+ All Categories
Home > Documents > On the Ising spin model - PEOPLE ON FJFI CVUT...

On the Ising spin model - PEOPLE ON FJFI CVUT...

Date post: 21-Sep-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
111
On the Ising spin model František Štampach MAFIA student conference August 18-21, 2015 František Štampach (MAFIA) Ising model August 18-21, 2015 1 / 29
Transcript
Page 1: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

On the Ising spin model

František Štampach

MAFIA student conference

August 18-21, 2015

František Štampach (MAFIA) Ising model August 18-21, 2015 1 / 29

Page 2: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Contents

1 The general Ising model

2 Time evolution of many-spin systems

3 Time evolution of magnetization

4 Time evolution of spin correlations

5 Generalizations

František Štampach (MAFIA) Ising model August 18-21, 2015 2 / 29

Page 3: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

The general Ising model

Classical model of equilibrium statistical mechanics proposed by Ising in 1925.

It can be thought of as a model of a magnet.Consider a lattice of cells (particles, molecules,...) labelled by n = 1, 2, . . . ,N.Suppose that each particle n has two possible configurations (spin):

σn = +1, (parallel, spin up, “+”) σn = −1, (anti-parallel, spin down, “-”)

The vector of all N spins is a configuration of the system:

σ = (σ1, . . . , σN).

The energy of the system is made up by two parts:

E(σ) = E0(σ) + E1(σ)

where E0 . . . “intermolecular forces”; E1 . . . “spin–external field interaction”.In the Ising model we set:

E0(σ) = −∑i,j

Ji,jσiσj and E1(σ) = −∑

i

Hiσi

where Ji,j stands for spin interaction intensity and Hi the component of external magnetic fieldin the direction of preferred axis at the i-th site.

František Štampach (MAFIA) Ising model August 18-21, 2015 3 / 29

Page 4: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

The general Ising model

Classical model of equilibrium statistical mechanics proposed by Ising in 1925.It can be thought of as a model of a magnet.

Consider a lattice of cells (particles, molecules,...) labelled by n = 1, 2, . . . ,N.Suppose that each particle n has two possible configurations (spin):

σn = +1, (parallel, spin up, “+”) σn = −1, (anti-parallel, spin down, “-”)

The vector of all N spins is a configuration of the system:

σ = (σ1, . . . , σN).

The energy of the system is made up by two parts:

E(σ) = E0(σ) + E1(σ)

where E0 . . . “intermolecular forces”; E1 . . . “spin–external field interaction”.In the Ising model we set:

E0(σ) = −∑i,j

Ji,jσiσj and E1(σ) = −∑

i

Hiσi

where Ji,j stands for spin interaction intensity and Hi the component of external magnetic fieldin the direction of preferred axis at the i-th site.

František Štampach (MAFIA) Ising model August 18-21, 2015 3 / 29

Page 5: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

The general Ising model

Classical model of equilibrium statistical mechanics proposed by Ising in 1925.It can be thought of as a model of a magnet.Consider a lattice of cells (particles, molecules,...) labelled by n = 1, 2, . . . ,N.

Suppose that each particle n has two possible configurations (spin):

σn = +1, (parallel, spin up, “+”) σn = −1, (anti-parallel, spin down, “-”)

The vector of all N spins is a configuration of the system:

σ = (σ1, . . . , σN).

The energy of the system is made up by two parts:

E(σ) = E0(σ) + E1(σ)

where E0 . . . “intermolecular forces”; E1 . . . “spin–external field interaction”.In the Ising model we set:

E0(σ) = −∑i,j

Ji,jσiσj and E1(σ) = −∑

i

Hiσi

where Ji,j stands for spin interaction intensity and Hi the component of external magnetic fieldin the direction of preferred axis at the i-th site.

František Štampach (MAFIA) Ising model August 18-21, 2015 3 / 29

Page 6: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

The general Ising model

Classical model of equilibrium statistical mechanics proposed by Ising in 1925.It can be thought of as a model of a magnet.Consider a lattice of cells (particles, molecules,...) labelled by n = 1, 2, . . . ,N.Suppose that each particle n has two possible configurations (spin):

σn = +1, (parallel, spin up, “+”) σn = −1, (anti-parallel, spin down, “-”)

The vector of all N spins is a configuration of the system:

σ = (σ1, . . . , σN).

The energy of the system is made up by two parts:

E(σ) = E0(σ) + E1(σ)

where E0 . . . “intermolecular forces”; E1 . . . “spin–external field interaction”.In the Ising model we set:

E0(σ) = −∑i,j

Ji,jσiσj and E1(σ) = −∑

i

Hiσi

where Ji,j stands for spin interaction intensity and Hi the component of external magnetic fieldin the direction of preferred axis at the i-th site.

František Štampach (MAFIA) Ising model August 18-21, 2015 3 / 29

Page 7: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

The general Ising model

Classical model of equilibrium statistical mechanics proposed by Ising in 1925.It can be thought of as a model of a magnet.Consider a lattice of cells (particles, molecules,...) labelled by n = 1, 2, . . . ,N.Suppose that each particle n has two possible configurations (spin):

σn = +1, (parallel, spin up, “+”) σn = −1, (anti-parallel, spin down, “-”)

The vector of all N spins is a configuration of the system:

σ = (σ1, . . . , σN).

The energy of the system is made up by two parts:

E(σ) = E0(σ) + E1(σ)

where E0 . . . “intermolecular forces”; E1 . . . “spin–external field interaction”.In the Ising model we set:

E0(σ) = −∑i,j

Ji,jσiσj and E1(σ) = −∑

i

Hiσi

where Ji,j stands for spin interaction intensity and Hi the component of external magnetic fieldin the direction of preferred axis at the i-th site.

František Štampach (MAFIA) Ising model August 18-21, 2015 3 / 29

Page 8: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

The general Ising model

Classical model of equilibrium statistical mechanics proposed by Ising in 1925.It can be thought of as a model of a magnet.Consider a lattice of cells (particles, molecules,...) labelled by n = 1, 2, . . . ,N.Suppose that each particle n has two possible configurations (spin):

σn = +1, (parallel, spin up, “+”) σn = −1, (anti-parallel, spin down, “-”)

The vector of all N spins is a configuration of the system:

σ = (σ1, . . . , σN).

The energy of the system is made up by two parts:

E(σ) = E0(σ) + E1(σ)

where E0 . . . “intermolecular forces”; E1 . . . “spin–external field interaction”.

In the Ising model we set:

E0(σ) = −∑i,j

Ji,jσiσj and E1(σ) = −∑

i

Hiσi

where Ji,j stands for spin interaction intensity and Hi the component of external magnetic fieldin the direction of preferred axis at the i-th site.

František Štampach (MAFIA) Ising model August 18-21, 2015 3 / 29

Page 9: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

The general Ising model

Classical model of equilibrium statistical mechanics proposed by Ising in 1925.It can be thought of as a model of a magnet.Consider a lattice of cells (particles, molecules,...) labelled by n = 1, 2, . . . ,N.Suppose that each particle n has two possible configurations (spin):

σn = +1, (parallel, spin up, “+”) σn = −1, (anti-parallel, spin down, “-”)

The vector of all N spins is a configuration of the system:

σ = (σ1, . . . , σN).

The energy of the system is made up by two parts:

E(σ) = E0(σ) + E1(σ)

where E0 . . . “intermolecular forces”; E1 . . . “spin–external field interaction”.In the Ising model we set:

E0(σ) = −∑i,j

Ji,jσiσj and E1(σ) = −∑

i

Hiσi

where Ji,j stands for spin interaction intensity and Hi the component of external magnetic fieldin the direction of preferred axis at the i-th site.

František Štampach (MAFIA) Ising model August 18-21, 2015 3 / 29

Page 10: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Simplifications

1. Dimensionality of the lattice:

1-dimension: most solvable models - treated here [Ising25, Glauber65].

2-dimension: very few are solvable (H = 0), [Onsager44],on the other hand, they are physically very interesting since there are polymerswith crystals which have strong horizontal and weak vertical interactions(K2NiF4, Rb2MnF4), phase transitions, spontaneous magnetization,....

Higher dimensions: Monte-Carlo simulations, conformal bootstrap method,....

2. Nearest-neighbour interaction:In most physical systems the intermolecular forces are effectively short ranged.

For instance, in inert gases they decay as ∼ r−7.

Thus, most models assume particles interact with their nearest neighbours only.

3. Constant interaction strength and external fields:Ji,j = J, Hi = H.

Thus, the Hamiltonian is often of the form

E(σ) = −J∑i,j

σiσj − H∑

i

σi

where indices of the first sum ranges “trough nearest-neighbors” only.

František Štampach (MAFIA) Ising model August 18-21, 2015 4 / 29

Page 11: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Simplifications

1. Dimensionality of the lattice:1-dimension: most solvable models - treated here [Ising25, Glauber65].

2-dimension: very few are solvable (H = 0), [Onsager44],on the other hand, they are physically very interesting since there are polymerswith crystals which have strong horizontal and weak vertical interactions(K2NiF4, Rb2MnF4), phase transitions, spontaneous magnetization,....

Higher dimensions: Monte-Carlo simulations, conformal bootstrap method,....

2. Nearest-neighbour interaction:In most physical systems the intermolecular forces are effectively short ranged.

For instance, in inert gases they decay as ∼ r−7.

Thus, most models assume particles interact with their nearest neighbours only.

3. Constant interaction strength and external fields:Ji,j = J, Hi = H.

Thus, the Hamiltonian is often of the form

E(σ) = −J∑i,j

σiσj − H∑

i

σi

where indices of the first sum ranges “trough nearest-neighbors” only.

František Štampach (MAFIA) Ising model August 18-21, 2015 4 / 29

Page 12: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Simplifications

1. Dimensionality of the lattice:1-dimension: most solvable models - treated here [Ising25, Glauber65].

2-dimension: very few are solvable (H = 0), [Onsager44],on the other hand, they are physically very interesting since there are polymerswith crystals which have strong horizontal and weak vertical interactions(K2NiF4, Rb2MnF4), phase transitions, spontaneous magnetization,....

Higher dimensions: Monte-Carlo simulations, conformal bootstrap method,....

2. Nearest-neighbour interaction:In most physical systems the intermolecular forces are effectively short ranged.

For instance, in inert gases they decay as ∼ r−7.

Thus, most models assume particles interact with their nearest neighbours only.

3. Constant interaction strength and external fields:Ji,j = J, Hi = H.

Thus, the Hamiltonian is often of the form

E(σ) = −J∑i,j

σiσj − H∑

i

σi

where indices of the first sum ranges “trough nearest-neighbors” only.

František Štampach (MAFIA) Ising model August 18-21, 2015 4 / 29

Page 13: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Simplifications

1. Dimensionality of the lattice:1-dimension: most solvable models - treated here [Ising25, Glauber65].

2-dimension: very few are solvable (H = 0), [Onsager44],on the other hand, they are physically very interesting since there are polymerswith crystals which have strong horizontal and weak vertical interactions(K2NiF4, Rb2MnF4), phase transitions, spontaneous magnetization,....

Higher dimensions: Monte-Carlo simulations, conformal bootstrap method,....

2. Nearest-neighbour interaction:In most physical systems the intermolecular forces are effectively short ranged.

For instance, in inert gases they decay as ∼ r−7.

Thus, most models assume particles interact with their nearest neighbours only.

