+ All Categories
Home > Documents > On approximation of certain integral operators

On approximation of certain integral operators

Date post: 25-Jan-2017
Category:
Upload: rani
View: 217 times
Download: 2 times
Share this document with a friend
11
Acta Math Vietnam (2014) 39:193–203 DOI 10.1007/s40306-014-0057-0 ON APPROXIMATION OF CERTAIN INTEGRAL OPERATORS Vijay Gupta · Rani Yadav Received: 4 December 2012 / Accepted: 13 February 2013 / Published online: 13 March 2014 © Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2014 Abstract In the present paper we introduce the summation-integral type modified Lupas operators with weights of Beta basis functions. We define the operators in terms of hyper- geometric series and, using such an approach, establish moments. Our main results are an asymptotic formula and an error estimate in terms of modulus of continuity and weighted approximation and rate of convergence for functions having bounded derivatives. Keywords Lupas operators · Rate of convergence · Asymptotic formula · Weighted approximation Mathematics Subject Classification (2000) 41A25 · 41A35 1 Introduction In 1995, Lupas [9] introduced the operator L n (f,x) for f :[0, ) R and x 0 as L n (f,x) = k=0 l n,k (x)f k n , (1) where l n,k (x) = 2 nx nx + k 1 k 2 k . In order to approximate the integrable functions, the most common integral modifications of the discrete operators are the Kantorovich- and Durrmeyer-type modifications. Agra- V. Gupta (B ) · R. Yadav Department of Mathematics, Netaji Subhas Institute of Technology, Sector 3 Dwarka, New Delhi 110078, India e-mail: [email protected] R. Yadav e-mail: [email protected]
Transcript
Page 1: On approximation of certain integral operators

Acta Math Vietnam (2014) 39:193–203DOI 10.1007/s40306-014-0057-0

ON APPROXIMATION OF CERTAIN INTEGRALOPERATORS

Vijay Gupta · Rani Yadav

Received: 4 December 2012 / Accepted: 13 February 2013 / Published online: 13 March 2014© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and SpringerScience+Business Media Singapore 2014

Abstract In the present paper we introduce the summation-integral type modified Lupasoperators with weights of Beta basis functions. We define the operators in terms of hyper-geometric series and, using such an approach, establish moments. Our main results are anasymptotic formula and an error estimate in terms of modulus of continuity and weightedapproximation and rate of convergence for functions having bounded derivatives.

Keywords Lupas operators · Rate of convergence · Asymptotic formula · Weightedapproximation

Mathematics Subject Classification (2000) 41A25 · 41A35

1 Introduction

In 1995, Lupas [9] introduced the operator Ln(f, x) for f : [0,∞) → R and x ≥ 0 as

Ln(f, x) =∞∑

k=0

ln,k(x)f

(k

n

), (1)

where

ln,k(x) = 2−nx

(nx + k − 1

k

)2−k.

In order to approximate the integrable functions, the most common integral modificationsof the discrete operators are the Kantorovich- and Durrmeyer-type modifications. Agra-

V. Gupta (B) · R. YadavDepartment of Mathematics, Netaji Subhas Institute of Technology, Sector 3 Dwarka,New Delhi 110078, Indiae-mail: [email protected]

R. Yadave-mail: [email protected]

Page 2: On approximation of certain integral operators

194 V. GUPTA, R. YADAV

tini [1] obtained some approximation properties and an asymptotic formula for the Lupas–Kantorovich operators. The Durrmeyer variant of the operators (1) introduced in [1] is de-fined by

Mn(f,x) =∞∑

k=0

cn,kln,k(x)

∫ ∞

0ln,k(u)f (u)du, (2)

where

cn,k = 1∫ ∞0 ln,k(t) dt

.

For er(t) = t r , operators (2) satisfy the following relation:

Mn(er , x) =∞∑

k=0

ln,k(x)

nr(log r)r

∑k

i=0(−1)isk,i(i+r)!(log 2)i∑k

i=0(−1)isk,i(i)!

(log 2)i

,

where sk,i are the Stirling numbers of first kind, which are related to the Pochhammer symbol(x)k as

(x)k = x(x + 1)(x + 2) · · · (x + k − 1) =k∑

i=0

(−1)k−i sk,ixi .

