+ All Categories
Home > Documents > On the derivatives of the Bessel and Struve functions with respect to the order

On the derivatives of the Bessel and Struve functions with respect to the order

Date post: 04-Dec-2016
Category:
Upload: k-o
View: 213 times
Download: 0 times
Share this document with a friend
13
This article was downloaded by: [University of Sydney] On: 13 March 2013, At: 05:45 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Integral Transforms and Special Functions Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gitr20 On the derivatives of the Bessel and Struve functions with respect to the order Yu. A. Brychkov a & K. O. Geddes b a Department of Special Functions, Computing Center of the Russian Academy of Sciences, Vavilov Street 40, Moscow 117967, V-333, Russia b Faculty of Mathematics, School of Computer Science, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada Version of record first published: 26 Jan 2007. To cite this article: Yu. A. Brychkov & K. O. Geddes (2005): On the derivatives of the Bessel and Struve functions with respect to the order, Integral Transforms and Special Functions, 16:3, 187-198 To link to this article: http://dx.doi.org/10.1080/10652460410001727572 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and- conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Transcript

This article was downloaded by: [University of Sydney]On: 13 March 2013, At: 05:45Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registeredoffice: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Integral Transforms and SpecialFunctionsPublication details, including instructions for authors andsubscription information:http://www.tandfonline.com/loi/gitr20

On the derivatives of the Bessel andStruve functions with respect to theorderYu. A. Brychkov a & K. O. Geddes ba Department of Special Functions, Computing Center of theRussian Academy of Sciences, Vavilov Street 40, Moscow 117967,V-333, Russiab Faculty of Mathematics, School of Computer Science, Universityof Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1,CanadaVersion of record first published: 26 Jan 2007.

To cite this article: Yu. A. Brychkov & K. O. Geddes (2005): On the derivatives of the Bessel andStruve functions with respect to the order, Integral Transforms and Special Functions, 16:3, 187-198

To link to this article: http://dx.doi.org/10.1080/10652460410001727572

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Anysubstantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representationthat the contents will be complete or accurate or up to date. The accuracy of anyinstructions, formulae, and drug doses should be independently verified with primarysources. The publisher shall not be liable for any loss, actions, claims, proceedings,demand, or costs or damages whatsoever or howsoever caused arising directly orindirectly in connection with or arising out of the use of this material.

Integral Transforms and Special FunctionsVol. 16, No. 3, April 2005, 187–198

On the derivatives of the Bessel and Struve functions withrespect to the order

YU. A. BRYCHKOV† and K. O. GEDDES‡*

†Department of Special Functions, Computing Center of the Russian Academy of Sciences,Vavilov Street 40, Moscow 117967, V-333, Russia

‡Faculty of Mathematics, School of Computer Science, University of Waterloo,200 University Avenue West, Waterloo ON N2L 3G1, Canada

(Received 20 May 2003)

Closed form expressions are obtained for the first derivatives with respect to the order of the Besselfunctions Jν(z), Yν(z), Iν(z), Kν(z); integral Bessel functions J iν(z), Y iν(z), Kiν(z); and Struvefunctions Hν(z), Lν(z) at ν = ±n, ν = ±n + 1/2, with n = 0, 1, 2 . . . .

Keywords: Bessel functions; Struve functions; Derivatives

Classification: 33C20; 33C10

1. Introduction

The expressions for some first derivatives of the Bessel and Struve function can be found inrefs. [1, 2]. We present them here as they will be used below in deriving general expressions.

J ∗±n(z) = (±1)n

π

2Yn(z) ± (±1)n

n!2

n−1∑p=0

(z/2)p−n

p!(n − p)Jp(z), (1)

Y ∗±n(z) = −(±1)n

π

2Jn(z) ± (±1)n

n!2

n−1∑p=0

(z/2)p−n

p!(n − p)Yp(z), (2)

I ∗±n(z) = (−1)n+1Kn(z) ± (−1)n

n!2

n−1∑p=0

(z/2)p−n

p!(n − p)Ip(z), (3)

K∗±n(z) = ±(−1)n

n!2

n−1∑p=0

(z/2)p−n

p!(n − p)Kp(z), (4)

