+ All Categories
Home > Documents > ON M2 SURFACES OF BIHARMONIC B - facta universitatis

ON M2 SURFACES OF BIHARMONIC B - facta universitatis

Date post: 12-Feb-2022
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
8
FACTA UNIVERSITATIS (NI ˇ S) Ser. Math. Inform. Vol. 27 No 3 (2012), 337–344 ON M 2 SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING TO BISHOP FRAME IN HEISENBERG GROUP Heis 3 Talat K¨orpinar and Essin Turhan Abstract. In this paper, we study M 2 surfaces of biharmonic B-general helices accord- ing to Bishop frame in the Heisenberg group Heis 3 . Finally, we characterize the M 2 surfaces of biharmonic B-general helices in terms of Bishop frame in the Heisenberg group Heis 3 . 1. Introduction Harmonic maps f :(M,g) −→ (N,h) between manifolds are the critical points of the energy E (f )= M e (f ) v g , (1.1) where v g is the volume form on (M,g) and e (f )(x) := 1 2 df (x)2 T * Mf -1 TN is the energy density of f at the point x M . Critical points of the energy functional are called harmonic maps. In this paper, we study M 2 surfaces of biharmonic B-general helices according to Bishop frame in the Heisenberg group Heis 3 . Finally, we characterize the M 2 surfaces of biharmonic B-general helices in terms of Bishop frame in the Heisenberg group Heis 3 . Received September 5, 2012.; Accepted September 21, 2012. 2010 Mathematics Subject Classification. Primary 14H55; Secondary 14J29, 30F15 337
Transcript
Page 1: ON M2 SURFACES OF BIHARMONIC B - facta universitatis

FACTA UNIVERSITATIS (NIS)

Ser. Math. Inform. Vol. 27 No 3 (2012), 337–344

ON M2 SURFACES OF BIHARMONIC B-GENERAL HELICESACCORDING TO BISHOP FRAME IN HEISENBERG GROUP

Heis3

Talat Korpinar and Essin Turhan

Abstract. In this paper, we study M2 surfaces of biharmonic B-general helices accord-ing to Bishop frame in the Heisenberg group Heis3. Finally, we characterize the M2

surfaces of biharmonic B-general helices in terms of Bishop frame in the Heisenberggroup Heis3.

1. Introduction

Harmonic maps f : (M, g) −→ (N,h) between manifolds are the critical points ofthe energy

E (f) =

∫M

e (f) vg,(1.1)

where vg is the volume form on (M, g) and

e (f) (x) :=1

2∥df (x)∥2T∗M⊗f−1TN

is the energy density of f at the point x ∈M .

Critical points of the energy functional are called harmonic maps.

In this paper, we study M2 surfaces of biharmonic B-general helices accordingto Bishop frame in the Heisenberg group Heis3. Finally, we characterize the M2

surfaces of biharmonic B-general helices in terms of Bishop frame in the Heisenberggroup Heis3.

Received September 5, 2012.; Accepted September 21, 2012.2010 Mathematics Subject Classification. Primary 14H55; Secondary 14J29, 30F15

337

Page 2: ON M2 SURFACES OF BIHARMONIC B - facta universitatis

338 Talat Korpinar and Essin Turhan

2. The Heisenberg Group Heis3

Heisenberg group Heis3 can be seen as the space R3 endowed with the followingmultipilcation:

(x, y, z)(x, y, z) = (x+ x, y + y, z + z − 1

2xy +

1

2xy).(2.1)

Heis3 is a three-dimensional, connected, simply connected and 2-step nilpotent Liegroup.

The Riemannian metric g is given by

g = dx2 + dy2 + (dz − xdy)2.

The Lie algebra of Heis3 has an orthonormal basis

e1 =∂

∂x, e2 =

∂y+ x

∂z, e3 =

∂z,(2.2)

for which we have the Lie products

[e1, e2] = e3, [e2, e3] = [e3, e1] = 0

withg(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

3. Biharmonic B-General Helices with Bishop Frame In TheHeisenberg Group Heis3

Let γ : I −→ Heis3 be a non geodesic curve on the Heisenberg group Heis3 pa-rameterized by arc length. Let {T,N,B} be the Frenet frame fields tangent to theHeisenberg group Heis3 along γ defined as follows:

T is the unit vector field γ′ tangent to γ, N is the unit vector field in thedirection of ∇TT (normal to γ), and B is chosen so that {T,N,B} is a positivelyoriented orthonormal basis. Then, we have the following Frenet formulas:

∇TT = κN,

∇TN = −κT+ τB,(3.1)

∇TB = −τN,

where κ is the curvature of γ and τ is its torsion and

g (T,T) = 1, g (N,N) = 1, g (B,B) = 1,(3.2)

g (T,N) = g (T,B) = g (N,B) = 0.