In the recent years, some Durrmeyer-type operators were discussed in [2–4, 7, 8]. Forf ∈ L1[0,∞), we now propose a new integral modification of the Lupas operators havingweights of Beta basis function as

Dn(f, x) =∞∑

k=1

ln,k(x)

∫ ∞

0bn,k−1(t)f (t) dt + ln,0(x)f (0), x ∈ [0,∞), (3)

where ln,k(x) is given by (1), and

bn,k(t) = 1

B(n, k + 1)

tk

(1 + t)n+k+1

are the Beta basis functions.The hypergeometric function is defined as

2F1(a, b; c;x) =∞∑

k=0

(a)k(b)k

(c)kk! xk.

The operators (3) can be written in terms of hypergeometric form:

Dn(f, x)

=∞∑

k=1

ln,k(x)

∫ ∞

0bn,k−1(t)f (t) dt + ln,0(x)f (0)

= 2−nx

∞∑

k=1

(nx + k − 1

k

)2−k

∫ ∞

0

1

B(n, k)

tk−1

(1 + t)n+kf (t) dt + 2−nxf (0)

Page 3: On approximation of certain integral operators

ON APPROXIMATION OF CERTAIN INTEGRAL OPERATORS 195

= 2−nx

∫ ∞

0

f (t)

(1 + t)n

∞∑

k=1

(nx + k − 1)!2−k

k!(nx − 1)!(n + k − 1)!

(n − 1)!(k − 1)!tk−1

(1 + t)kdt + 2−nxf (0)

= 2−nx

∫ ∞

0

f (t)

(1 + t)n

∞∑

k=1

(nx)(nx + 1) · · · (nx + k − 1)

k!2k

× n(n + 1) · · · (n + k − 1)

(k − 1)!tk−1

(1 + t)kdt + 2−nxf (0)

= 2−nx

∫ ∞

0

f (t)

(1 + t)n

∞∑

k=0

(nx)(nx + 1)k

(2)k2k+1

n(n + 1)k

k!tk

(1 + t)k+1dt + 2−nxf (0)

= n2x

2nx+1

∫ ∞

0

f (t)

(1 + t)n+1 2F1

(nx + 1, n + 1;2; t

2(1 + t)

)dt + 2−nxf (0).

The present article deals with the approximation properties of the operators Dn(f, x). Westudy an asymptotic formula and an error estimate in terms of modulus of continuity,weighted approximation, and also the rate of convergence for the operators (3).

2 Auxiliary results

In order to prove the main results, we need the following two lemmas.

Lemma 1 For r > 0, Dn(er , x) satisfies the relation

Dn(er , x) = r!(n − r − 1)!nx

(n − 1)! 2F1(nx + 1,1 − r;2;−1).

Proof By the definition (3) we have

Dn(er , x) = 2−nx

∞∑

k=1

(nx + k − 1

k

)2−k

∫ ∞

0

1

B(n, k)

tk+r−1

(1 + t)n+kdt

= 2−nx

∞∑

k=1

(nx + k − 1)!k!(nx − 1)! 2−k 1

B(n, k)B(k + r, n − r)

= 2−nx (n − r − 1)!(n − 1)!(nx − 1)!

∞∑

k=0

(nx + k)!(k + r)!(k + 1)!2k+1k!

= 2−nx (n − r − 1)!(n − 1)!

∞∑

k=0

(nx + 1)k(nx)(r + 1)kΓ (r + 1)

(2)k2k+1k!

= 2−nx r!(nx)(n − r − 1)!2(n − 1)! 2F1

(nx + 1, r + 1;2; 1

2

).

Using 2F1(a, b; c;x) = (1 − x)−a2F1(a, c − b; c; x

x−1 ), we get

Dn(er , x) = r!(nx)(n − r − 1)!(n − 1)! 2F1(nx + 1,1 − r;2;−1). �

Page 4: On approximation of certain integral operators

196 V. GUPTA, R. YADAV

Remark 1 By a simple computation using Lemma 1 we have

Dn(e0, x) = 1,

Dn(e1, x) = nx

n − 1,

Dn(e2, x) = nx(nx + 3)

(n − 1)(n − 2).

Remark 2 For ψx(t) = t − x and n ∈ N , from Remark 1 we have

Dn(ψx, x) = x

n − 1,

Dn

(ψ2

x , x) = x2(n + 2) + 3nx

(n − 1)(n − 2).