*Corresponding author. Tel.: +1 519-888-4569; Fax: +1 519-885-1208; Email: [email protected]

Integral Transforms and Special FunctionsISSN 1065-2469 print/ISSN 1476-8291 online © 2005 Taylor & Francis Ltd

http://www.tandf.co.uk/journalsDOI: 10.1080/10652460410001727572

Dow

nloa

ded

by [

Uni

vers

ity o

f Sy

dney

] at

05:

45 1

3 M

arch

201

3

188 Yu. A. Brychkov and K. O. Geddes

J ∗1/2(z) =

√2

πz[sin zci(2z) − cos zSi(2z)], (5)

J ∗−1/2(z) =

√2

πz[cos zci(2z) + sin zSi(2z)], (6)

Y ∗±1/2(z) = ±J ∗

∓1/2(z) − πJ±1/2(z), (7)

I ∗1/2(z) =

√2

πz[sinh zchi(2z) − cosh zshi(2z)], (8)

I ∗−1/2(z) =

√2

πz[cosh zchi(2z) − sinh zshi(2z)], (9)

K∗1/2(z) =

√π

2z[sinh zshi(2z) + cosh zshi(2z) − sinh zchi(2z) − cosh zchi(2z)], (10)

H∗1/2(z) =

√2

πz

{C + ln

z

2+ sin z[Si(2z) − 2Si(z)] + cos z[ci(2z) − 2ci(z)]

}, (11)

H∗−1/2(z) =

√2

πz{cos z[Si(2z) − 2Si(z)] − sin z[ci(2z) − 2ci(z)]}, (12)

L∗1/2(z) = 1√

2πz

{−

(C + ln

z

2

)+ 2sinh z[shi(2z)

− 2shi(z)] − 2 cosh(z) [chi(2z) − 2chi(z)]}, (13)

L∗−1/2(z) =

√2

πz{cosh z[shi(2z) − 2shi(z)] − sinh z[chi(2z) − 2chi(z)]}. (14)

Let us note that we use representations (9), (10) and (13), (14), which differ from thosegiven in refs. [1, 2] as they are more convenient in the complex domain. They can be derivedby the method of ref. [2, 7.8], where the derivatives were expressed in terms of Ei(−z) andEi(z). We use the following notations:

Si(z) =∫ z

0

sin x

xdx, ci(z) = −

∫ ∞

z

cos x

xdx,

shi(z) =∫ z

0

sinh x

xdx, chi(z) = −

∫ ∞

z

cosh x

xdx,

C = 0.5772156649 . . . is the Euler constant. The other definitions are standard [see, e.g.,ref. 3]. Moreover, for every function fν(z) we will use the notations

Dn[fν(z)] = ∂nfν(z)

∂zn, f ∗

a (z) = ∂fν(z)

∂ν

∣∣∣∣ν=a

.

2. Bessel functions Jν(z), Yν(z), Iν(z), Kν(z)

To derive the closed expressions for derivatives of the Bessel functions, we will start from thewell-known differentiation formulas

Dn[z±ν/2Jν(√

z)] =(

±1

2

)n

z(−n±ν)/2Jν∓n(√

z), (15)

Dow

nloa

ded

by [

Uni

vers

ity o

f Sy

dney

] at

05:

45 1

3 M

arch

201

3

Derivatives of Bessel and Struve functions 189

Dn[z±ν/2Yν(√

z)] =(

±1

2

)n

z(−n±ν)/2Yν∓n(√

z), (16)

Dn[z±ν/2Iν(√

z)] = 1

2nz(−n±ν)/2Iν∓n(

√z), (17)

Dn[z±ν/2Kν(√

z)] =(

−1

2

)n

z(−n±ν)/2Kν∓n(√

z), (18)

which are usually written using the operator ∂/z∂z [1]. By dividing, for example, equation (15)by (±1/2)nz(−n±ν)/2, differentiating with respect to ν, changing the order of differentiationsand substituting ν = 1/2, we get the relation

J ∗1/2±n(

√z) = ∓1

2(±2)nz(2n±1)/4 ln zDn[z±1/4J1/2(

√z)]