3. Constant interaction strength and external fields:Ji,j = J, Hi = H.

Thus, the Hamiltonian is often of the form

E(σ) = −J∑i,j

σiσj − H∑

i

σi

where indices of the first sum ranges “trough nearest-neighbors” only.

František Štampach (MAFIA) Ising model August 18-21, 2015 4 / 29

Page 14: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Simplifications

1. Dimensionality of the lattice:1-dimension: most solvable models - treated here [Ising25, Glauber65].

2-dimension: very few are solvable (H = 0), [Onsager44],on the other hand, they are physically very interesting since there are polymerswith crystals which have strong horizontal and weak vertical interactions(K2NiF4, Rb2MnF4), phase transitions, spontaneous magnetization,....

Higher dimensions: Monte-Carlo simulations, conformal bootstrap method,....

2. Nearest-neighbour interaction:

In most physical systems the intermolecular forces are effectively short ranged.

For instance, in inert gases they decay as ∼ r−7.

Thus, most models assume particles interact with their nearest neighbours only.

3. Constant interaction strength and external fields:Ji,j = J, Hi = H.

Thus, the Hamiltonian is often of the form

E(σ) = −J∑i,j

σiσj − H∑

i

σi

where indices of the first sum ranges “trough nearest-neighbors” only.

František Štampach (MAFIA) Ising model August 18-21, 2015 4 / 29

Page 15: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Simplifications

1. Dimensionality of the lattice:1-dimension: most solvable models - treated here [Ising25, Glauber65].

2-dimension: very few are solvable (H = 0), [Onsager44],on the other hand, they are physically very interesting since there are polymerswith crystals which have strong horizontal and weak vertical interactions(K2NiF4, Rb2MnF4), phase transitions, spontaneous magnetization,....

Higher dimensions: Monte-Carlo simulations, conformal bootstrap method,....

2. Nearest-neighbour interaction:In most physical systems the intermolecular forces are effectively short ranged.

For instance, in inert gases they decay as ∼ r−7.

Thus, most models assume particles interact with their nearest neighbours only.

3. Constant interaction strength and external fields:Ji,j = J, Hi = H.

Thus, the Hamiltonian is often of the form

E(σ) = −J∑i,j

σiσj − H∑

i

σi

where indices of the first sum ranges “trough nearest-neighbors” only.

František Štampach (MAFIA) Ising model August 18-21, 2015 4 / 29

Page 16: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Simplifications

1. Dimensionality of the lattice:1-dimension: most solvable models - treated here [Ising25, Glauber65].

2-dimension: very few are solvable (H = 0), [Onsager44],on the other hand, they are physically very interesting since there are polymerswith crystals which have strong horizontal and weak vertical interactions(K2NiF4, Rb2MnF4), phase transitions, spontaneous magnetization,....

Higher dimensions: Monte-Carlo simulations, conformal bootstrap method,....

2. Nearest-neighbour interaction:In most physical systems the intermolecular forces are effectively short ranged.

For instance, in inert gases they decay as ∼ r−7.

Thus, most models assume particles interact with their nearest neighbours only.

3. Constant interaction strength and external fields:Ji,j = J, Hi = H.

Thus, the Hamiltonian is often of the form

E(σ) = −J∑i,j

σiσj − H∑

i

σi

where indices of the first sum ranges “trough nearest-neighbors” only.

František Štampach (MAFIA) Ising model August 18-21, 2015 4 / 29

Page 17: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Simplifications

1. Dimensionality of the lattice:1-dimension: most solvable models - treated here [Ising25, Glauber65].

2-dimension: very few are solvable (H = 0), [Onsager44],on the other hand, they are physically very interesting since there are polymerswith crystals which have strong horizontal and weak vertical interactions(K2NiF4, Rb2MnF4), phase transitions, spontaneous magnetization,....

Higher dimensions: Monte-Carlo simulations, conformal bootstrap method,....

2. Nearest-neighbour interaction:In most physical systems the intermolecular forces are effectively short ranged.

For instance, in inert gases they decay as ∼ r−7.

Thus, most models assume particles interact with their nearest neighbours only.

3. Constant interaction strength and external fields:Ji,j = J, Hi = H.

Thus, the Hamiltonian is often of the form

E(σ) = −J∑i,j

σiσj − H∑

i

σi

where indices of the first sum ranges “trough nearest-neighbors” only.

František Štampach (MAFIA) Ising model August 18-21, 2015 4 / 29

Page 18: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Simplifications

1. Dimensionality of the lattice:1-dimension: most solvable models - treated here [Ising25, Glauber65].

2-dimension: very few are solvable (H = 0), [Onsager44],on the other hand, they are physically very interesting since there are polymerswith crystals which have strong horizontal and weak vertical interactions(K2NiF4, Rb2MnF4), phase transitions, spontaneous magnetization,....

Higher dimensions: Monte-Carlo simulations, conformal bootstrap method,....

2. Nearest-neighbour interaction:In most physical systems the intermolecular forces are effectively short ranged.

For instance, in inert gases they decay as ∼ r−7.

Thus, most models assume particles interact with their nearest neighbours only.

3. Constant interaction strength and external fields:

Ji,j = J, Hi = H.

Thus, the Hamiltonian is often of the form

E(σ) = −J∑i,j

σiσj − H∑

i

σi

where indices of the first sum ranges “trough nearest-neighbors” only.

František Štampach (MAFIA) Ising model August 18-21, 2015 4 / 29

Page 19: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Simplifications

1. Dimensionality of the lattice:1-dimension: most solvable models - treated here [Ising25, Glauber65].

2-dimension: very few are solvable (H = 0), [Onsager44],on the other hand, they are physically very interesting since there are polymerswith crystals which have strong horizontal and weak vertical interactions(K2NiF4, Rb2MnF4), phase transitions, spontaneous magnetization,....

Higher dimensions: Monte-Carlo simulations, conformal bootstrap method,....

2. Nearest-neighbour interaction:In most physical systems the intermolecular forces are effectively short ranged.

For instance, in inert gases they decay as ∼ r−7.

Thus, most models assume particles interact with their nearest neighbours only.

3. Constant interaction strength and external fields:Ji,j = J, Hi = H.

Thus, the Hamiltonian is often of the form

E(σ) = −J∑i,j

σiσj − H∑

i

σi

where indices of the first sum ranges “trough nearest-neighbors” only.

František Štampach (MAFIA) Ising model August 18-21, 2015 4 / 29

Page 20: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Simplifications

1. Dimensionality of the lattice:1-dimension: most solvable models - treated here [Ising25, Glauber65].

2-dimension: very few are solvable (H = 0), [Onsager44],on the other hand, they are physically very interesting since there are polymerswith crystals which have strong horizontal and weak vertical interactions(K2NiF4, Rb2MnF4), phase transitions, spontaneous magnetization,....

Higher dimensions: Monte-Carlo simulations, conformal bootstrap method,....

2. Nearest-neighbour interaction:In most physical systems the intermolecular forces are effectively short ranged.

For instance, in inert gases they decay as ∼ r−7.

Thus, most models assume particles interact with their nearest neighbours only.

3. Constant interaction strength and external fields:Ji,j = J, Hi = H.

Thus, the Hamiltonian is often of the form

E(σ) = −J∑i,j

σiσj − H∑

i

σi

where indices of the first sum ranges “trough nearest-neighbors” only.

František Štampach (MAFIA) Ising model August 18-21, 2015 4 / 29

Page 21: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Contents

1 The general Ising model

2 Time evolution of many-spin systems

3 Time evolution of magnetization

4 Time evolution of spin correlations

5 Generalizations

František Štampach (MAFIA) Ising model August 18-21, 2015 5 / 29

Page 22: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Time evolution of many-spin system

From now we assume one-dimensional model with no external field (H = 0).

In addition, we assume the particles are arranged in regularly spaced linear array.

The system is assumed to be under influence of “external agency” (heat reservoir) causingspins of particles to flip between values ±1 randomly (in time).

Denote by p(σ; t) the probability that the system is in configuration σ at time t .

2N stochastic functions p(σ; t) are unknown.

However, for the model, it is assumed we know the rate of probability transitions (probability ofchange of configuration per unit time).

We may, for example, introduce a tendency for a particular spin σn to correlate with itsneighboring spins by assuming the rate depends appropriately on the momentary spin valuesof the other particles.

František Štampach (MAFIA) Ising model August 18-21, 2015 6 / 29

Page 23: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Time evolution of many-spin system

From now we assume one-dimensional model with no external field (H = 0).

In addition, we assume the particles are arranged in regularly spaced linear array.

The system is assumed to be under influence of “external agency” (heat reservoir) causingspins of particles to flip between values ±1 randomly (in time).

Denote by p(σ; t) the probability that the system is in configuration σ at time t .

2N stochastic functions p(σ; t) are unknown.

However, for the model, it is assumed we know the rate of probability transitions (probability ofchange of configuration per unit time).

We may, for example, introduce a tendency for a particular spin σn to correlate with itsneighboring spins by assuming the rate depends appropriately on the momentary spin valuesof the other particles.

František Štampach (MAFIA) Ising model August 18-21, 2015 6 / 29

Page 24: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Time evolution of many-spin system

From now we assume one-dimensional model with no external field (H = 0).

In addition, we assume the particles are arranged in regularly spaced linear array.

The system is assumed to be under influence of “external agency” (heat reservoir) causingspins of particles to flip between values ±1 randomly (in time).

Denote by p(σ; t) the probability that the system is in configuration σ at time t .

2N stochastic functions p(σ; t) are unknown.

However, for the model, it is assumed we know the rate of probability transitions (probability ofchange of configuration per unit time).

We may, for example, introduce a tendency for a particular spin σn to correlate with itsneighboring spins by assuming the rate depends appropriately on the momentary spin valuesof the other particles.

František Štampach (MAFIA) Ising model August 18-21, 2015 6 / 29

Page 25: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Time evolution of many-spin system

From now we assume one-dimensional model with no external field (H = 0).

In addition, we assume the particles are arranged in regularly spaced linear array.

The system is assumed to be under influence of “external agency” (heat reservoir) causingspins of particles to flip between values ±1 randomly (in time).

Denote by p(σ; t) the probability that the system is in configuration σ at time t .

2N stochastic functions p(σ; t) are unknown.

However, for the model, it is assumed we know the rate of probability transitions (probability ofchange of configuration per unit time).

We may, for example, introduce a tendency for a particular spin σn to correlate with itsneighboring spins by assuming the rate depends appropriately on the momentary spin valuesof the other particles.

František Štampach (MAFIA) Ising model August 18-21, 2015 6 / 29

Page 26: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Time evolution of many-spin system

From now we assume one-dimensional model with no external field (H = 0).

In addition, we assume the particles are arranged in regularly spaced linear array.

The system is assumed to be under influence of “external agency” (heat reservoir) causingspins of particles to flip between values ±1 randomly (in time).

Denote by p(σ; t) the probability that the system is in configuration σ at time t .

2N stochastic functions p(σ; t) are unknown.

However, for the model, it is assumed we know the rate of probability transitions (probability ofchange of configuration per unit time).

We may, for example, introduce a tendency for a particular spin σn to correlate with itsneighboring spins by assuming the rate depends appropriately on the momentary spin valuesof the other particles.

František Štampach (MAFIA) Ising model August 18-21, 2015 6 / 29

Page 27: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Time evolution of many-spin system

From now we assume one-dimensional model with no external field (H = 0).

In addition, we assume the particles are arranged in regularly spaced linear array.