Page 3: ON M2 SURFACES OF BIHARMONIC B - facta universitatis

On M2 Surfaces of Biharmonic B General Helices... 339

In the rest of the paper, we suppose everywhere κ = 0 and τ = 0.

The Bishop frame or parallel transport frame is an alternative approach todefining a moving frame that is well defined even when the curve has a vanishingsecond derivative. The Bishop frame is expressed as

∇TT = k1M1 + k2M2,

∇TM1 = −k1T,(3.3)

∇TM2 = −k2T,

where

g (T,T) = 1, g (M1,M1) = 1, g (M2,M2) = 1,(3.4)

g (T,M1) = g (T,M2) = g (M1,M2) = 0.

Here, we shall call the set {T,M1,M2} as Bishop trihedra, k1 and k2 as Bishopcurvatures, where θ (s) = arctan k2

k1, τ(s) = θ′ (s) and κ(s) =

√k22 + k21. Thus,

Bishop curvatures are defined by

k1 = κ(s) cos θ (s) ,(3.5)

k2 = κ(s) sin θ (s) .

With respect to the orthonormal basis {e1, e2, e3} we can write

T = T 1e1 + T 2e2 + T 3e3,

M1 = M11 e1 +M2

1 e2 +M31 e3,(3.6)

M2 = M12 e1 +M2

2 e2 +M32 e3.

Theorem 3.1. γ : I −→ Heis3 is a biharmonic curve with Bishop frame if andonly if

k21 + k22 = constant = C = 0,

k′′1 − Ck1 = k1

[1

4−(M3

2

)2]− k2M31M

32 ,(3.7)

k′′2 − Ck2 = k1M31M

32 + k2

[1

4−(M3

1

)2].

To separate a general helix according to Bishop frame from that of Frenet- Serretframe, in the rest of the paper, we shall use notation for the curve defined above asB-general helix, [10].

Page 4: ON M2 SURFACES OF BIHARMONIC B - facta universitatis

340 Talat Korpinar and Essin Turhan

4. M2 Surface of Biharmonic B-General Helices with Bishop Frame InThe Heisenberg Group Heis3

The M2 surface of γB is a ruled surface

E (s, u) = γB (s) + uM2 (s) .(4.1)

Lemma 4.2. Let γB : I −→ Heis3 be a unit speed biharmonic B-general helixwith non-zero natural curvatures. Then the M2 surface of γB is

E (s, u) = [sin θ

(k21+k2

2

sin2 θ− cos θ)

12

sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]

+u cos θ cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ2]e1

+[− sin θ

(k21+k2

2

sin2 θ− cos θ)

12

cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]

+u cos θ sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ3]e2(4.2)

+[−[sin θ

(k21+k2

2

sin2 θ− cos θ)

12

sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ2]

[− sin θ

(k21+k2

2

sin2 θ− cos θ)

12

cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ3]

+ (cos θ) s+sin2 θ

(k21+k2

2

sin2 θ− cos θ)

12

(s

2−

sin 2[(k21+k2

2

sin2 θ− cos θ)

12 s+ ζ0]

4(k21+k2

2

sin2 θ− cos θ)

12

− ζ1 sin θ

(k21+k2

2

sin2 θ− cos θ)

12

cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]− u sin θ + ζ4]e3,

where ζ0, ζ1, ζ2, ζ3, ζ4 are constants of integration.

Proof. Using orthonormal basis (2.2) and (3.7), we obtain

T = (sin θ cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0], sin θ sin[(

k21 + k22sin2 θ

− cos θ)12 s+ ζ0],

cos θ +sin2 θ

(k21+k2

2

sin2 θ− cos θ)

12

sin2[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0](4.3)

+ζ1 sin θ sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]),

where ζ1 is the constant of integration.

Page 5: ON M2 SURFACES OF BIHARMONIC B - facta universitatis

On M2 Surfaces of Biharmonic B General Helices... 341

T = sin θ cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]e1 + sin θ sin[(

k21 + k22sin2 θ

− cos θ)12 s+ ζ0]e2

+cos θe3.(4.4)

On the other hand, using Bishop formulas (3.3) and (2.1), we have

M2 = cos θ cos[(k21 + k22sin2 θ

−cos θ)12 s+ζ0]e1+cos θ sin[(

k21 + k22sin2 θ

−cos θ)12 s+ζ0]e2−sin θe3.

(4.5)

Using the above equation, we have (4.2), and the theorem is proved.