+ (±2)nz(2n±1)/4Dn[z±1/4 ln zJ1/2(√

z) + z±1/4J ∗1/2(

√z)]. (19)

Now using the formula

J1/2(z) =√

2

πzsin z

and the relations

Dn[sin√

z] =√

π

2n+1/2z(1−2n)/4J1/2−n(

√z), (20)

Dn

[sin

√z√

z

]= (−1)n

√π

2n+1/2z−(1+2n)/4Jn+1/2(

√z), (21)

[which follow from equation (15)] and equation (5), we derive, after some algebra, the closedexpressions for J ∗

1/2±n(√

z) with any n = 0, 1, 2, . . . :

J ∗1/2−n(z) = ci(2z)J1/2−n(z) + (−1)nSi(2z)Jn−1/2(z)

− 1

2

n−1∑k=0

(−1)n−k

(n

k

)(n − k − 1)!

( z

2

)k−n

J1/2−k(z) −√

π

2

n∑k=1

(n

k

)2k

×k−1∑p=0

(k − 1

p

)(k − p − 1)!zp−k+1/2[(−1)kJk−n+1/2(z)Jp−1/2(2z)

− (−1)n−pJn−k−1/2(2z)J1/2−p(2z)], (22)

J ∗n+1/2(z) = ci(2z)Jn+1/2(z) − (−1)nSi(2z)J−n−1/2(z)

+ 1

2

n−1∑k=0

(n

k

)(n − k − 1)!

( z

2

)k−n

J1/2−k(z) −√

π

2

n∑k=1

(n

k

)2k

×k−1∑p=0

(k − 1

p

)(k − p − 1)!zp−k+1/2[(−1)kJn−k+1/2(z)Jp−1/2(2z)

− (−1)n−k−pJk−n−1/2(2z)J1/2−p(2z)]. (23)

Dow

nloa

ded

by [

Uni

vers

ity o

f Sy

dney

] at

05:

45 1

3 M

arch

201

3

190 Yu. A. Brychkov and K. O. Geddes

The same method applied to other Bessel functions, and the formulas (17) and (8) give therelations

I ∗1/2−n(z) = 1

2[chi(2z) − shi(2z)][I1/2−n(z) + In−1/2(z)] + (−1)n

πKn−1/2(z)

× [chi(2z) + shi(2z)] − 1

2

n−1∑k=0

(−1)n−k

(n

k

)(n − k − 1)!

( z

2

)k−n

I1/2−k(z)

+ 1√π

n∑k=0

(n

k

)2k−1

k−1∑p=0

(k − 1

p

)(k − p − 1)!zp−k+1/2

× {(−1)k−1[In−k−1/2(z) + Ik−n+1/2(z)]Kp−1/2(2z)

+ (−1)n−pKp−1/2(z)[Ip−1/2(2z) + I1/2−p(2z)]}, (24)

I ∗1/2+n(z) = 1

2[chi(2z) − shi(2z)][I−n−1/2(z) + In+1/2(z)] − (−1)n

πKn+1/2(z)

× [chi(2z) + shi(2z)] + 1

2

n−1∑k=0

(−1)n−k

(n

k

)(n − k − 1)!

( z

2

)k−n

Ik+1/2(z)

− 1√π

n∑k=0

(n

k

)2k−1

k−1∑p=0

(−1)k−p

(k − 1

p

)(k − p − 1)!zp−k+1/2

× {(−1)k[In−k+1/2(z) + Ik−n−1/2(z)]Kp−1/2(2z)

+ (−1)n−pKp−1/2(z)[Ip−1/2(2z) + I1/2−p(2z)]}, (25)

For the function Kν(z), we can make use of the formulas (18) and (10):

K∗n−1/2(z) = (−1)n

π

2[In−1/2(z) + I1/2−n(z)][chi(2z) − shi(2z)]

+ 1

2

n−1∑k=0

(n

k

)(n − k − 1)!