Further, for r = 0,1,2, . . . , we have

Dn

(ψr

x , x) = O

(n−[(r+1)/2]).

Applying the Schwarz inequality, we have

Dn

(∣∣ψrx

∣∣, x) ≤

√Dn

(ψ2r

x , x) = O

(n−r/2

).

For n ≥ 4, we can write

Dn

(|ψx |, x) ≤

√2x(3 + x)

n − 2.

Rewrite the operators (3) as

Dn(f, x) =∫ ∞

0Kn(x, t)f (t) dt,

where Kn(x, t) is the kernel function given by

Kn(x, t) =∞∑

k=1

ln,k(x)bn,k−1(t) + ln,0(x)δ(t),

and δ(t) is the Dirac delta function.

Lemma 2 For n ≥ 4 and for fixed x ∈ (0,∞), we have

λn(x, y) =∫ y

0Kn(x, t) dt ≤ 2x(3 + x)

(n − 2)(x − y)2, 0 ≤ y < x,

1 − λn(x, z) =∫ ∞

z

Kn(x, t) dt ≤ 2x(3 + x)

(n − 2)(z − x)2, x < z < ∞.

Page 5: On approximation of certain integral operators

ON APPROXIMATION OF CERTAIN INTEGRAL OPERATORS 197

3 Main theorems

Theorem 1 Let f be a continuous function on [0,∞). Then the sequence {Dn(f, x)} con-verges uniformly to f (x) in [a, b] ⊂ [0,∞) as n → ∞.

By Remark 1, the proof of Theorem 1 follows immediately by Bohman–Korovkin Theo-rem.

By CB [0,∞) we denote the class of real-valued continuous bounded functions f (x)

defined on [0,∞) with the norm

‖f ‖ = supx∈[0,∞)

∣∣f (x)∣∣.

For f ∈ CB [0,∞) and δ > 0, the first- and second-order moduli of continuity are definedas

ω(f, δ) = sup0≤h≤δ

supx∈[0,∞)

∣∣f (x + h) − f (x)∣∣

and

ω2(f, δ) = sup0≤h≤δ

supx∈[0,∞)

∣∣f (x + 2h) − 2f (x + h) + f (x)∣∣,

respectively.The Peetre K-functional is defined as

K2(f, δ) = infg∈C2

B[0,∞)

{‖f − g‖ + δ∥∥g′′∥∥ : g ∈ C2

B[0,∞)},

where

C2B [0,∞) = {

g ∈ CB [0,∞) : g′, g′′ ∈ CB[0,∞)}.

According to [5], there exists a constant C > 0 such that for δ > 0, we have

K2(f, δ) ≤ Cω2(f,√

δ). (4)

Theorem 2 For x ∈ [0,∞) and f ∈ CB[0,∞), there exists a constant C > 0 such that

∣∣Dn(f, x) − f (x)∣∣ ≤ Cω2

(f,

√(2 + n)x2 + 3nx

(n − 1)(n − 2)+ x2

(n − 1)2

)+ ω

(f,

x

n − 1

).

Proof We modify the operators (3) as

Dn(f, x) = Dn(f, x) − f

(nx

n − 1

)+ f (x). (5)

Using Remark 1, we have Dn((t − x), x) = 0. Let g ∈ C2B [0,∞). By Taylor’s theorem we

have

g(t) = g(x) + g′(t − x) +∫ t

x

(t − u)g′′(u) du.

Page 6: On approximation of certain integral operators

198 V. GUPTA, R. YADAV

Therefore,

∣∣Dn(g, x) − g(x)∣∣

=∣∣∣∣Dn

(∫ t

x

(t − u)g′′(u) du, x

)∣∣∣∣

≤∣∣∣∣Dn

(∫ t

x

(t − u)g′′(u) du, x

)∣∣∣∣ +∣∣∣∣

(∫ xn−1

x

(nx

n − 1− u

)g′′(u) du, x

)∣∣∣∣. (6)

Since∣∣∣∣∫ t

x

(t − u)g′′(u) du

∣∣∣∣ ≤ (t − x)2∥∥g′′∥∥ (7)

and∣∣∣∣∫ nx

n−1

x

(nx

n − 1− u

)g′′(u) du

∣∣∣∣ ≤(

x

n − 1

)2∥∥g′′∥∥, (8)

from (6), (7), (8), and (5) we have

∣∣Dn(g, x) − g(x)∣∣ ≤ Dn

((t − x)2, x

)∥∥g′′∥∥ +(

x

n − 1

)2∥∥g′′∥∥.