The system is assumed to be under influence of “external agency” (heat reservoir) causingspins of particles to flip between values ±1 randomly (in time).

Denote by p(σ; t) the probability that the system is in configuration σ at time t .

2N stochastic functions p(σ; t) are unknown.

However, for the model, it is assumed we know the rate of probability transitions (probability ofchange of configuration per unit time).

We may, for example, introduce a tendency for a particular spin σn to correlate with itsneighboring spins by assuming the rate depends appropriately on the momentary spin valuesof the other particles.

František Štampach (MAFIA) Ising model August 18-21, 2015 6 / 29

Page 28: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Time evolution of many-spin system

From now we assume one-dimensional model with no external field (H = 0).

In addition, we assume the particles are arranged in regularly spaced linear array.

The system is assumed to be under influence of “external agency” (heat reservoir) causingspins of particles to flip between values ±1 randomly (in time).

Denote by p(σ; t) the probability that the system is in configuration σ at time t .

2N stochastic functions p(σ; t) are unknown.

However, for the model, it is assumed we know the rate of probability transitions (probability ofchange of configuration per unit time).

We may, for example, introduce a tendency for a particular spin σn to correlate with itsneighboring spins by assuming the rate depends appropriately on the momentary spin valuesof the other particles.

František Štampach (MAFIA) Ising model August 18-21, 2015 6 / 29

Page 29: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Master equation

General form:

ddt

P(C; t) =∑C′

(wC′→CP(C′; t)− wC→C′P(C; t)

)

Specialization to our case:Let wn(σ) be the probability per unit time that the nth spin flips from the value σn to −σn,while the others remain fixed.

The master equation reads:

ddt

p(σ; t) =∑

nwn(σ1, . . . ,−σn, . . . , σN)p(σ1, . . . ,−σn, . . . , σN ; t)−

(∑n

wn(σ)

)p(σ; t)

František Štampach (MAFIA) Ising model August 18-21, 2015 7 / 29

Page 30: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Master equation

General form:

ddt

P(C; t) =∑C′

(wC′→CP(C′; t)− wC→C′P(C; t)

)Specialization to our case:

Let wn(σ) be the probability per unit time that the nth spin flips from the value σn to −σn,while the others remain fixed.

The master equation reads:

ddt

p(σ; t) =∑

nwn(σ1, . . . ,−σn, . . . , σN)p(σ1, . . . ,−σn, . . . , σN ; t)−

(∑n

wn(σ)

)p(σ; t)

František Štampach (MAFIA) Ising model August 18-21, 2015 7 / 29

Page 31: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Master equation

General form:

ddt

P(C; t) =∑C′

(wC′→CP(C′; t)− wC→C′P(C; t)

)Specialization to our case:

Let wn(σ) be the probability per unit time that the nth spin flips from the value σn to −σn,while the others remain fixed.

The master equation reads:

ddt

p(σ; t) =∑

nwn(σ1, . . . ,−σn, . . . , σN)p(σ1, . . . ,−σn, . . . , σN ; t)−

(∑n

wn(σ)

)p(σ; t)

František Štampach (MAFIA) Ising model August 18-21, 2015 7 / 29

Page 32: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Glauber Dynamics

Transition rates wn(σ) may be chosen to depend on neighboring spins values as well as onσn.

In addition, it can be desirable to add a tendency for each spin to align itself parallel to itsnearest neighbors.

Glauber’s choice for linear spin chain with H = 0:

wn(σ) =α

2

[1−

12γσn (σn−1 + σn+1)

]

It takes 3 possible values:

wn(σ) =

α2 , if σn−1 = −σn+1,α2 (1− γ), if σn−1 = σn = σn+1,α2 (1 + γ), if σn−1 = −σn = σn+1.

If γ > 0, then the parallel configurations are longer-lived (ferromagnetic case).

If γ < 0, then the antiparallel configurations are longer-lived (antiferromagnetic case).

It has to be assure |γ| ≤ 1.

František Štampach (MAFIA) Ising model August 18-21, 2015 8 / 29

Page 33: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Glauber Dynamics

Transition rates wn(σ) may be chosen to depend on neighboring spins values as well as onσn.

In addition, it can be desirable to add a tendency for each spin to align itself parallel to itsnearest neighbors.

Glauber’s choice for linear spin chain with H = 0:

wn(σ) =α

2

[1−

12γσn (σn−1 + σn+1)

]

It takes 3 possible values:

wn(σ) =

α2 , if σn−1 = −σn+1,α2 (1− γ), if σn−1 = σn = σn+1,α2 (1 + γ), if σn−1 = −σn = σn+1.

If γ > 0, then the parallel configurations are longer-lived (ferromagnetic case).

If γ < 0, then the antiparallel configurations are longer-lived (antiferromagnetic case).

It has to be assure |γ| ≤ 1.

František Štampach (MAFIA) Ising model August 18-21, 2015 8 / 29

Page 34: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Glauber Dynamics

Transition rates wn(σ) may be chosen to depend on neighboring spins values as well as onσn.

In addition, it can be desirable to add a tendency for each spin to align itself parallel to itsnearest neighbors.

Glauber’s choice for linear spin chain with H = 0:

wn(σ) =α

2

[1−

12γσn (σn−1 + σn+1)

]

It takes 3 possible values:

wn(σ) =

α2 , if σn−1 = −σn+1,α2 (1− γ), if σn−1 = σn = σn+1,α2 (1 + γ), if σn−1 = −σn = σn+1.

If γ > 0, then the parallel configurations are longer-lived (ferromagnetic case).

If γ < 0, then the antiparallel configurations are longer-lived (antiferromagnetic case).

It has to be assure |γ| ≤ 1.

František Štampach (MAFIA) Ising model August 18-21, 2015 8 / 29

Page 35: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Glauber Dynamics

Transition rates wn(σ) may be chosen to depend on neighboring spins values as well as onσn.

In addition, it can be desirable to add a tendency for each spin to align itself parallel to itsnearest neighbors.

Glauber’s choice for linear spin chain with H = 0:

wn(σ) =α

2

[1−

12γσn (σn−1 + σn+1)

]

It takes 3 possible values:

wn(σ) =

α2 , if σn−1 = −σn+1,α2 (1− γ), if σn−1 = σn = σn+1,α2 (1 + γ), if σn−1 = −σn = σn+1.

If γ > 0, then the parallel configurations are longer-lived (ferromagnetic case).

If γ < 0, then the antiparallel configurations are longer-lived (antiferromagnetic case).

It has to be assure |γ| ≤ 1.

František Štampach (MAFIA) Ising model August 18-21, 2015 8 / 29

Page 36: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Glauber Dynamics

Transition rates wn(σ) may be chosen to depend on neighboring spins values as well as onσn.

In addition, it can be desirable to add a tendency for each spin to align itself parallel to itsnearest neighbors.

Glauber’s choice for linear spin chain with H = 0:

wn(σ) =α

2

[1−

12γσn (σn−1 + σn+1)

]

It takes 3 possible values:

wn(σ) =

α2 , if σn−1 = −σn+1,α2 (1− γ), if σn−1 = σn = σn+1,α2 (1 + γ), if σn−1 = −σn = σn+1.

If γ > 0, then the parallel configurations are longer-lived (ferromagnetic case).

If γ < 0, then the antiparallel configurations are longer-lived (antiferromagnetic case).

It has to be assure |γ| ≤ 1.

František Štampach (MAFIA) Ising model August 18-21, 2015 8 / 29

Page 37: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Glauber Dynamics

Transition rates wn(σ) may be chosen to depend on neighboring spins values as well as onσn.

In addition, it can be desirable to add a tendency for each spin to align itself parallel to itsnearest neighbors.

Glauber’s choice for linear spin chain with H = 0:

wn(σ) =α

2

[1−

12γσn (σn−1 + σn+1)

]

It takes 3 possible values:

wn(σ) =

α2 , if σn−1 = −σn+1,α2 (1− γ), if σn−1 = σn = σn+1,α2 (1 + γ), if σn−1 = −σn = σn+1.

If γ > 0, then the parallel configurations are longer-lived (ferromagnetic case).

If γ < 0, then the antiparallel configurations are longer-lived (antiferromagnetic case).

It has to be assure |γ| ≤ 1.

František Štampach (MAFIA) Ising model August 18-21, 2015 8 / 29

Page 38: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Glauber Dynamics

Transition rates wn(σ) may be chosen to depend on neighboring spins values as well as onσn.

In addition, it can be desirable to add a tendency for each spin to align itself parallel to itsnearest neighbors.

Glauber’s choice for linear spin chain with H = 0:

wn(σ) =α

2

[1−

12γσn (σn−1 + σn+1)

]

It takes 3 possible values:

wn(σ) =

α2 , if σn−1 = −σn+1,α2 (1− γ), if σn−1 = σn = σn+1,α2 (1 + γ), if σn−1 = −σn = σn+1.

If γ > 0, then the parallel configurations are longer-lived (ferromagnetic case).

If γ < 0, then the antiparallel configurations are longer-lived (antiferromagnetic case).

It has to be assure |γ| ≤ 1.

František Štampach (MAFIA) Ising model August 18-21, 2015 8 / 29

Page 39: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Parameter γ - correspondence with the Ising model

When the Ising model has reached equilibrium at temperature T the probability of the systembeing in a state σ is

1Z

exp(−E(σ)/kT )

where Z is the (Gibbs) partition function and k stands for the Boltzmann’s constant.

Recall we haveE(σ) = −J

∑nσnσn+1.

Denote by pn(σ) the probability that the nth spin will take on the value σn as opposed to −σn(other spins remain fixed). Then one has

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )=

exp (−(J/kT )σn(σn−1 + σn+1))

exp ((J/kT )σn(σn−1 + σn+1)).

On the other hand, in the equilibrium, it has to hold that

wn(. . . ,−σn, . . . )pn(. . . ,−σn, . . . ) = wn(. . . , σn, . . . )pn(. . . , σn, . . . ).

With the Glauber’s choice for the rates one finds

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )=

wn(. . . , σn, . . . )

wn(. . . ,−σn, . . . )=

1− 12γσn(σn−1 + σn+1)

1 + 12γσn(σn−1 + σn+1)

.

František Štampach (MAFIA) Ising model August 18-21, 2015 9 / 29

Page 40: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Parameter γ - correspondence with the Ising model

When the Ising model has reached equilibrium at temperature T the probability of the systembeing in a state σ is

1Z

exp(−E(σ)/kT )

where Z is the (Gibbs) partition function and k stands for the Boltzmann’s constant.

Recall we haveE(σ) = −J

∑nσnσn+1.

Denote by pn(σ) the probability that the nth spin will take on the value σn as opposed to −σn(other spins remain fixed). Then one has

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )=

exp (−(J/kT )σn(σn−1 + σn+1))

exp ((J/kT )σn(σn−1 + σn+1)).

On the other hand, in the equilibrium, it has to hold that

wn(. . . ,−σn, . . . )pn(. . . ,−σn, . . . ) = wn(. . . , σn, . . . )pn(. . . , σn, . . . ).

With the Glauber’s choice for the rates one finds

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )=

wn(. . . , σn, . . . )

wn(. . . ,−σn, . . . )=

1− 12γσn(σn−1 + σn+1)

1 + 12γσn(σn−1 + σn+1)

.

František Štampach (MAFIA) Ising model August 18-21, 2015 9 / 29

Page 41: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Parameter γ - correspondence with the Ising model

When the Ising model has reached equilibrium at temperature T the probability of the systembeing in a state σ is

1Z

exp(−E(σ)/kT )

where Z is the (Gibbs) partition function and k stands for the Boltzmann’s constant.