( z

2

)k−n

Kk−1/2(z)

− (−1)n√

π

n∑k=1

(−1)k(

n

k

)2k−1[In−k−1/2(z) + Ik−n+1/2(z)]

×k−1∑p=0

(k − 1

p

)(k − p − 1)!zp−k+1/2Kp−1/2(2z). (26)

The alternative expressions can be obtained by differentiating with respect to ν the formulas[4, 7.5.2(26)],

Jν±n(z) = 2n−1(∓z)−n�(±ν)

�(1 ∓ ν − n)

[2ν

n−1∑k=0

(n − k)!k!(n − 2k)!(±ν)k(1 ∓ ν − n)k

( z

2

)2k

Jν(z)

+ z

n−1∑k=0

(n − k − 1)!k!(n − 2k − 1)!(1 ± ν)k(1 ∓ ν − n)k

( z

2

)2k

Jν−1(z)

]

Dow

nloa

ded

by [

Uni

vers

ity o

f Sy

dney

] at

05:

45 1

3 M

arch

201

3

Derivatives of Bessel and Struve functions 191

and the analogous formulas for Yν(z), Iν(z), and Kν(z) for n = 1, 2, . . . . We have

J ∗±n±1/2(z) = (∓1)n−12n+1/2√πz−n−1/2

n−1∑k=0

(n − k)!(z/2)2k

k!(n − 2k)!�(k + 1/2)�(k − n + 1/2)

×[(

ψ

(k + 1

2

)− ψ

(k − n + 1

2

))×

{sin z

cos z

}∓

{sin z

cos z

}ci(2z)

+{

cos z

sin z

}Si(2z)

]+ (∓1)n2n−1/2√πz−n+1/2

×n−1∑k=0

(n − k − 1)!(z/2)2k

k!(n − 2k − 1)!�(k + 3/2)�(k − n + 1/2)

[(ψ

(k + 3

2

)

− ψ

(k − n + 1

2

)) {cos z

sin z

}−

{sin z

cos z

}Si(2z) ∓

{cos z

sin z

}ci(2z)

]. (27)

I ∗n+1/2(z) = 2n+1/2√πz−n−1/2

n−1∑k=0

(−1)k(n − k)!(z/2)2k

k!(n − 2k)!�(k + 1/2)�(k − n + 1/2)

×[−

(k + 1

2

)− ψ

(k − n + 1

2

))sinh z − cosh zshi(2z)

+ sinh zchi(2z)

]+ 2n−3/2√πz−n+1/2

×n−1∑k=0

(n − k − 1)!(z/2)2k

k!(n − 2k − 1)!�(k + 3/2)�(k − n + 1/2)

[(ψ

(k + 3

2

)

− ψ

(k − n + 1

2

))cosh z + sinh zshi(2z) − cosh zchi(2z)

], (28)

I ∗−n−1/2(z) = 2n+1/2√πz−n−1/2

n−1∑k=0

(−1)k(n − k)!(z/2)2k

k!(n − 2k)!�(k + 1/2)�(k − n + 1/2)

×[(

ψ

(k + 1

2

)− ψ

(k − n + 1

2

))cosh z + cosh zchi(2z) − sinh zshi(2z)

]

+ 2n−3/2√πz−n+1/2n−1∑k=0

(n − k − 1)!(z/2)2k

k!(n − 2k − 1)!�(k + 3/2)�(k − n + 1/2)

×[−

(k + 3

2

)− ψ

(k − n + 1

2

))sinh z + 2 cosh zshi(2z)

− 2 sinh zchi(2z)

], (29)

K∗n+1/2(z) = (−1)n+12n−1/2π3/2z−n−1/2

n−1∑k=0

(−1)k(n − k)!(z/2)2k

k!(n − 2k)!�(k + 1/2)�(k − n + 1/2)

×{

e−z

(k + 1

2

)− ψ

(k − n + 1

2

))+ ez[chi(2z) − shi(2z)]

}

Dow

nloa

ded

by [

Uni

vers

ity o

f Sy

dney

] at

05:

45 1

3 M

arch

201

3

192 Yu. A. Brychkov and K. O. Geddes

+ (−1)n+12n−3/2π3/2z−n+1/2n−1∑k=0

(n − k − 1)!(z/2)2k

k!(n − 2k − 1)!�(k + 3/2)�(k − n + 1/2)