By Remark 2 we get

∣∣Dn(g, x) − g(x)∣∣ ≤ (2 + n)x2 + 3nx

(n − 1)(n − 2)

∥∥g′′∥∥ + x2

(n − 1)2

∥∥g′′∥∥. (9)

Now by Remark 1 we have

∣∣Dn(f, x)∣∣ ≤

∞∑

k=1

ln,k(x)

∫ ∞

0bn,k−1(t)

∣∣f (t)∣∣dt ≤ ‖f ‖.

Therefore,∣∣Dn(f, x)

∣∣ ≤ ∥∥Dn(f, x)∥∥ + 2‖f ‖ ≤ 3‖f ‖. (10)

Finally, combining (5), (6), (9), and (10), we get

∣∣Dn(f, x) − f (x)∣∣

≤ ∣∣Dn(f, x) − f (x)∣∣ +

∣∣∣∣f (x) − f

(nx

n − 1

)∣∣∣∣

= ∣∣Dn

((f − g), x

) − (f − g)(x)∣∣ + ∣∣Dn(g, x) − g(x)

∣∣ +∣∣∣∣f (x) − f

(nx

n − 1

)∣∣∣∣

≤ 4‖f − g‖ +(

(2 + n)x2 + 3nx

(n − 1)(n − 2)+ x2

(n − 1)2

)∥∥g′′∥∥ +∣∣∣∣f (x) − f

(nx

n − 1

)∣∣∣∣

≤ C

[4‖f − g‖ +

((2 + n)x2 + 3nx

(n − 1)(n − 2)+ x2

(n − 1)2

)∥∥g′′∥∥]

Page 7: On approximation of certain integral operators

ON APPROXIMATION OF CERTAIN INTEGRAL OPERATORS 199

+ supt,t− x

n−1 ∈[0,∞)

∣∣∣∣f(

t − x

n − 1

)− f (t)

∣∣∣∣

≤ C

[4‖f − g‖ +

((2 + n)x2 + 3nx

(n − 1)(n − 2)+ x2

(n − 1)2

)∥∥g′′∥∥]

+ ω

(f,

x

n − 1

),

which, on using (4) and taking infimum over all C2B [0,∞), completes the proof of the theo-

rem. �

Theorem 3 Let f be a bounded and integrable function on the interval [0,∞) such that thesecond derivative of f exists at a fixed point x ∈ [0,∞). Then

limn→∞n

(Dn(f, x) − f (x)

) = xf ′(x) +(

x2 + 3x

2

)f ′′(x).

Proof By the Taylor formula we may write

f (t) = f (x) + f ′(x)(t − x) + 1

2f ′′(x)(t − x)2 + r(t, x)(t − x)2, (11)

where r(t, x) is the remainder term, and limt→x r(t, x) = 0. Acting Dn on both sides ofEq. (11), we obtain

Dn(f, x) − f (x) = Dn(t − x, x)f ′(x) + Dn

((t − x)2, x

)f ′′(x)

2+ Dn

(r(t, x)(t − x)2, x

).

Applying the Cauchy–Schwarz inequality, we have

Dn

(r(t, x)(t − x)2, x

) ≤√

Dn

(r2(t, x), x

)√Dn

((t − x)4, x

). (12)

As r2(x, x) = 0 and r2(·, x) ∈ C∗2 [0,∞), we have from Remark 2 that

limn→∞Dn

(r2(t, x), x

) = r2(x, x) = 0 (13)

uniformly with respect to x ∈ [0,A]. Now from (12), (13), and Remark 1, we get

limn→∞Dn

(r(t, x)(t − x)2, x

) = 0.

Then we obtain

limn→∞n

(Dn(f, x) − f (x)

) = limn→∞n

(f ′(x)Dn

((t − x), x

) + 1

2f ′′(x)Dn

((t − x)2, x

)

+ Dn

(r(t, x)(t − x)2;x))

= xf ′(x) +(

x2 + 3x

2

)f ′′(x). �

For weighted approximation, we give the following result. Let C∗x2 [0,∞) be the space of

all continuous functions with finite limit limx→∞ f (x)

1+x2 and belonging to the class Bx2 [0,∞),

Page 8: On approximation of certain integral operators

200 V. GUPTA, R. YADAV

where Bx2 [0,∞) = {f : |f (x)| ≤ C(f )(1 + x2) for all x ∈ [0,∞),C(f ) being a constantdepending on f }. The norm on C∗

x2 [0, ∞) is defined by

‖f ‖x2 = supx∈[0, ∞)

|f (x)|1 + x2

.