We need the following lemma.

Lemma 4.2. Let γB : I −→ Heis3 be a unit speed biharmonic B-general helixwith non-zero natural curvatures. Then the M2 surface of γB are

xE (s, u) = [sin θ

(k21+k2

2

sin2 θ− cos θ)

12

sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]

+u cos θ cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ2],

yE (s, u) = [− sin θ

(k21+k2

2

sin2 θ− cos θ)

12

cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]

+u cos θ sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ3],

zE (s, u) = [sin θ

(k21+k2

2

sin2 θ− cos θ)

12

sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]

+u cos θ cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ2]

[− sin θ

(k21+k2

2

sin2 θ− cos θ)

12

cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]

+u cos θ sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]] + ζ3]

+[−[sin θ

(k21+k2

2

sin2 θ− cos θ)

12

sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ2]

[− sin θ

(k21+k2

2

sin2 θ− cos θ)

12

cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ3]

+ (cos θ) s+sin2 θ

(k21+k2

2

sin2 θ− cos θ)

12

(s

2−

sin 2[(k21+k2

2

sin2 θ− cos θ)

12 s+ ζ0]

4(k21+k2

2

sin2 θ− cos θ)

12

Page 6: ON M2 SURFACES OF BIHARMONIC B - facta universitatis

342 Talat Korpinar and Essin Turhan

− ζ1 sin θ

(k21+k2

2

sin2 θ− cos θ)

12

cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]− u sin θ + ζ4],

where ζ0, ζ1, ζ2, ζ3, ζ4 are constants of integration.

Proof. Using the orthonormal basis we easily have the above system. Hence,the proof is completed.

-1

0

1

2

3

-5

0

5

-5

0

5

Fig. 4.1: The first illustration.

Page 7: ON M2 SURFACES OF BIHARMONIC B - facta universitatis

On M2 Surfaces of Biharmonic B General Helices... 343

-1

0

1

2

3

-2

0

2

4

6

-5

0

5

Fig. 4.2: The second illustration

REFERENCES

1. L. R. Bishop: There is More Than One Way to Frame a Curve, Amer. Math. Monthly82 (3) (1975) 246-251.

2. N. Chouaieb, A. Goriely and JH. Maddocks: Helices, PNAS 103 (2006), 398-403.

3. TA. Cook: The curves of life, Constable, London 1914, Reprinted (Dover, London1979).

4. J. Eells, J.H. Sampson: Harmonic mappings of Riemannian manifolds, Amer. J.Math. 86 (1964), 109–160.

5. J. Happel, H. Brenner: Low Reynolds Number Hydrodynamics with Special Appli-cations to Particulate Media, Prentice-Hall, New Jersey, (1965).

6. J. Inoguchi: Submanifolds with harmonic mean curvature in contact 3-manifolds,Colloq. Math. 100 (2004), 163–179.

7. G. Y.Jiang: 2-harmonic isometric immersions between Riemannian manifolds, Chi-nese Ann. Math. Ser. A 7(2) (1986), 130–144.

8. G. Y. Jiang:2-harmonic maps and their first and second variational formulas, ChineseAnn. Math. Ser. A 7(4) (1986), 389–402.

9. W. E. Langlois: Slow Viscous Flow, Macmillan, New York; Collier-Macmillan, Lon-don, (1964).

10. T. Korpınar, E. Turhan, V. Asil: Biharmonic B-General Helices with BishopFrame In The Heisenberg Group Heis3, World Applied Sciences Journal 14 (10) (2010),1565-1568.

Page 8: ON M2 SURFACES OF BIHARMONIC B - facta universitatis

344 Talat Korpinar and Essin Turhan

11. E. Loubeau, C. Oniciuc: On the biharmonic and harmonic indices of the Hopf map,preprint, arXiv:math.DG/0402295 v1 (2004).

12. J. Milnor: Curvatures of Left-Invariant Metrics on Lie Groups, Advances in Math-ematics 21 (1976), 293-329.

13. B. O’Neill: Semi-Riemannian Geometry, Academic Press, New York (1983).

14. S. Rahmani: Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimensiontrois, Journal of Geometry and Physics 9 (1992), 295-302.

15. D.J. Struik: Lectures on Classical Differential Geometry, New York: Dover, 1988.

16. J.D. Watson, F.H. Crick: Molecular structures of nucleic acids, Nature, 1953, 171,737-738.

Talat KORPINAR

Fırat University, Department of Mathematics

23119, Elazıg, TURKEY

[email protected]

Essin TURHAN

Fırat University, Department of Mathematics

23119, Elazıg, TURKEY

[email protected]


Recommended