Recall we haveE(σ) = −J

∑nσnσn+1.

Denote by pn(σ) the probability that the nth spin will take on the value σn as opposed to −σn(other spins remain fixed). Then one has

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )=

exp (−(J/kT )σn(σn−1 + σn+1))

exp ((J/kT )σn(σn−1 + σn+1)).

On the other hand, in the equilibrium, it has to hold that

wn(. . . ,−σn, . . . )pn(. . . ,−σn, . . . ) = wn(. . . , σn, . . . )pn(. . . , σn, . . . ).

With the Glauber’s choice for the rates one finds

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )=

wn(. . . , σn, . . . )

wn(. . . ,−σn, . . . )=

1− 12γσn(σn−1 + σn+1)

1 + 12γσn(σn−1 + σn+1)

.

František Štampach (MAFIA) Ising model August 18-21, 2015 9 / 29

Page 42: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Parameter γ - correspondence with the Ising model

When the Ising model has reached equilibrium at temperature T the probability of the systembeing in a state σ is

1Z

exp(−E(σ)/kT )

where Z is the (Gibbs) partition function and k stands for the Boltzmann’s constant.

Recall we haveE(σ) = −J

∑nσnσn+1.

Denote by pn(σ) the probability that the nth spin will take on the value σn as opposed to −σn(other spins remain fixed). Then one has

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )=

exp (−(J/kT )σn(σn−1 + σn+1))

exp ((J/kT )σn(σn−1 + σn+1)).

On the other hand, in the equilibrium, it has to hold that

wn(. . . ,−σn, . . . )pn(. . . ,−σn, . . . ) = wn(. . . , σn, . . . )pn(. . . , σn, . . . ).

With the Glauber’s choice for the rates one finds

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )=

wn(. . . , σn, . . . )

wn(. . . ,−σn, . . . )=

1− 12γσn(σn−1 + σn+1)

1 + 12γσn(σn−1 + σn+1)

.

František Štampach (MAFIA) Ising model August 18-21, 2015 9 / 29

Page 43: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Parameter γ - correspondence with the Ising model

When the Ising model has reached equilibrium at temperature T the probability of the systembeing in a state σ is

1Z

exp(−E(σ)/kT )

where Z is the (Gibbs) partition function and k stands for the Boltzmann’s constant.

Recall we haveE(σ) = −J

∑nσnσn+1.

Denote by pn(σ) the probability that the nth spin will take on the value σn as opposed to −σn(other spins remain fixed). Then one has

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )=

exp (−(J/kT )σn(σn−1 + σn+1))

exp ((J/kT )σn(σn−1 + σn+1)).

On the other hand, in the equilibrium, it has to hold that

wn(. . . ,−σn, . . . )pn(. . . ,−σn, . . . ) = wn(. . . , σn, . . . )pn(. . . , σn, . . . ).

With the Glauber’s choice for the rates one finds

pn(. . . ,−σn, . . . )

pn(. . . , σn, . . . )=

wn(. . . , σn, . . . )

wn(. . . ,−σn, . . . )=

1− 12γσn(σn−1 + σn+1)

1 + 12γσn(σn−1 + σn+1)

.

František Štampach (MAFIA) Ising model August 18-21, 2015 9 / 29

Page 44: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Expression for the parameter γ

Equating the two expressions for the ratio pn(. . . ,−σn, . . . )/pn(. . . , σn, . . . ) one gets theformula

γ = tanh (2J/kT )

František Štampach (MAFIA) Ising model August 18-21, 2015 10 / 29

Page 45: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Quantities of interest 1/2

Functions p(σ; t) which are solutions of the master equation

ddt

p(σ; t) =∑

nwn(σ1, . . . ,−σn, . . . , σN)p(σ1, . . . ,−σn, . . . , σN ; t)−

(∑n

wn(σ)

)p(σ; t)

contain the most complete description of the system available.

Nevertheless, it is usually not possible to find them explicitly.However, it is not necessary, since they contain vastly more information than we usuallyrequire in practice.To answer the most familiar physical questions about the system it suffices to know twomacroscopic variables.Expectation value of the spins (magnetization):

qn(t) := 〈σn(t)〉 =∑σ

σnp(. . . , σn, . . . ; t).

Spin correlations:

rn,k (t) := 〈σn(t)σk (t)〉 =∑σ

σnσk p(. . . , σn, . . . , σk , . . . ; t).

Note that rn,n(t) = 1.

František Štampach (MAFIA) Ising model August 18-21, 2015 11 / 29

Page 46: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Quantities of interest 1/2

Functions p(σ; t) which are solutions of the master equation

ddt

p(σ; t) =∑

nwn(σ1, . . . ,−σn, . . . , σN)p(σ1, . . . ,−σn, . . . , σN ; t)−

(∑n

wn(σ)

)p(σ; t)

contain the most complete description of the system available.Nevertheless, it is usually not possible to find them explicitly.

However, it is not necessary, since they contain vastly more information than we usuallyrequire in practice.To answer the most familiar physical questions about the system it suffices to know twomacroscopic variables.Expectation value of the spins (magnetization):

qn(t) := 〈σn(t)〉 =∑σ

σnp(. . . , σn, . . . ; t).

Spin correlations:

rn,k (t) := 〈σn(t)σk (t)〉 =∑σ

σnσk p(. . . , σn, . . . , σk , . . . ; t).

Note that rn,n(t) = 1.

František Štampach (MAFIA) Ising model August 18-21, 2015 11 / 29

Page 47: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Quantities of interest 1/2

Functions p(σ; t) which are solutions of the master equation

ddt

p(σ; t) =∑

nwn(σ1, . . . ,−σn, . . . , σN)p(σ1, . . . ,−σn, . . . , σN ; t)−

(∑n

wn(σ)

)p(σ; t)

contain the most complete description of the system available.Nevertheless, it is usually not possible to find them explicitly.However, it is not necessary, since they contain vastly more information than we usuallyrequire in practice.

To answer the most familiar physical questions about the system it suffices to know twomacroscopic variables.Expectation value of the spins (magnetization):

qn(t) := 〈σn(t)〉 =∑σ

σnp(. . . , σn, . . . ; t).

Spin correlations:

rn,k (t) := 〈σn(t)σk (t)〉 =∑σ

σnσk p(. . . , σn, . . . , σk , . . . ; t).

Note that rn,n(t) = 1.

František Štampach (MAFIA) Ising model August 18-21, 2015 11 / 29

Page 48: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Quantities of interest 1/2

Functions p(σ; t) which are solutions of the master equation

ddt

p(σ; t) =∑

nwn(σ1, . . . ,−σn, . . . , σN)p(σ1, . . . ,−σn, . . . , σN ; t)−

(∑n

wn(σ)

)p(σ; t)

contain the most complete description of the system available.Nevertheless, it is usually not possible to find them explicitly.However, it is not necessary, since they contain vastly more information than we usuallyrequire in practice.To answer the most familiar physical questions about the system it suffices to know twomacroscopic variables.

Expectation value of the spins (magnetization):

qn(t) := 〈σn(t)〉 =∑σ

σnp(. . . , σn, . . . ; t).

Spin correlations:

rn,k (t) := 〈σn(t)σk (t)〉 =∑σ

σnσk p(. . . , σn, . . . , σk , . . . ; t).

Note that rn,n(t) = 1.

František Štampach (MAFIA) Ising model August 18-21, 2015 11 / 29

Page 49: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Quantities of interest 1/2

Functions p(σ; t) which are solutions of the master equation

ddt

p(σ; t) =∑

nwn(σ1, . . . ,−σn, . . . , σN)p(σ1, . . . ,−σn, . . . , σN ; t)−

(∑n

wn(σ)

)p(σ; t)

contain the most complete description of the system available.Nevertheless, it is usually not possible to find them explicitly.However, it is not necessary, since they contain vastly more information than we usuallyrequire in practice.To answer the most familiar physical questions about the system it suffices to know twomacroscopic variables.Expectation value of the spins (magnetization):

qn(t) := 〈σn(t)〉 =∑σ

σnp(. . . , σn, . . . ; t).

Spin correlations:

rn,k (t) := 〈σn(t)σk (t)〉 =∑σ

σnσk p(. . . , σn, . . . , σk , . . . ; t).

Note that rn,n(t) = 1.

František Štampach (MAFIA) Ising model August 18-21, 2015 11 / 29

Page 50: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Quantities of interest 1/2

Functions p(σ; t) which are solutions of the master equation

ddt

p(σ; t) =∑

nwn(σ1, . . . ,−σn, . . . , σN)p(σ1, . . . ,−σn, . . . , σN ; t)−

(∑n

wn(σ)

)p(σ; t)

contain the most complete description of the system available.Nevertheless, it is usually not possible to find them explicitly.However, it is not necessary, since they contain vastly more information than we usuallyrequire in practice.To answer the most familiar physical questions about the system it suffices to know twomacroscopic variables.Expectation value of the spins (magnetization):

qn(t) := 〈σn(t)〉 =∑σ

σnp(. . . , σn, . . . ; t).

Spin correlations:

rn,k (t) := 〈σn(t)σk (t)〉 =∑σ

σnσk p(. . . , σn, . . . , σk , . . . ; t).

Note that rn,n(t) = 1.

František Štampach (MAFIA) Ising model August 18-21, 2015 11 / 29

Page 51: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Quantities of interest 2/2

Alternatively, quantities of interest are probabilities that individual spins or pairs of spinsoccupy specified states.

pn(σn; t) =∑

σ; σn fixed

p(σ1, . . . , σN ; t),

pn,k (σn, σk ; t) =∑

σ; σn,σk fixed

p(σ1, . . . , σN ; t).

It can be shown that these probabilities can be expressed in terms of magnetization and spincorrelation:

pn(σn; t) =12(1 + σnqn(t)) ,

pn,k (σn, σk ; t) =14

(1 + σnqn(t) + σk qk (t) + σnσk rn,k (t)

).

František Štampach (MAFIA) Ising model August 18-21, 2015 12 / 29

Page 52: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Quantities of interest 2/2

Alternatively, quantities of interest are probabilities that individual spins or pairs of spinsoccupy specified states.

pn(σn; t) =∑

σ; σn fixed

p(σ1, . . . , σN ; t),

pn,k (σn, σk ; t) =∑

σ; σn,σk fixed

p(σ1, . . . , σN ; t).

It can be shown that these probabilities can be expressed in terms of magnetization and spincorrelation:

pn(σn; t) =12(1 + σnqn(t)) ,

pn,k (σn, σk ; t) =14

(1 + σnqn(t) + σk qk (t) + σnσk rn,k (t)

).