Theorem 4 For each f ∈ C∗x2 [0, ∞), we have

limn→∞

∥∥Dn(f ) − f∥∥

x2 = 0.

Proof By a theorem in [6], in order to get the desired conclusion, it is sufficient to show that

limn→∞

∥∥Dn(eν, x) − eν

∥∥x2 = 0, ν = 0,1,2.

Since Dn(e0, x) = 1, the above condition holds for ν = 0. Next, we can write

∥∥Dn(e1, x) − x∥∥

x2 ≤ supx∈[0, ∞)

nx

(n − 1)(1 + x2)− x

1 + x2,

which gives

limn→∞

∥∥Dn(e1, x) − x∥∥

x2 = 0.

Finally, we can write

∥∥Dn(e2, x) − x2∥∥

x2 ≤ supx∈[0,∞)

x2

1 + x2

3n − 2

(n − 1)(n − 2)+ sup

x∈[0,∞)

x

1 + x2

3n

(n − 1)(n − 2),

which implies that

limn→∞

∥∥Dn(e2, x) − x2∥∥

x2 = 0.

Thus, the result holds for ν = 0,1,2. This completes the proof of the theorem. �

4 Rate of convergence

In this section we discuss the convergence of operators (3) for the functions having boundedderivatives.

Let us define the class ΦDB of functions as

ΦDB ={f : f (x) − f (0) =

∫ x

0φ(t) dt;f (t) = O

(t r

), t → ∞

},

where φ is bounded on every finite subinterval of [0,∞). For a fixed x ∈ [0,∞), λ ≥ 0, andf ∈ ΦDB , let us define the metric form as

Ω(f,λ) = supt∈[x−λ,x+λ]∩[0,∞)

∣∣f (t) − f (x)∣∣.

Page 9: On approximation of certain integral operators

ON APPROXIMATION OF CERTAIN INTEGRAL OPERATORS 201

Theorem 5 Let f ∈ ΦDB and x ∈ (0,∞) be fixed. If φ(x−) and φ(x+) exist, then forn ≥ 4, we have

∣∣∣∣Dn(f, x) − f (x) − φ(x+) − φ(x−)

2

√2x(x + 3)

n − 2

∣∣∣∣

≤ 2(5x + 9)

n − 2

[√n]∑

k=1

Ωx

(φx,

x

k

)+ |φ(x+) + φ(x−)|

2

√x

n − 1+ O

(n−r

),

where

φx(t) =

⎧⎪⎨

⎪⎩

φ(t) − φ(x−), 0 ≤ t < x,

0, t = x,

φ(t) − φ(x+), x < t < ∞.

Proof By simple computation we have

Dn(f, x) − f (x) ≤ φ(x+) − φ(x−)

2Dn

(|t − x|, x) + φ(x+) + φ(x−)

2Dn(t − x, x)

− An,x(φx) + Bn,x(φx) + Cn,x(φx), (14)

where

An,x(φx) =∫ x

0

(∫ x

t

φx(u) du

)dt

(λn(x, t)

),

Bn,x(φx) =∫ 2x

x

(∫ t

x

φx(u) du

)dt

(λn(x, t)

),

Cn,x(φx) =∫ ∞

2x

(∫ t

x

φx(u) du

)dt

(λn(x, t)

).

Integrating by parts, we have

An,x(φx) =∫ x

t

φx(u) duλn(x, t)|x0 +∫ x

0λn(x, t)φx(t) dt

=(∫ x−x/

√n

0+

∫ x

x−x/√

n

)λn(x, t)φx(t) dt.

Since λn(x, t) ≤ 1, from the monotonicity of Ωx(φx,λ) and the definition of φx(t) we have

∣∣∣∣∫ x

x−x/√

n

λn(x, t)φx(t) dt

∣∣∣∣ ≤ x√n

Ωx

(φx,

x√n

)≤ 2x

n

[√n]∑

k=1

Ωx

(φx,

x

k

).