×{

e−z

(k + 3

2

)− ψ

(k − n + 1

2

))− ez[chi(2z) − shi(2z)]

}. (30)

To derive the corresponding formulas for Y ∗ν (z), one can make use of the relations

Y ∗±n±1/2(z) = −πJ±n±1/2(z) ± (−1)nJ ∗

∓n∓1/2(z)

that follow from the definition of Yν(z) and from equation (2). Analogously, the formulas forthe Hankel functions H(1)

ν (z) and H(2)ν (z) can be obtained from the definition

H(j)ν (z) = Jν(z) − (−1)j iYν(z),

where j = 1 or 2. For example,

H(j)∗1/2 (z) =

√2

πz{e(−1)j iz[(−1)j+1ici(2z) − Si(2z)] + (−1)j iπsin z},

H(j)∗−1/2(z) =

√2

πz{e(−1)j iz[ci(2z) + (−1)j+1iSi(2z)] + (−1)j iπcos z}.

3. Integral Bessel functions

In this section, we consider the integral Bessel functions

J iν(z) =∫ ∞

z

1

xJν(x) dx, (31)

Y iν(z) =∫ ∞

z

1

xYν(x) dx, (32)

Kiν(z) =∫ ∞

z

1

xKν(x) dx. (33)

Differentiating the formula (31) with respect to the order ν and using equation (1), we get

J i∗±n(z) = (±1)nπ

2

∫ ∞

z

1

xYn(x) dx ± (±1)n

n!2

n−1∑k=0

2n−k

k!(n − k)

∫ ∞

z

xk−n−1Jk(x) dx,

where n = 0, 1, 2, . . . . For the second integral, we have

∫ ∞

z

xk−n−1Jk(x) dx = −n−k−1∑

r=0

(−1)rzr−n+k

(n − k)r+1Dr [Jk(x)]

+ 1

(n − k)!∫ ∞

z

1

xDn−1[Jk(x)] dx

Dow

nloa

ded

by [

Uni

vers

ity o

f Sy

dney

] at

05:

45 1

3 M

arch

201

3

Derivatives of Bessel and Struve functions 193

after successive integrations by substitution. Now, from the last two formulas and the relation

Dn[Jν(z)] = 1

2n

n∑p=0

(−1)p(

n

p

)Jν+2p−n(z)

[see, e.g., ref. 3, 4.2.1.10], we obtain the expression

J i∗±n(z) = (±1)nπ

2Y in(x) ± (±1)n

n!2

n−1∑k=0

1

k!(n − k)

× 1

(n − k)!n−k∑p=0

(−1)p(

n − k

p

)J i2p+2k−n(z)

−n−k−1∑m=0

(−1)m2n−k−mzk+m−n

(k − n)m+1

m∑p=0

(−1)p(

m

p

)J i2p+k−m(z)

. (34)

Similarly, using equations (32) and (2) and equations (30) and (4) we get

Y i∗±n(z) = −(±1)nπ

2J in(x) ± (±1)n

n!2

n−1∑k=0

1

k!(n − k)

× 1

(n − k)!n−k∑p=0

(−1)p(

n − k

p

)Y i2p+2k−n(z)

−n−k−1∑m=0

(−1)m2n−k−mzk+m−n

(k − n)m+1

m∑p=0

(−1)p(

m

p

)Y i2p+k−m

, (35)

Ki∗±n(z) = ±n!2

n−1∑k=0

1

k!(n − k)

1

(n − k)!n−k∑p=0

(−1)n−k

(n − k

p

)Ki2p+2k−n(z)

−n−k−1∑m=0

2k−n−mzk+m−n

(k − n)m+1

m∑p=0

(m

p

)Ki2p+k−m(z)

. (36)

Some special cases are

J i∗0 (z) = π

2Y i0(x), Y i∗0 (z) = −π

2J i0(x), Ki∗0 (z) = 0,

J i∗±1(z) = ±π

2Y i1(x) + J i1(x) + 1

zJ0(x),

Y i∗±1(z) = ∓π

2J i1(x) + Y i1(x) + 1

zY0(x),

Ki∗±1(z) = ∓π

2Ki1(x) ± 1

zK0(x).