František Štampach (MAFIA) Ising model August 18-21, 2015 12 / 29

Page 53: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Contents

1 The general Ising model

2 Time evolution of many-spin systems

3 Time evolution of magnetization

4 Time evolution of spin correlations

5 Generalizations

František Štampach (MAFIA) Ising model August 18-21, 2015 13 / 29

Page 54: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Evolution equation for magnetization

Recall the master equation:

ddt

p(σ; t) =∑

nwn(σ1, . . . ,−σn, . . . , σN)p(σ1, . . . ,−σn, . . . , σN ; t)−

∑n

wn(σ)p(σ; t)

Multiply both sides by σk and sum over all values of σ:

ddt

qk (t) = −2∑σ

σk wk (σ1, . . . , σk , . . . , σN)p(σ1, . . . , σk , . . . , σN ; t) = −2〈σk wk (σ)〉

Substitute the Glauber’s expression for the rate wk :

ddt

qk (t) = −qk (t) +12γ (qk−1(t) + qk (t))

František Štampach (MAFIA) Ising model August 18-21, 2015 14 / 29

Page 55: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Evolution equation for magnetization

Recall the master equation:

ddt

p(σ; t) =∑

nwn(σ1, . . . ,−σn, . . . , σN)p(σ1, . . . ,−σn, . . . , σN ; t)−

∑n

wn(σ)p(σ; t)

Multiply both sides by σk and sum over all values of σ:

ddt

qk (t) = −2∑σ

σk wk (σ1, . . . , σk , . . . , σN)p(σ1, . . . , σk , . . . , σN ; t) = −2〈σk wk (σ)〉

Substitute the Glauber’s expression for the rate wk :

ddt

qk (t) = −qk (t) +12γ (qk−1(t) + qk (t))

František Štampach (MAFIA) Ising model August 18-21, 2015 14 / 29

Page 56: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Evolution equation for magnetization

Recall the master equation:

ddt

p(σ; t) =∑

nwn(σ1, . . . ,−σn, . . . , σN)p(σ1, . . . ,−σn, . . . , σN ; t)−

∑n

wn(σ)p(σ; t)

Multiply both sides by σk and sum over all values of σ:

ddt

qk (t) = −2∑σ

σk wk (σ1, . . . , σk , . . . , σN)p(σ1, . . . , σk , . . . , σN ; t) = −2〈σk wk (σ)〉

Substitute the Glauber’s expression for the rate wk :

ddt

qk (t) = −qk (t) +12γ (qk−1(t) + qk (t))

František Štampach (MAFIA) Ising model August 18-21, 2015 14 / 29

Page 57: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Matrix form of the equation for the time evolution of the magnetization (α = 1):

q̇(t) = −M q(t)

where

M =

1 −γ/2 0 . . . 0−γ/2 1 −γ/2 . . . 0

0 −γ/2 1 . . . 0...

......

...0 0 0 . . . 1

, q(t) =

q1(t)q2(t)q3(t)

...qN(t)

The solution reads:q(t) = exp(−tM)q(0)

Matrix M is hermitian (Jacobi) operator with simple spectrum, hence

M =∑

nλn〈Vn, ·〉Vn

where λ1, . . . , λN are eigenvalues of M and V1, . . . ,VN are corresponding eigenvectors.

We arrive at the solution

q(t) =∑

ne−tλn 〈Vn, q(0)〉Vn.

František Štampach (MAFIA) Ising model August 18-21, 2015 15 / 29

Page 58: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Matrix form of the equation for the time evolution of the magnetization (α = 1):

q̇(t) = −M q(t)

where

M =

1 −γ/2 0 . . . 0−γ/2 1 −γ/2 . . . 0

0 −γ/2 1 . . . 0...

......

...0 0 0 . . . 1

, q(t) =

q1(t)q2(t)q3(t)

...qN(t)

The solution reads:

q(t) = exp(−tM)q(0)

Matrix M is hermitian (Jacobi) operator with simple spectrum, hence

M =∑

nλn〈Vn, ·〉Vn

where λ1, . . . , λN are eigenvalues of M and V1, . . . ,VN are corresponding eigenvectors.

We arrive at the solution

q(t) =∑

ne−tλn 〈Vn, q(0)〉Vn.

František Štampach (MAFIA) Ising model August 18-21, 2015 15 / 29

Page 59: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Matrix form of the equation for the time evolution of the magnetization (α = 1):

q̇(t) = −M q(t)

where

M =

1 −γ/2 0 . . . 0−γ/2 1 −γ/2 . . . 0

0 −γ/2 1 . . . 0...

......

...0 0 0 . . . 1

, q(t) =

q1(t)q2(t)q3(t)

...qN(t)

The solution reads:

q(t) = exp(−tM)q(0)

Matrix M is hermitian (Jacobi) operator with simple spectrum, hence

M =∑

nλn〈Vn, ·〉Vn

where λ1, . . . , λN are eigenvalues of M and V1, . . . ,VN are corresponding eigenvectors.

We arrive at the solution

q(t) =∑

ne−tλn 〈Vn, q(0)〉Vn.

František Štampach (MAFIA) Ising model August 18-21, 2015 15 / 29

Page 60: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Matrix form of the equation for the time evolution of the magnetization (α = 1):

q̇(t) = −M q(t)

where

M =

1 −γ/2 0 . . . 0−γ/2 1 −γ/2 . . . 0

0 −γ/2 1 . . . 0...

......

...0 0 0 . . . 1

, q(t) =

q1(t)q2(t)q3(t)

...qN(t)

The solution reads:

q(t) = exp(−tM)q(0)

Matrix M is hermitian (Jacobi) operator with simple spectrum, hence

M =∑

nλn〈Vn, ·〉Vn

where λ1, . . . , λN are eigenvalues of M and V1, . . . ,VN are corresponding eigenvectors.

We arrive at the solution

q(t) =∑

ne−tλn 〈Vn, q(0)〉Vn.

František Štampach (MAFIA) Ising model August 18-21, 2015 15 / 29

Page 61: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Chebyshev polynomials

Recall Chebyshev polynomials of the second kind are defined as

Un(cosφ) =sin ((n + 1)φ)

sinφ, n = 0, 1, 2, . . .

Un satisfies a system of second order difference equations:

Un−1(x)− 2xUn(x) + Un+1(x) = 0, U0(x) = 1, U1(x) = 2x .

Un(x) is a polynomial of degree n with zeros

x (n)k = cos

(kπ

n + 1

), k = 1, . . . , n.

From this one easily deduces that MVn = λnVn (with (Vn)1 = 1) iff

λn =1γ

(1− cos

(nπ

N + 1

))and Vn = (U0(λn),U1(λn), . . . ,UN−1(λn))

T

for n = 1, . . . ,N.

These formulas yield a precise expression for the time evolution of the magnetizationvector q(t).

František Štampach (MAFIA) Ising model August 18-21, 2015 16 / 29

Page 62: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Chebyshev polynomials

Recall Chebyshev polynomials of the second kind are defined as

Un(cosφ) =sin ((n + 1)φ)

sinφ, n = 0, 1, 2, . . .

Un satisfies a system of second order difference equations:

Un−1(x)− 2xUn(x) + Un+1(x) = 0, U0(x) = 1, U1(x) = 2x .

Un(x) is a polynomial of degree n with zeros

x (n)k = cos

(kπ

n + 1

), k = 1, . . . , n.

From this one easily deduces that MVn = λnVn (with (Vn)1 = 1) iff

λn =1γ

(1− cos

(nπ

N + 1

))and Vn = (U0(λn),U1(λn), . . . ,UN−1(λn))

T

for n = 1, . . . ,N.

These formulas yield a precise expression for the time evolution of the magnetizationvector q(t).

František Štampach (MAFIA) Ising model August 18-21, 2015 16 / 29

Page 63: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Chebyshev polynomials

Recall Chebyshev polynomials of the second kind are defined as

Un(cosφ) =sin ((n + 1)φ)

sinφ, n = 0, 1, 2, . . .

Un satisfies a system of second order difference equations:

Un−1(x)− 2xUn(x) + Un+1(x) = 0, U0(x) = 1, U1(x) = 2x .

Un(x) is a polynomial of degree n with zeros

x (n)k = cos

(kπ

n + 1

), k = 1, . . . , n.

From this one easily deduces that MVn = λnVn (with (Vn)1 = 1) iff

λn =1γ

(1− cos

(nπ

N + 1

))and Vn = (U0(λn),U1(λn), . . . ,UN−1(λn))

T

for n = 1, . . . ,N.

These formulas yield a precise expression for the time evolution of the magnetizationvector q(t).

František Štampach (MAFIA) Ising model August 18-21, 2015 16 / 29

Page 64: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Chebyshev polynomials

Recall Chebyshev polynomials of the second kind are defined as

Un(cosφ) =sin ((n + 1)φ)

sinφ, n = 0, 1, 2, . . .

Un satisfies a system of second order difference equations:

Un−1(x)− 2xUn(x) + Un+1(x) = 0, U0(x) = 1, U1(x) = 2x .

Un(x) is a polynomial of degree n with zeros

x (n)k = cos

(kπ

n + 1

), k = 1, . . . , n.

From this one easily deduces that MVn = λnVn (with (Vn)1 = 1) iff

λn =1γ

(1− cos

(nπ

N + 1

))and Vn = (U0(λn),U1(λn), . . . ,UN−1(λn))

T

for n = 1, . . . ,N.

These formulas yield a precise expression for the time evolution of the magnetizationvector q(t).

František Štampach (MAFIA) Ising model August 18-21, 2015 16 / 29

Page 65: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Chebyshev polynomials

Recall Chebyshev polynomials of the second kind are defined as

Un(cosφ) =sin ((n + 1)φ)

sinφ, n = 0, 1, 2, . . .

Un satisfies a system of second order difference equations:

Un−1(x)− 2xUn(x) + Un+1(x) = 0, U0(x) = 1, U1(x) = 2x .

Un(x) is a polynomial of degree n with zeros

x (n)k = cos

(kπ

n + 1

), k = 1, . . . , n.

From this one easily deduces that MVn = λnVn (with (Vn)1 = 1) iff

λn =1γ

(1− cos

(nπ

N + 1

))and Vn = (U0(λn),U1(λn), . . . ,UN−1(λn))

T

for n = 1, . . . ,N.

These formulas yield a precise expression for the time evolution of the magnetizationvector q(t).

František Štampach (MAFIA) Ising model August 18-21, 2015 16 / 29

Page 66: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Approximation for N � 1 - an infinite chain

Since the number of particles N of the system is usually assumed to be large, one canconsider an approximation of the model with N →∞ - an infinite chain.

It is convenient, in this case, to alter slightly the scheme of numbering the spins by labeling aparticular spin as zeroth and designating those to one side with positive integers and those tothe other side with negative integers.

In this scheme, we may take as the equation of motion for magnetization q(t) in the sameform as before

q̇(t) = −M q(t).

However, now M is corresponding (infinite) Jacobi matrix acting on `2(Z):

M =

. . .

. . .. . .

−γ/2 1 −γ/2−γ/2 1 −γ/2

. . .. . .

. . .

.

The solution readsq(t) = exp(−tM)q(0) =

∫R

e−tλdEM(λ)q(0)

where EM is the spectral projection of self-adjoint operator M.

Thus, the spectral analysis of M is essential.

František Štampach (MAFIA) Ising model August 18-21, 2015 17 / 29

Page 67: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Approximation for N � 1 - an infinite chain

Since the number of particles N of the system is usually assumed to be large, one canconsider an approximation of the model with N →∞ - an infinite chain.

It is convenient, in this case, to alter slightly the scheme of numbering the spins by labeling aparticular spin as zeroth and designating those to one side with positive integers and those tothe other side with negative integers.

In this scheme, we may take as the equation of motion for magnetization q(t) in the sameform as before

q̇(t) = −M q(t).

However, now M is corresponding (infinite) Jacobi matrix acting on `2(Z):

M =

. . .

. . .. . .

−γ/2 1 −γ/2−γ/2 1 −γ/2

. . .. . .

. . .

.

The solution readsq(t) = exp(−tM)q(0) =

∫R

e−tλdEM(λ)q(0)

where EM is the spectral projection of self-adjoint operator M.