Taking t = xx−u

and using Lemma 2, we get∣∣∣∣∫ x−x/

√n

0λn(x, t)φx(t) dt

∣∣∣∣ ≤ 2x(3 + x)

(n − 2)

∫ x−x/√

n

0

Ωx(φx, x − t)

(x − t)2dt

≤ 2(x + 3)

(n − 2)

∫ √n

1Ωx

(φx,

x

u

)du

≤ 2(x + 3)

(n − 2)

√n∑

k=1

Ωx

(φx,

x

k

).

Page 10: On approximation of certain integral operators

202 V. GUPTA, R. YADAV

Collecting the above results, we get

∣∣An,x(φx)∣∣ ≤ 2(2x + 3)

(n − 2)

√n∑

k=1

Ωx

(φx,

x

k

). (15)

Further, we have

Bn,x(φx) =∫ 2x

x

(∫ t

x

φx(u) du

)dt

(λn(x, t)

)

= −∫ 2x

x

(∫ t

x

φx(u) du

)dt

(1 − λn(x, t)

)

= −∫ 2x

x

φx(u) du(1 − λn(x,2x)

) +∫ 2x

x

φx(t)(1 − λn(x, t)

)dt.

From Lemma 2 we have

∣∣∣∣−∫ 2x

x

φx(u) du(1 − λn(x,2x)

)∣∣∣∣ ≤ xΩx(φx, x)2x(x + 3)

(n − 2)x2= 2(3 + x)

n − 2Ωx(φx, x).

Also, we have

∣∣∣∣∫ 2x

x

φx(t)(1 − λn(x, t)

)dt

∣∣∣∣ ≤ 2(2x + 3)

(n − 2)

√n∑

k=1

Ωx

(φx,

x

k

).

Hence, we get

∣∣Bn,x(φx)∣∣ ≤ 2(3 + x)

n − 2Ωx(φx, x) + 2(2x + 3)

(n − 2)

√n∑

k=1

Ωx

(φx,

x

k

). (16)

Assume that there exists an integer r such that f (t) = O(t2r ) as t → ∞. Finally, for acertain constant M > 0 depending only on f,x, r , we obtain

∣∣Cn,x(φx)∣∣ = M

∞∑

k=1

ln,k(x)

∫ ∞

2x

bn,k−1(t)t2r dt.

Using Remark 2 and the inequality t ≤ 2(t − x) for t ≥ 2x, with M ′ = 22rM , we get

∣∣Cn(f, x)∣∣ ≤ 22rM

∞∑

k=1

ln,k(x)

∫ ∞

0bn,k−1(t)(t − x)2r dt

= M ′[Dn

(ψ2r

x , x) − ln,0(−x)2r

] = O(n−r

). (17)

The proof of the theorem follows immediately by combining the estimates in (14), (15),(16), and (17). �

Page 11: On approximation of certain integral operators

ON APPROXIMATION OF CERTAIN INTEGRAL OPERATORS 203

References

1. Agratini, O.: On a sequence of linear and positive operators. Facta Univ., Ser. Math. Inform. 14, 41–48(1999)

2. Agrawal, P.N., Singh, K.K., Gairola, A.R.: Lp-approximation by iterates of Bernstein–Durrmeyer typepolynomials. Int. J. Math. Anal. 4(10), 469–479 (2010)

3. Anastassiou, G.A., Gal, S.G.: Approximation by complex Bernstein–Durrmeyer polynomials in compactdisks. Mediterr. J. Math. 7(4), 471–482 (2010)

4. Aral, A., Gupta, V.: On the Durrmeyer type modification of the q-Baskakov type operators. NonlinearAnal. 72(3–4), 1171–1180 (2010)

5. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)6. Gadzhiev, A.D.: Theorems of the type of P.P. Korovkin type theorems. Mat. Zametki 20(5), 781–786

(1976). English translation, Math. Notes 20(5–6), 996–998 (1976)7. Gupta, V.: Some approximation properties on q-Durrmeyer operators. Appl. Math. Comput. 197(1), 172–

178 (2008)8. Karsli, H.: Pointwise estimate for some Durrmeyer type operators. Proc. Jangjeon Math. Soc. 11(2), 153–

161 (2008)9. Lupas, A.: The approximation by means of some linear positive operators. In: Approximation Theory.

Math. Res., vol. 86, pp. 201–229 (1995)


Recommended