Dow

nloa

ded

by [

Uni

vers

ity o

f Sy

dney

] at

05:

45 1

3 M

arch

201

3

194 Yu. A. Brychkov and K. O. Geddes

4. Struve functions Hν(z) and Lν(z)

The following differentiation formulas for the Struve functions Hν(z) and Lν(z) can beobtained for any n = 0, 1, 2, . . . ,

Dn[zν/2Hν(√

z)] = 1

2nz(−n+ν)/2Hν−n(

√z), (37)

Dn[z−ν/2Hν(√

z)] =(

−1

2

)n

z−(n+ν)/2Hν∓n(√

z)

− (−1)n

π

n−1∑k=0

�(k + 1/2)

�(ν + n − k + 1/2)

z−k−1/2

2ν+2n−2k−1, (38)

Dn[zν/2Lν(√

z)] = 1

2nz(−n+ν)/2Lν−n(

√z), (39)

Dn[z−ν/2Lν(√

z)] = 1

2nz−(n+ν)/2Lν∓n(

√z)

+ 1

π

n−1∑k=0

(−1)k�(k + 1/2)

�(ν + n − k + 1/2)

z−k−1/2

2ν+2n−2k−1. (40)

Applying the method of the previous section and making use of the formulas (37)–(40) and(11)–(14), we easily derive the formulas for the first derivatives with respect to ν for thefunctions Hν(z) and Lν(z) at the point ν = ±n − 1/2.

H∗−n−1/2(z) = J−n−1/2(z)[Si(2z) − 2Si(z)] − (−1)nJn+1/2(z)[ci(2z) − 2ci(z)]

− (−1)n

2

n−1∑k=0

(n

k

)(n − k − 1)!

( z

2

)k−n

Jk+1/2(z) +√

π

2

n∑k=1

(n

k

)2k

×k−1∑p=0

(k − 1

p

)(k − p − 1)!zp−k+1/2

× {(−1)nJn−k+1/2(z)[Jp−1/2(2z) − 21/2−pJp−1/2(z)]− (−1)k−pJk−n−1/2(2z)[J1/2−p(2z) − 21/2−pJ1/2−p(z)]}, (41)

H∗n−1/2(z) =

n∑k=0

(n

k

) (−1

2

)n−k

( z

2

)k−n[ψ

(n − k − 1

2

)− ψ

(−1

2

)]Jk+1/2(z)

+n∑

k=0

(−1)k(

n

k

) (−1

2

)n−k

( z

2

)n−k

H−k−1/2(z)

+ 1

π

n−1∑k=0

�(k + 1/2)

�(n − k)

( z

2

)n−2k−3/2 [ln

z

2− ψ(n − k)

], (42)

L∗−n−1/2(z) = (−1)n

πKn+1/2(z){shi(2z) + chi(2z) − 2[shi(z) + chi(z)]}

− 1

2[Ipn+1/2(2z) + I−n−1/2(z)]{chi(2z) − shi(2z) − 2[chi(z) − shi(z)]}

Dow

nloa

ded

by [

Uni

vers

ity o

f Sy

dney

] at

05:

45 1

3 M

arch

201

3

Derivatives of Bessel and Struve functions 195

− 1

2

n−1∑k=0

(−1)n−k

(n

k

)(n − k − 1)!

( z

2

)k−n

Ik+1/2(z)

+ 1

2√

π

n∑k=1

(n

k

)2k

k−1∑p=0

(k − 1

p

)(k − p − 1)!zp−k+1/2

× {(−1)n+p+1Kn−k+1/2(z)[Ip−1/2(2z) + I1/2−p(2z) − 21/2−p(Jp−1/2(z)

+ J1/2−p(z))] + (−1)k[In−k+1/2(z) + Ik−n+1/2(2z)(Kp−1/2(2z)

− 21/2−pKp−1/2(z))]}, (43)

L∗n−1/2(z) =

n∑k=0

(n

k

) (−1

2

)n−k

(− z

2

)k−n[ψ

(n − k − 1

2

)− ψ

(−1

2

)]Ik+1/2(z)