Thus, the spectral analysis of M is essential.

František Štampach (MAFIA) Ising model August 18-21, 2015 17 / 29

Page 68: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Approximation for N � 1 - an infinite chain

Since the number of particles N of the system is usually assumed to be large, one canconsider an approximation of the model with N →∞ - an infinite chain.

It is convenient, in this case, to alter slightly the scheme of numbering the spins by labeling aparticular spin as zeroth and designating those to one side with positive integers and those tothe other side with negative integers.

In this scheme, we may take as the equation of motion for magnetization q(t) in the sameform as before

q̇(t) = −M q(t).

However, now M is corresponding (infinite) Jacobi matrix acting on `2(Z):

M =

. . .

. . .. . .

−γ/2 1 −γ/2−γ/2 1 −γ/2

. . .. . .

. . .

.

The solution readsq(t) = exp(−tM)q(0) =

∫R

e−tλdEM(λ)q(0)

where EM is the spectral projection of self-adjoint operator M.

Thus, the spectral analysis of M is essential.

František Štampach (MAFIA) Ising model August 18-21, 2015 17 / 29

Page 69: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Approximation for N � 1 - an infinite chain

Since the number of particles N of the system is usually assumed to be large, one canconsider an approximation of the model with N →∞ - an infinite chain.

It is convenient, in this case, to alter slightly the scheme of numbering the spins by labeling aparticular spin as zeroth and designating those to one side with positive integers and those tothe other side with negative integers.

In this scheme, we may take as the equation of motion for magnetization q(t) in the sameform as before

q̇(t) = −M q(t).

However, now M is corresponding (infinite) Jacobi matrix acting on `2(Z):

M =

. . .

. . .. . .

−γ/2 1 −γ/2−γ/2 1 −γ/2

. . .. . .

. . .

.

The solution readsq(t) = exp(−tM)q(0) =

∫R

e−tλdEM(λ)q(0)

where EM is the spectral projection of self-adjoint operator M.

Thus, the spectral analysis of M is essential.

František Štampach (MAFIA) Ising model August 18-21, 2015 17 / 29

Page 70: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Approximation for N � 1 - an infinite chain

Since the number of particles N of the system is usually assumed to be large, one canconsider an approximation of the model with N →∞ - an infinite chain.

It is convenient, in this case, to alter slightly the scheme of numbering the spins by labeling aparticular spin as zeroth and designating those to one side with positive integers and those tothe other side with negative integers.

In this scheme, we may take as the equation of motion for magnetization q(t) in the sameform as before

q̇(t) = −M q(t).

However, now M is corresponding (infinite) Jacobi matrix acting on `2(Z):

M =

. . .

. . .. . .

−γ/2 1 −γ/2−γ/2 1 −γ/2

. . .. . .

. . .

.

The solution readsq(t) = exp(−tM)q(0) =

∫R

e−tλdEM(λ)q(0)

where EM is the spectral projection of self-adjoint operator M.

Thus, the spectral analysis of M is essential.

František Štampach (MAFIA) Ising model August 18-21, 2015 17 / 29

Page 71: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Diagonalization of discrete Laplacian

Consider T operator acting on `2(Z) as

(Tψ)n = −ψn−1 + 2ψn − ψn+1, n ∈ Z.

T is bounded self-adjoint operator which is explicitly diagonalizable.

Fourier transform:

U : `2(Z)→ L2((0, 2π],

dϕ2π

): ψ 7→ (Uψ)(ϕ) =

∑n∈Z

ψneinϕ

The inverse is clearly

(U−1f )n =

∫ 2π

0e−inϕf (ϕ)

dϕ2π

.

It is a matter of straightforward computation to verify(UTU−1f

)(ϕ) = 2 (1− cos(ϕ)) f (ϕ).

František Štampach (MAFIA) Ising model August 18-21, 2015 18 / 29

Page 72: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Diagonalization of discrete Laplacian

Consider T operator acting on `2(Z) as

(Tψ)n = −ψn−1 + 2ψn − ψn+1, n ∈ Z.

T is bounded self-adjoint operator which is explicitly diagonalizable.

Fourier transform:

U : `2(Z)→ L2((0, 2π],

dϕ2π

): ψ 7→ (Uψ)(ϕ) =

∑n∈Z

ψneinϕ

The inverse is clearly

(U−1f )n =

∫ 2π

0e−inϕf (ϕ)

dϕ2π

.

It is a matter of straightforward computation to verify(UTU−1f

)(ϕ) = 2 (1− cos(ϕ)) f (ϕ).

František Štampach (MAFIA) Ising model August 18-21, 2015 18 / 29

Page 73: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Diagonalization of discrete Laplacian

Consider T operator acting on `2(Z) as

(Tψ)n = −ψn−1 + 2ψn − ψn+1, n ∈ Z.

T is bounded self-adjoint operator which is explicitly diagonalizable.

Fourier transform:

U : `2(Z)→ L2((0, 2π],

dϕ2π

): ψ 7→ (Uψ)(ϕ) =

∑n∈Z

ψneinϕ

The inverse is clearly

(U−1f )n =

∫ 2π

0e−inϕf (ϕ)

dϕ2π

.

It is a matter of straightforward computation to verify(UTU−1f

)(ϕ) = 2 (1− cos(ϕ)) f (ϕ).

František Štampach (MAFIA) Ising model August 18-21, 2015 18 / 29

Page 74: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Diagonalization of discrete Laplacian

Consider T operator acting on `2(Z) as

(Tψ)n = −ψn−1 + 2ψn − ψn+1, n ∈ Z.

T is bounded self-adjoint operator which is explicitly diagonalizable.

Fourier transform:

U : `2(Z)→ L2((0, 2π],

dϕ2π

): ψ 7→ (Uψ)(ϕ) =

∑n∈Z

ψneinϕ

The inverse is clearly

(U−1f )n =

∫ 2π

0e−inϕf (ϕ)

dϕ2π

.

It is a matter of straightforward computation to verify(UTU−1f

)(ϕ) = 2 (1− cos(ϕ)) f (ϕ).

František Štampach (MAFIA) Ising model August 18-21, 2015 18 / 29

Page 75: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Diagonalization of discrete Laplacian

Consider T operator acting on `2(Z) as

(Tψ)n = −ψn−1 + 2ψn − ψn+1, n ∈ Z.

T is bounded self-adjoint operator which is explicitly diagonalizable.

Fourier transform:

U : `2(Z)→ L2((0, 2π],

dϕ2π

): ψ 7→ (Uψ)(ϕ) =

∑n∈Z

ψneinϕ

The inverse is clearly

(U−1f )n =

∫ 2π

0e−inϕf (ϕ)

dϕ2π

.

It is a matter of straightforward computation to verify(UTU−1f

)(ϕ) = 2 (1− cos(ϕ)) f (ϕ).

František Štampach (MAFIA) Ising model August 18-21, 2015 18 / 29

Page 76: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

The spectral measure of T

Let ψ, χ ∈ `2(Z) and f ∈ C([0, 4]) are arbitrary. Denote

dµψ,χ(λ) = d〈ψ,ET (λ)χ〉.

Then ∫ 4

0f (λ)dµψ,χ(λ) = 〈ψ, f (T )χ〉`2 = 〈Uψ, (Uf (T )U−1)︸ ︷︷ ︸

=f (2(1−cosϕ))

Uχ〉L2

=

∫ 2π

0Uψ(ϕ)Uχ(ϕ)f (2(1− cosϕ))

dϕ2π

=

∫ π

0+

∫ 2π

π. . . subst. x = 2(1− cosϕ)

∫ 4

0f (λ)dµψ,χ(λ) =

12π

∫ 4

0f (x)

[(Uψ)

(arccos

(2− x

2

))(Uχ)

(arccos

(2− x

2

))+(Uψ)

(2π − arccos

(2− x

2

))(Uχ)

(2π − arccos

(2− x

2

))]dx√

4x − x2

František Štampach (MAFIA) Ising model August 18-21, 2015 19 / 29

Page 77: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

The spectral measure of T

Let ψ, χ ∈ `2(Z) and f ∈ C([0, 4]) are arbitrary. Denote

dµψ,χ(λ) = d〈ψ,ET (λ)χ〉.

Then ∫ 4

0f (λ)dµψ,χ(λ) = 〈ψ, f (T )χ〉`2 = 〈Uψ, (Uf (T )U−1)︸ ︷︷ ︸

=f (2(1−cosϕ))

Uχ〉L2

=

∫ 2π

0Uψ(ϕ)Uχ(ϕ)f (2(1− cosϕ))

dϕ2π

=

∫ π

0+

∫ 2π

π. . . subst. x = 2(1− cosϕ)

∫ 4

0f (λ)dµψ,χ(λ) =

12π

∫ 4

0f (x)

[(Uψ)

(arccos

(2− x

2

))(Uχ)

(arccos

(2− x

2

))+(Uψ)

(2π − arccos

(2− x

2

))(Uχ)

(2π − arccos

(2− x

2

))]dx√

4x − x2

František Štampach (MAFIA) Ising model August 18-21, 2015 19 / 29

Page 78: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

The spectral measure of T

Let ψ, χ ∈ `2(Z) and f ∈ C([0, 4]) are arbitrary. Denote

dµψ,χ(λ) = d〈ψ,ET (λ)χ〉.

Then ∫ 4

0f (λ)dµψ,χ(λ) = 〈ψ, f (T )χ〉`2 = 〈Uψ, (Uf (T )U−1)︸ ︷︷ ︸

=f (2(1−cosϕ))

Uχ〉L2

=

∫ 2π

0Uψ(ϕ)Uχ(ϕ)f (2(1− cosϕ))

dϕ2π

=

∫ π

0+

∫ 2π

π. . . subst. x = 2(1− cosϕ)

∫ 4

0f (λ)dµψ,χ(λ) =

12π

∫ 4

0f (x)

[(Uψ)

(arccos

(2− x

2

))(Uχ)

(arccos

(2− x

2

))+(Uψ)

(2π − arccos

(2− x

2

))(Uχ)

(2π − arccos

(2− x

2

))]dx√

4x − x2

František Štampach (MAFIA) Ising model August 18-21, 2015 19 / 29

Page 79: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

The spectral measure of T

Let ψ, χ ∈ `2(Z) and f ∈ C([0, 4]) are arbitrary. Denote

dµψ,χ(λ) = d〈ψ,ET (λ)χ〉.

Then ∫ 4

0f (λ)dµψ,χ(λ) = 〈ψ, f (T )χ〉`2 = 〈Uψ, (Uf (T )U−1)︸ ︷︷ ︸

=f (2(1−cosϕ))

Uχ〉L2

=

∫ 2π

0Uψ(ϕ)Uχ(ϕ)f (2(1− cosϕ))

dϕ2π

=

∫ π

0+

∫ 2π

π. . . subst. x = 2(1− cosϕ)

∫ 4

0f (λ)dµψ,χ(λ) =

12π

∫ 4

0f (x)

[(Uψ)

(arccos

(2− x

2

))(Uχ)

(arccos

(2− x

2

))+(Uψ)

(2π − arccos

(2− x

2

))(Uχ)

(2π − arccos

(2− x

2

))]dx√

4x − x2

František Štampach (MAFIA) Ising model August 18-21, 2015 19 / 29

Page 80: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Matrix elements of the spectral measure of T

Put ψ = em, χ = en then we get

dµm,n(x)dx

=1

π√

4x − x2cos

[(n −m) arccos

(2− x

2

)]︸ ︷︷ ︸

=T|n−m|(

2−x2

)on [0, 4].

