝑝 𝑚,𝑘(𝜆∗) =

1

𝛾0,𝑚 𝜆∗−

1

𝛾𝑚,𝑘

+

𝑝𝑚,𝑘∗ = 𝑝 𝑚,𝑘 𝜆∗ 1(𝑚 = 𝑚𝑘

∗ )

𝑚𝑘∗ = argmax

𝑚∈{1,…,𝑀}𝑤𝑚 log 1 + 𝑝 𝑚,𝑘 𝜆∗ 𝛾𝑚,𝑘 − 𝜆∗𝑝 𝑚,𝑘 (𝜆∗)

Cross Layer Control

12/20

Generalized Cross Layer Control (GCLC)

Proposed by Georgiadis, Neely, and Tassiulas

Focus on Stability based on Queuing Statistics

• Stochastic Network Optimization

• Network Utility Maximization

Network Stability

• Differential Equation of Queuing Statistics

• Lyapunov Stability

Cross Layer Control

13/20

Stochastic Network Optimization

Buffer for user 𝑚

Arrival Rate 𝝀𝒎 Service Rate 𝝁𝒎

Backlog Queue 𝑸𝒎 (𝒕)

Network State Variable 𝑺(𝒕)

Control Action 𝑰 𝒕 ∈ 𝑰𝑺(𝒕) feasible control region under 𝑺(𝒕)

𝐐 𝑡𝑆 𝑡 ,𝐼(𝑡)

𝐐(𝑡 + 1)

Cross Layer Control

14/20

Stochastic Network Optimization

Stability Issue

𝑄𝑚 𝑡 + 1 ≤ max 𝑄𝑚 𝑡 − 𝑅𝑚𝑜𝑢𝑡 𝐼 𝑡 , 𝑆 𝑡 , 0 + 𝑅𝑚

𝑖𝑛(𝐼 𝑡 , 𝑆 𝑡 )

𝑶𝒖𝒕𝒈𝒐𝒊𝒏𝒈 𝑸𝒖𝒆𝒖𝒆 𝑬𝒏𝒕𝒆𝒓𝒊𝒏𝒈 𝑸𝒖𝒆𝒖𝒆

lim𝑡→ ∞

sup1

𝑡 𝐄{𝑄𝑚 𝜏 }

𝑡−1

𝜏=0

< ∞

Lyapunov Stability

If there exist 𝑩 > 𝟎 and 𝝐 > 𝟎, such that for all

times slot 𝒕 we have :

Then network is strongly stable, and

𝐄 ∆ 𝑡 Q 𝑡 ≤ 𝐵 − 𝜖 𝑄𝑚(𝑡)

𝑀

𝑚=1

lim𝑡→ ∞

sup1

𝑡 𝐄{Q 𝜏 }

𝑡−1

𝜏=0

<𝐵

𝜖

15/20

Cross Layer Control

16/20

Find 𝑰(𝒕)

Find 𝚲 by Lyapunov Drift

Drift Definition

𝐼∗ 𝑡 = argmax𝐼 𝑡 ∈𝐈𝑆(𝑡)

𝑊𝑎𝑏∗ 𝑡 𝜇𝑎𝑏

∗ (𝑡)

𝑎𝑏

𝑊𝑎𝑏∗ 𝑡 = max

𝜇𝑎𝑏

𝑄𝑎 𝑡 − 𝑄𝑏 𝑡 +

maximum queue backlog differential

∆ 𝑡 = 𝐿 𝑡 + 1 − 𝐿(𝑡)

𝐿 𝑡 =1

2 𝑄𝑚

2 (𝑡)

𝑀

𝑚=1

Lyapunov Drift

17/20

∆ 𝑡 = 𝐿 𝑡 + 1 − 𝐿(𝑡)

=1

2 [𝑄𝑚

2 𝑡 + 1 −

𝑀

𝑚=1

𝑄𝑚2 (𝑡)]

After applying 𝑄𝑚2 (𝑡 + 1)

Find Lyapunov Bound with Conditional Expectation

∆ 𝑡 𝐐 𝑡 ≤ …

lim𝑡→ ∞

sup1

𝑡 𝐄{𝑄𝑚 𝜏 }

𝑡−1

𝜏=0

< ∞

Network Utility Maximization (NUM)

18/20

Rate 𝐫 ∈ 𝚲 with Maximum Utility

𝐫∗ = argmax𝐫≤𝛌

𝑔 𝐫 |𝐫 ∈ 𝚲

𝑔(𝐫) : Utility Function

Minimize Cost

Generalized Cross Layer Control

19/20

General Form of GCLC

Cost Variable Vector 𝐱 : Maximum cost constraints 𝐐

Utility Variable Vector 𝐲 :Minimum utility constraints 𝐇

Stable Region 𝐫 ∈ 𝚲

• Arrival Rate Vector 𝛌

Minimize net cost

• Natural cost function 𝒇(𝒙) and Concave Utility function 𝒈(𝒚)

min𝐫≤𝛌

𝑓 𝐱 − 𝑔(𝐲)|𝐪 𝐱 ≤ 𝐐, 𝐡 𝐲 ≥ 𝐇, 𝐫 ∈ 𝚲

OFDMA Resource Control via GCLC

20/20

OFDMA via GCLC

Cost Variable Vector 𝐱 : power coefficients

• 𝐐 = 𝐏𝐓 : Total Power Constraint

Utility Variable Vector 𝐲 : user data rate 𝐲 = 𝐫

• 𝐇 : Quality of Service (User demands, Fairness)

Stable Region based on Queuing Statistics

Minimize net cost : Maximize System Throughput

min𝐫≤𝛌

𝑓 𝐱 − 𝑔(𝐲)|𝐪 𝐱 ≤ 𝐐, 𝐡 𝐲 ≥ 𝐇, 𝐫 ∈ 𝚲


Recommended