+n∑

k=0

(n

k

) (−1

2

)n−k

(− z

2

)n−k

L−k−1/2(z) − 1

π

n−1∑k=0

(−1)k

× �(k + 1/2)

�(n − k)

(− z

2

)n−2k−3/2 [ln

z

2− ψ(n − k)

]. (44)

The last formulas we get in this article are the expressions for Hν(z) and Lν(z) for ν =0, ±1, ±2, . . . . Note that the restrictions on z can be removed by analytic continuation. Letus consider the integral [3, 2.13.16.2],∫ ∞

0J2ν(2

√xz)Yν(x) dx = −Hν(z),

where z > 0, Re ν > −1/2. Differentiating with respect to ν and putting ν = 0, we get

π

∫ ∞

0Y0(2

√xz)Y0(x) dx − π

2

∫ ∞

0J0(2

√xz)J0(x) dx = −H∗

ν(z).

The second integral is given in ref. [3, 2.12.34.1]:∫ ∞

0J0(2

√xz)J0(x) dx = J0(z).

The first one can be evaluated by general method using the Mellin transformation [see, e.g.,refs. 5 or 6, 8.1]:

∫ ∞

0Y0(2

√xz)Y0(x) dx = −2π

zG32

46

z2

4

∣∣∣∣∣∣∣∣1, 1,

1

4,

3

41

2, 1, 1,

1

4,

1

2,

3

4

where Gmnpq

(z

∣∣∣∣(ap)

(bq)

)is the Meijer G-function [see ref. 6, 8.1], (ap) = a1, a2, . . . , ap, and

(bq) = b1, b2, . . . , bq .Now, we have the equality

H∗0(z) = 2π

zG32

46

z2

4

∣∣∣∣∣∣∣∣1, 1,

1

4,

3

41

2, 1, 1,

1

4,

1

2,

3

4

+ π

2J0(z). (45)

Dow

nloa

ded

by [

Uni

vers

ity o

f Sy

dney

] at

05:

45 1

3 M

arch

201

3

196 Yu. A. Brychkov and K. O. Geddes

The combination of the formulas (15), (37), and (38) and differentiation formula for the MeijerG-function

Dkz

[z−b1−1Gmn

pq

(z

∣∣∣∣(ap)

(bq)

)]= (−1)kz−b1−k−b1−1Gmn

pq

(z

∣∣∣∣ (ap)

b1 + k, b2, . . . , bq

),

where m � 1 [6, 8.2.1.38], gives

H∗−n(z) = π

(2

z

)n+1

G3246

z2

4

∣∣∣∣∣∣∣∣1, 1,

1

4,

3

4

n + 1

2, 1, 1,

1

4,

1

2,

3

4

+ (−1)n

π

2Jn(z)

− 1

2

n−1∑k=0

(n

k

)(n − k − 1)!

(− z

2

)k−n

H−k(z), (46)

H∗n(z) = (−1)nπ

(2

z

)n+1

G3246

z2

4

∣∣∣∣∣∣∣∣1, 1,

1

4,

3

4

n + 1

2, 1, 1,

1

4,

1

2,

3

4

+ π

2Jn(z)

+ 1

2

n−1∑k=0

(−1)k(

n

k

)(n − k − 1)!

(− z

2

)k−n

H−k(z)

+ 1

π

n−1∑k=0

�(k + 1/2)

�(n − k)

( z

2

)n−2k−1[

lnz

2− ψ

(n − k + 1

2

)]. (47)

The formula [3, 2.16.22.5],

∫ ∞

0J2ν(2

√xz)Kν(x) dx = π

2Iν(z) − π

2Lν(z)

after differentiation with respect to ν gives for ν = 0

π

∫ ∞

0Y0(2

√xz)K0(x) dx = −π

2K0(z) − π

2L∗

0(z),

where the formulas (1) and (4) were used. Evaluating the integral, we get

L∗0(z) = −K0(z) − 2

zG42

46

z2

4

∣∣∣∣∣∣∣∣1, 1,

1

4,

3

41

2,

1

2, 1, 1,

1

4,

3

4

.