Recall q(t) = exp(−tM)q(0) and we have the relation

M =γ

2

(T − 2

(1−

)I)

Thus,

qn(t) =∑

m〈en, exp(−tM)em〉qm(0) =

∑m

∫ 4

0exp

(−γt2

(λ− 2(1− γ−1)

))dµm,n(λ)

Substitute x = (2− λ)/2, then

qn(t) =1π

∑m

qm(0)e−t∫ 1

−1eγtx T|n−m|(x)

dx√1− x2

František Štampach (MAFIA) Ising model August 18-21, 2015 20 / 29

Page 81: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Matrix elements of the spectral measure of T

Put ψ = em, χ = en then we get

dµm,n(x)dx

=1

π√

4x − x2cos

[(n −m) arccos

(2− x

2

)]︸ ︷︷ ︸

=T|n−m|(

2−x2

)on [0, 4].

Recall q(t) = exp(−tM)q(0) and we have the relation

M =γ

2

(T − 2

(1−

)I)

Thus,

qn(t) =∑

m〈en, exp(−tM)em〉qm(0) =

∑m

∫ 4

0exp

(−γt2

(λ− 2(1− γ−1)

))dµm,n(λ)

Substitute x = (2− λ)/2, then

qn(t) =1π

∑m

qm(0)e−t∫ 1

−1eγtx T|n−m|(x)

dx√1− x2

František Štampach (MAFIA) Ising model August 18-21, 2015 20 / 29

Page 82: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Matrix elements of the spectral measure of T

Put ψ = em, χ = en then we get

dµm,n(x)dx

=1

π√

4x − x2cos

[(n −m) arccos

(2− x

2

)]︸ ︷︷ ︸

=T|n−m|(

2−x2

)on [0, 4].

Recall q(t) = exp(−tM)q(0) and we have the relation

M =γ

2

(T − 2

(1−

)I)

Thus,

qn(t) =∑

m〈en, exp(−tM)em〉qm(0) =

∑m

∫ 4

0exp

(−γt2

(λ− 2(1− γ−1)

))dµm,n(λ)

Substitute x = (2− λ)/2, then

qn(t) =1π

∑m

qm(0)e−t∫ 1

−1eγtx T|n−m|(x)

dx√1− x2

František Štampach (MAFIA) Ising model August 18-21, 2015 20 / 29

Page 83: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Matrix elements of the spectral measure of T

Put ψ = em, χ = en then we get

dµm,n(x)dx

=1

π√

4x − x2cos

[(n −m) arccos

(2− x

2

)]︸ ︷︷ ︸

=T|n−m|(

2−x2

)on [0, 4].

Recall q(t) = exp(−tM)q(0) and we have the relation

M =γ

2

(T − 2

(1−

)I)

Thus,

qn(t) =∑

m〈en, exp(−tM)em〉qm(0) =

∑m

∫ 4

0exp

(−γt2

(λ− 2(1− γ−1)

))dµm,n(λ)

Substitute x = (2− λ)/2, then

qn(t) =1π

∑m

qm(0)e−t∫ 1

−1eγtx T|n−m|(x)

dx√1− x2

František Štampach (MAFIA) Ising model August 18-21, 2015 20 / 29

Page 84: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Chebyshev expansion of the exponential and final formula

∀x ∈ [−1, 1] and ∀z ∈ C it holds [A&S 9.6.34]

ezx = I0(z)T0(x) + 2∑n≥1

In(z)Tn(x).

where In stands for the modified Bessel function of the first kind: In(z) = i−nJn(iz).

From this and orthogonality of {Tn(x)} one deduces∫ 1

−1ezx Tn(x)

dx√1− x2

= πIn(z), n = 0, 1, 2, . . . .

Hence, we arrived at the final formula for time evolution of the magnetization vector:

qn(t) =∑

mqm(0)e−t I|n−m|(γt)

František Štampach (MAFIA) Ising model August 18-21, 2015 21 / 29

Page 85: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Chebyshev expansion of the exponential and final formula

∀x ∈ [−1, 1] and ∀z ∈ C it holds [A&S 9.6.34]

ezx = I0(z)T0(x) + 2∑n≥1

In(z)Tn(x).

where In stands for the modified Bessel function of the first kind: In(z) = i−nJn(iz).

From this and orthogonality of {Tn(x)} one deduces∫ 1

−1ezx Tn(x)

dx√1− x2

= πIn(z), n = 0, 1, 2, . . . .

Hence, we arrived at the final formula for time evolution of the magnetization vector:

qn(t) =∑

mqm(0)e−t I|n−m|(γt)

František Štampach (MAFIA) Ising model August 18-21, 2015 21 / 29

Page 86: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Chebyshev expansion of the exponential and final formula

∀x ∈ [−1, 1] and ∀z ∈ C it holds [A&S 9.6.34]

ezx = I0(z)T0(x) + 2∑n≥1

In(z)Tn(x).

where In stands for the modified Bessel function of the first kind: In(z) = i−nJn(iz).

From this and orthogonality of {Tn(x)} one deduces∫ 1

−1ezx Tn(x)

dx√1− x2

= πIn(z), n = 0, 1, 2, . . . .

Hence, we arrived at the final formula for time evolution of the magnetization vector:

qn(t) =∑

mqm(0)e−t I|n−m|(γt)

František Štampach (MAFIA) Ising model August 18-21, 2015 21 / 29

Page 87: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Remark 1 - induced transient polarization

Assume the case in which all of the spin expectations qn(0) vanish except for the one:

qn(0) = δn,0.

Then we have a simple formula

qn(t) = e−t I|n|(γt).

Known properties of modified Bessel function then yields:1 First functions qn rise as

qn(t) ∼1|n|!

(γt2

)|n|e−t , t �

|n|γ.

2 They then reach a maximum at time

t ∼|n|√

1− γ2.

3 Finally, for much larger times, they decrease as

qn(t) ∼1√

2πγte−(1−γ)t .

František Štampach (MAFIA) Ising model August 18-21, 2015 22 / 29

Page 88: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Remark 1 - induced transient polarization

Assume the case in which all of the spin expectations qn(0) vanish except for the one:

qn(0) = δn,0.

Then we have a simple formula

qn(t) = e−t I|n|(γt).

Known properties of modified Bessel function then yields:1 First functions qn rise as

qn(t) ∼1|n|!

(γt2

)|n|e−t , t �

|n|γ.

2 They then reach a maximum at time

t ∼|n|√

1− γ2.

3 Finally, for much larger times, they decrease as

qn(t) ∼1√

2πγte−(1−γ)t .

František Štampach (MAFIA) Ising model August 18-21, 2015 22 / 29

Page 89: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Remark 1 - induced transient polarization

Assume the case in which all of the spin expectations qn(0) vanish except for the one:

qn(0) = δn,0.

Then we have a simple formula

qn(t) = e−t I|n|(γt).

Known properties of modified Bessel function then yields:

1 First functions qn rise as

qn(t) ∼1|n|!

(γt2

)|n|e−t , t �

|n|γ.

2 They then reach a maximum at time

t ∼|n|√

1− γ2.

3 Finally, for much larger times, they decrease as

qn(t) ∼1√

2πγte−(1−γ)t .

František Štampach (MAFIA) Ising model August 18-21, 2015 22 / 29

Page 90: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Remark 1 - induced transient polarization

Assume the case in which all of the spin expectations qn(0) vanish except for the one:

qn(0) = δn,0.

Then we have a simple formula

qn(t) = e−t I|n|(γt).

Known properties of modified Bessel function then yields:1 First functions qn rise as

qn(t) ∼1|n|!

(γt2

)|n|e−t , t �

|n|γ.

2 They then reach a maximum at time

t ∼|n|√

1− γ2.

3 Finally, for much larger times, they decrease as

qn(t) ∼1√

2πγte−(1−γ)t .

František Štampach (MAFIA) Ising model August 18-21, 2015 22 / 29

Page 91: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Remark 1 - induced transient polarization

Assume the case in which all of the spin expectations qn(0) vanish except for the one:

qn(0) = δn,0.

Then we have a simple formula

qn(t) = e−t I|n|(γt).

Known properties of modified Bessel function then yields:1 First functions qn rise as

qn(t) ∼1|n|!

(γt2

)|n|e−t , t �

|n|γ.

2 They then reach a maximum at time

t ∼|n|√

1− γ2.

3 Finally, for much larger times, they decrease as

qn(t) ∼1√

2πγte−(1−γ)t .

František Štampach (MAFIA) Ising model August 18-21, 2015 22 / 29

Page 92: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Remark 1 - induced transient polarization

Assume the case in which all of the spin expectations qn(0) vanish except for the one:

qn(0) = δn,0.

Then we have a simple formula

qn(t) = e−t I|n|(γt).

Known properties of modified Bessel function then yields:1 First functions qn rise as

qn(t) ∼1|n|!

(γt2

)|n|e−t , t �

|n|γ.

2 They then reach a maximum at time

t ∼|n|√

1− γ2.

3 Finally, for much larger times, they decrease as

qn(t) ∼1√

2πγte−(1−γ)t .

František Štampach (MAFIA) Ising model August 18-21, 2015 22 / 29

Page 93: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Remark 2 - absence of permanent magnetization

If we put x = 1 in the previously mentioned identity we find

ez = I0(z) + 2∑n≥1

In(z),

for Tn(1) = 1.

Using this formula and assuming some convergence conditions one deduces∑n

qn(t) = e−(1−γ)t∑

nqn(0).

A similar phenomena can be shown in the case of finite chain (N <∞). It tells us that thetotal magnetization always decreases exponentially.

This result corresponds to the known absence of permanent magnetization in the linear Isingmodel.

František Štampach (MAFIA) Ising model August 18-21, 2015 23 / 29

Page 94: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Remark 2 - absence of permanent magnetization

If we put x = 1 in the previously mentioned identity we find

ez = I0(z) + 2∑n≥1

In(z),

for Tn(1) = 1.

Using this formula and assuming some convergence conditions one deduces∑n

qn(t) = e−(1−γ)t∑

nqn(0).

A similar phenomena can be shown in the case of finite chain (N <∞). It tells us that thetotal magnetization always decreases exponentially.

This result corresponds to the known absence of permanent magnetization in the linear Isingmodel.

František Štampach (MAFIA) Ising model August 18-21, 2015 23 / 29

Page 95: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Remark 2 - absence of permanent magnetization

If we put x = 1 in the previously mentioned identity we find

ez = I0(z) + 2∑n≥1

In(z),

for Tn(1) = 1.

Using this formula and assuming some convergence conditions one deduces∑n

qn(t) = e−(1−γ)t∑

nqn(0).

A similar phenomena can be shown in the case of finite chain (N <∞). It tells us that thetotal magnetization always decreases exponentially.

This result corresponds to the known absence of permanent magnetization in the linear Isingmodel.

František Štampach (MAFIA) Ising model August 18-21, 2015 23 / 29

Page 96: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Remark 2 - absence of permanent magnetization

If we put x = 1 in the previously mentioned identity we find

ez = I0(z) + 2∑n≥1

In(z),

for Tn(1) = 1.

Using this formula and assuming some convergence conditions one deduces∑n

qn(t) = e−(1−γ)t∑

nqn(0).

A similar phenomena can be shown in the case of finite chain (N <∞). It tells us that thetotal magnetization always decreases exponentially.

This result corresponds to the known absence of permanent magnetization in the linear Isingmodel.

František Štampach (MAFIA) Ising model August 18-21, 2015 23 / 29

Page 97: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Contents

1 The general Ising model

2 Time evolution of many-spin systems

3 Time evolution of magnetization

4 Time evolution of spin correlations

5 Generalizations

František Štampach (MAFIA) Ising model August 18-21, 2015 24 / 29

Page 98: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Solution for the spin correlations

Similarly as in the case of magnetization, one can multiply the master equation by the productσjσk (j 6= k ) and sum over the σ variables.

Taking into account the Glauber expression for wn, the resulting equation reads

ddt

rj,k (t) = −2rj,k (t) +12γ(rj,k−1(t) + rj,k+1(t) + rj−1,k (t) + rj+1,k (t)

), k 6= j.

For j = k we have the identity rk,k (t) = 1.

The derivation of the general solution is not so straightforward as before. Nevertheless, it canbe derived in terms of modified Bessel functions again:

rj,k (t) = ηj−k + e−2t∑n>m

[rn,m(0)− ηn−m] (Ij−n(γt)Ik−m(γt)− Ij−m(γt)Ik−n(γt)

),

for j ≥ k , whereη = tanh (J/kT )

is the so called short-range order parameter of the Ising model.

František Štampach (MAFIA) Ising model August 18-21, 2015 25 / 29

Page 99: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Solution for the spin correlations

Similarly as in the case of magnetization, one can multiply the master equation by the productσjσk (j 6= k ) and sum over the σ variables.

Taking into account the Glauber expression for wn, the resulting equation reads

ddt

rj,k (t) = −2rj,k (t) +12γ(rj,k−1(t) + rj,k+1(t) + rj−1,k (t) + rj+1,k (t)

), k 6= j.

For j = k we have the identity rk,k (t) = 1.

The derivation of the general solution is not so straightforward as before. Nevertheless, it canbe derived in terms of modified Bessel functions again:

rj,k (t) = ηj−k + e−2t∑n>m

[rn,m(0)− ηn−m] (Ij−n(γt)Ik−m(γt)− Ij−m(γt)Ik−n(γt)

),

for j ≥ k , whereη = tanh (J/kT )

is the so called short-range order parameter of the Ising model.

František Štampach (MAFIA) Ising model August 18-21, 2015 25 / 29

Page 100: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Solution for the spin correlations

Similarly as in the case of magnetization, one can multiply the master equation by the productσjσk (j 6= k ) and sum over the σ variables.

Taking into account the Glauber expression for wn, the resulting equation reads

ddt

rj,k (t) = −2rj,k (t) +12γ(rj,k−1(t) + rj,k+1(t) + rj−1,k (t) + rj+1,k (t)

), k 6= j.

For j = k we have the identity rk,k (t) = 1.

The derivation of the general solution is not so straightforward as before. Nevertheless, it canbe derived in terms of modified Bessel functions again:

rj,k (t) = ηj−k + e−2t∑n>m

[rn,m(0)− ηn−m] (Ij−n(γt)Ik−m(γt)− Ij−m(γt)Ik−n(γt)

),

for j ≥ k , whereη = tanh (J/kT )

is the so called short-range order parameter of the Ising model.

František Štampach (MAFIA) Ising model August 18-21, 2015 25 / 29

Page 101: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Contents

1 The general Ising model

2 Time evolution of many-spin systems

3 Time evolution of magnetization

4 Time evolution of spin correlations

5 Generalizations

František Štampach (MAFIA) Ising model August 18-21, 2015 26 / 29

Page 102: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Generalizations - spin systems in a magnetic field

The Ising model in a magnetic field (H 6= 0) is described via Hamiltonian

−J∑

mσmσm+1 − H

∑nσn.

Glauber introduced the formula for the transition rates

wn(σ) =12

(1− βσn +

12γ(β − σn)(σn−1 + σn+1)

).

The new parameter β correspond to the magnetic field β = tanh (H/kT )

The evolution equation for magnetization is more complicated since it is an inhomogenoussystem combining functions qn with pair-correlations rn−1,n and rn,n+1.

Nevertheless, the general solution for magnetization has been found even in the case of timedependent magnetic field H = H(t),

qn(t) = e−t∑

k

qk (0)In−k (γt) +1

kT1− η2

1 + η2

∫ t

0e−(1−γ)(t−s)H(s)ds.

František Štampach (MAFIA) Ising model August 18-21, 2015 27 / 29

Page 103: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Generalizations - spin systems in a magnetic field

The Ising model in a magnetic field (H 6= 0) is described via Hamiltonian

−J∑

mσmσm+1 − H

∑nσn.

Glauber introduced the formula for the transition rates

wn(σ) =12

(1− βσn +

12γ(β − σn)(σn−1 + σn+1)

).

The new parameter β correspond to the magnetic field β = tanh (H/kT )

The evolution equation for magnetization is more complicated since it is an inhomogenoussystem combining functions qn with pair-correlations rn−1,n and rn,n+1.

Nevertheless, the general solution for magnetization has been found even in the case of timedependent magnetic field H = H(t),

qn(t) = e−t∑

k

qk (0)In−k (γt) +1

kT1− η2

1 + η2

∫ t

0e−(1−γ)(t−s)H(s)ds.

František Štampach (MAFIA) Ising model August 18-21, 2015 27 / 29

Page 104: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Generalizations - spin systems in a magnetic field

The Ising model in a magnetic field (H 6= 0) is described via Hamiltonian

−J∑

mσmσm+1 − H

∑nσn.

Glauber introduced the formula for the transition rates

wn(σ) =12

(1− βσn +

12γ(β − σn)(σn−1 + σn+1)

).

The new parameter β correspond to the magnetic field β = tanh (H/kT )

The evolution equation for magnetization is more complicated since it is an inhomogenoussystem combining functions qn with pair-correlations rn−1,n and rn,n+1.

Nevertheless, the general solution for magnetization has been found even in the case of timedependent magnetic field H = H(t),

qn(t) = e−t∑

k

qk (0)In−k (γt) +1

kT1− η2

1 + η2

∫ t

0e−(1−γ)(t−s)H(s)ds.

František Štampach (MAFIA) Ising model August 18-21, 2015 27 / 29

Page 105: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Generalizations - spin systems in a magnetic field

The Ising model in a magnetic field (H 6= 0) is described via Hamiltonian

−J∑

mσmσm+1 − H

∑nσn.

Glauber introduced the formula for the transition rates

wn(σ) =12

(1− βσn +

12γ(β − σn)(σn−1 + σn+1)

).

The new parameter β correspond to the magnetic field β = tanh (H/kT )

The evolution equation for magnetization is more complicated since it is an inhomogenoussystem combining functions qn with pair-correlations rn−1,n and rn,n+1.

Nevertheless, the general solution for magnetization has been found even in the case of timedependent magnetic field H = H(t),

qn(t) = e−t∑

k

qk (0)In−k (γt) +1

kT1− η2

1 + η2

∫ t

0e−(1−γ)(t−s)H(s)ds.

František Štampach (MAFIA) Ising model August 18-21, 2015 27 / 29

Page 106: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Generalization - multi-temperature Ising models

It is possible to think of a model with a spin chain whose every particle is associated with itsown heat reservoir of temperature Tn.

This model is described by the same way as before. Only the factor γ from the Glauber’sexpression for rates depends on the index:

γn = tanh (2J/kTn) .

Some attention has been paid to two-temperature kinetic Ising models, see [Racz, Zia 94],[Mobilia, Schmittmann, Zia 05], [Mazilu, Williams 09], and others.

The two-temperature model represent the simplest generalization beyond the completelyuniform system. However, there are other possibilities for modifications which are interestingand perhaps physically relevant, e.g.,

Tn ∼α

n.

František Štampach (MAFIA) Ising model August 18-21, 2015 28 / 29

Page 107: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Generalization - multi-temperature Ising models

It is possible to think of a model with a spin chain whose every particle is associated with itsown heat reservoir of temperature Tn.

This model is described by the same way as before. Only the factor γ from the Glauber’sexpression for rates depends on the index:

γn = tanh (2J/kTn) .

Some attention has been paid to two-temperature kinetic Ising models, see [Racz, Zia 94],[Mobilia, Schmittmann, Zia 05], [Mazilu, Williams 09], and others.

The two-temperature model represent the simplest generalization beyond the completelyuniform system. However, there are other possibilities for modifications which are interestingand perhaps physically relevant, e.g.,

Tn ∼α

n.

František Štampach (MAFIA) Ising model August 18-21, 2015 28 / 29

Page 108: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Generalization - multi-temperature Ising models

It is possible to think of a model with a spin chain whose every particle is associated with itsown heat reservoir of temperature Tn.

This model is described by the same way as before. Only the factor γ from the Glauber’sexpression for rates depends on the index:

γn = tanh (2J/kTn) .

Some attention has been paid to two-temperature kinetic Ising models, see [Racz, Zia 94],[Mobilia, Schmittmann, Zia 05], [Mazilu, Williams 09], and others.

The two-temperature model represent the simplest generalization beyond the completelyuniform system. However, there are other possibilities for modifications which are interestingand perhaps physically relevant, e.g.,

Tn ∼α

n.

František Štampach (MAFIA) Ising model August 18-21, 2015 28 / 29

Page 109: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

Generalization - multi-temperature Ising models

It is possible to think of a model with a spin chain whose every particle is associated with itsown heat reservoir of temperature Tn.

This model is described by the same way as before. Only the factor γ from the Glauber’sexpression for rates depends on the index:

γn = tanh (2J/kTn) .

Some attention has been paid to two-temperature kinetic Ising models, see [Racz, Zia 94],[Mobilia, Schmittmann, Zia 05], [Mazilu, Williams 09], and others.

The two-temperature model represent the simplest generalization beyond the completelyuniform system. However, there are other possibilities for modifications which are interestingand perhaps physically relevant, e.g.,

Tn ∼α

n.

František Štampach (MAFIA) Ising model August 18-21, 2015 28 / 29

Page 110: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

References

1 E. Ising, Z. Physik 31, (1925)2 L. Onsager, Phys. Rev. 65, (1944)3 R. J. Glauber, J. Math. Phys. 4, (1965)4 R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, 19825 Z. Racz, R. K. P. Zia, Phys. Rev. E 49, (1994)6 M. Mobilia, B. Schmittmann, R. K. P. Zia, Phys. Rev. E 71, (2005)7 I. Mazilu, H. T. Williams, Phys. Rev. E 80, (2009)

Thank you!

František Štampach (MAFIA) Ising model August 18-21, 2015 29 / 29

Page 111: On the Ising spin model - PEOPLE ON FJFI CVUT CZpeople.fjfi.cvut.cz/stampfra/talks/Telc15_talk.pdf · On the Ising spin model František Štampach MAFIA student conference August

References

1 E. Ising, Z. Physik 31, (1925)2 L. Onsager, Phys. Rev. 65, (1944)3 R. J. Glauber, J. Math. Phys. 4, (1965)4 R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, 19825 Z. Racz, R. K. P. Zia, Phys. Rev. E 49, (1994)6 M. Mobilia, B. Schmittmann, R. K. P. Zia, Phys. Rev. E 71, (2005)7 I. Mazilu, H. T. Williams, Phys. Rev. E 80, (2009)

Thank you!

František Štampach (MAFIA) Ising model August 18-21, 2015 29 / 29


Recommended