Dow

nloa

ded

by [

Uni

vers

ity o

f Sy

dney

] at

05:

45 1

3 M

arch

201

3

Derivatives of Bessel and Struve functions 197

Using the formulas (10), (39), and (40), we derive that

L∗−n(z) =

(−2

z

)n+1

G3246

z2

4

∣∣∣∣∣∣∣∣1, 1,

1

4,

3

4

n + 1

2,

1

2, 1, 1,

1

4,

3

4

− (−1)nKn(z)

+ 1

2

n−1∑k=0

(n

k

)(n − k − 1)!

(− z

2

)k−n

L−k(z) (48)

L∗n(z) = π

(−2

z

)n+1

G3246

z2

4

∣∣∣∣∣∣∣∣1, 1,

1

4,

3

4

n + 1

2,

1

2, 1, 1,

1

4,

3

4

− (−1)nKn(z)

+ 1

2

n−1∑k=0

(n

k

)(n − k − 1)!

(− z

2

)k−n

L−k(z)

− 1

π

n−1∑k=0

(−1)k( z

2

)n−2k−1[

lnz

2− ψ

(n − k + 1

2

)]. (49)

The alternative expressions for H∗±n(z), L∗±n(z) can be obtained in the following way. Letus consider the value of the integral [3, 2.16.27.4],∫ ∞

0xYν(x

2)K2ν(2√

zx) dx = π

8[csc νπH−ν(z) − sec νπY−ν(z) − 2csc νπHν(z)],

where z > 0, |Re ν| < 1, at the point ν = 0. Using the L’Hôpital’s rule in the right-hand side,we obtain ∫ ∞

0xY0(x

2)K0(2√

zx) dx = −π

8H∗

0(z) − π

8J0(z).

Evaluating this integral we get the relation

H∗0(z) = 1

πzG32

24

z2

4

∣∣∣∣∣∣∣1, 1

1

2, 1, 1,

1

2

− π

2J0(z). (50)

In order to derive a new expression for L∗0(z), we can use the integral [3, 2.16.33.3],∫ ∞

0Kν(x)K2ν(2

√xz) dx = π

4sec νπ{Kν(z) − π

2νcsc νπY−ν(z)

− 2csc νπ[L−ν(z) − Lν(z)]}with Re ν > 1/2. If we evaluate this integral at ν = 0 and apply the limiting process in theright-hand side, we come to the equality

L∗0(z) = − 1

π2zG42

42

z2

4

∣∣∣∣∣∣∣1, 1

1

2, 1, 1,

1

2

+ K0(z). (51)

Starting from the formulas (50), (51) and using equations (1), (4), (37)–(40), we can derivenew representations for H∗±n(z) and L∗±n(z).

Dow

nloa

ded

by [

Uni

vers

ity o

f Sy

dney

] at

05:

45 1

3 M

arch

201

3

198 Yu. A. Brychkov and K. O. Geddes

Similar formulas were obtained for the Anger function Jν(z) , Weber function Eν(z), andKelvin functions berν(z), beiν(z), kerν(z), keiν(z).

References[1] Magnus, W., Oberhettinger, F. and Soni, R.P., 1966, Formulas and Theorems for the Special Functions of

Mathematical Physics. 3rd edition (New York: Springer–Verlag).[2] Luke, Y., 1962, Integrals of Bessel Functions (New York: McGraw-Hill).[3] Prudnikov, A.P., Brychkov, Yu.A. and Marichev, O.I., 1986, Special Functions. Vol. 2. Integrals and Series

(New York: Gordon and Breach).[4] Erdélyi, A., et al., 1953–1955, Higher Transcendental Functions, Vol. 2 (New York: McGraw-Hill).[5] Marichev, O.I., 1982, Handbook of Integrals Transforms of Higher Transcendental Functions (Chichester: Ellis

Horwood).[6] Prudnikov, A.P., Brychkov, Yu.A. and Marichev, O.I., 1990, More Special Functions. Vol. 3. Integrals and Series,

(New York: Gordon and Breach).

Dow

nloa

ded

by [

Uni

vers

ity o

f Sy

dney

] at

05:

45 1

3 M

arch

201

3


Recommended