+ All Categories
Home > Documents > On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor...

On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor...

Date post: 12-Feb-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
39
Transcript
Page 1: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

On The Number Of Slim Semimodular Lattices

Gábor Czédli, Tamás Dékány, László Ozsvárt,Nóra Szakács, Balázs Udvari

Bolyai Institute, University of Szeged

Conference on Universal Algebra and Lattice TheoryDedicated to the 80-th birthday of Béla Csákány

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 1 / 19

Page 2: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Slim semimodular lattices

Let Ji L denote the set of non-zero join-irreducible elements of the �nite

lattice L.

De�nition

L is slim, if Ji L contains no 3-element antichain.

L is a slim semimodular lattice (SSL), if it is slim and semimodular.

Motivation: Czédli and Schmidt proved that the duals of SSLs are exactlythe composition series lattices of groups.

Our goal: to count the SSLs of a given size (the size of L is the number ofits elements).Nssl(n): the number of SSLs with the size of n.

Previous results: A recursive formula for every lattice of a given size(Heitzig, Reinhold).A recursive formula for the number of SSLs of a given length (Czédli,Ozsvárt, Udvari).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 2 / 19

Page 3: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Slim semimodular lattices

Let Ji L denote the set of non-zero join-irreducible elements of the �nite

lattice L.

De�nition

L is slim, if Ji L contains no 3-element antichain.

L is a slim semimodular lattice (SSL), if it is slim and semimodular.

Motivation: Czédli and Schmidt proved that the duals of SSLs are exactlythe composition series lattices of groups.

Our goal: to count the SSLs of a given size (the size of L is the number ofits elements).Nssl(n): the number of SSLs with the size of n.

Previous results: A recursive formula for every lattice of a given size(Heitzig, Reinhold).A recursive formula for the number of SSLs of a given length (Czédli,Ozsvárt, Udvari).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 2 / 19

Page 4: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Slim semimodular lattices

Let Ji L denote the set of non-zero join-irreducible elements of the �nite

lattice L.

De�nition

L is slim, if Ji L contains no 3-element antichain.

L is a slim semimodular lattice (SSL), if it is slim and semimodular.

Motivation: Czédli and Schmidt proved that the duals of SSLs are exactlythe composition series lattices of groups.

Our goal: to count the SSLs of a given size (the size of L is the number ofits elements).Nssl(n): the number of SSLs with the size of n.

Previous results: A recursive formula for every lattice of a given size(Heitzig, Reinhold).A recursive formula for the number of SSLs of a given length (Czédli,Ozsvárt, Udvari).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 2 / 19

Page 5: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Slim semimodular lattices

Let Ji L denote the set of non-zero join-irreducible elements of the �nite

lattice L.

De�nition

L is slim, if Ji L contains no 3-element antichain.

L is a slim semimodular lattice (SSL), if it is slim and semimodular.

Motivation: Czédli and Schmidt proved that the duals of SSLs are exactlythe composition series lattices of groups.

Our goal: to count the SSLs of a given size (the size of L is the number ofits elements).Nssl(n): the number of SSLs with the size of n.

Previous results: A recursive formula for every lattice of a given size(Heitzig, Reinhold).A recursive formula for the number of SSLs of a given length (Czédli,Ozsvárt, Udvari).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 2 / 19

Page 6: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

ExampleSSLs possess planar diagrams.

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 3 / 19

Page 7: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Overview of SSLs

First, we will characterize the planar diagrams belonging to SSLs.

Let D1,D2 two planar diagrams. Two planar diagrams, D1 and D2 aresimilar, if there is a lattice isomorphism ϕ for whichif x ≺ y and x ≺ z in D1 then y is to the left of z i� ϕ(y) is to the left ofϕ(z).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 4 / 19

Page 8: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Example

These two diagrams are not similar, but they belong to the same lattice.

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 5 / 19

Page 9: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Permutations and diagrams 1.Consider a grid G = {0, 1, . . . , h} × {0, 1, . . . h}.Let cell(i , j) = {(i , j), (i − 1, j), (i , j − 1), (i − 1, j − 1)}.

Denote by con∨(cell(i , j)) the smallest join-congruence that collapses thetop boundary of cell(i , j).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 6 / 19

Page 10: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Permutations and diagrams 1.Consider a grid G = {0, 1, . . . , h} × {0, 1, . . . h}.Let cell(i , j) = {(i , j), (i − 1, j), (i , j − 1), (i − 1, j − 1)}.Denote by con∨(cell(i , j)) the smallest join-congruence that collapses thetop boundary of cell(i , j).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 6 / 19

Page 11: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Permutations and diagrams 1.Consider a grid G = {0, 1, . . . , h} × {0, 1, . . . h}.Let cell(i , j) = {(i , j), (i − 1, j), (i , j − 1), (i − 1, j − 1)}.Denote by con∨(cell(i , j)) the smallest join-congruence that collapses thetop boundary of cell(i , j).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 6 / 19

Page 12: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Permutations and diagrams 2.

Let π ∈ Sh. Consider βπ =∨h

i=1 con∨(cell(i , π(i))).

Lemma

G/βπ is a slim semimodular diagram.

Lemma

The mapping π 7→ G/βπ is a bijection between the elements of Sh and the

slim semimodular diagrams of length h.

In other words, we can count permutations instead of SSLs. We only needto know two more things:1. What is the size of the SSL belonging to a permutation?2. We must know whether two permutations belong to the same SSL ornot.

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 7 / 19

Page 13: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Permutations and diagrams 2.

Let π ∈ Sh. Consider βπ =∨h

i=1 con∨(cell(i , π(i))).

Lemma

G/βπ is a slim semimodular diagram.

Lemma

The mapping π 7→ G/βπ is a bijection between the elements of Sh and the

slim semimodular diagrams of length h.

In other words, we can count permutations instead of SSLs. We only needto know two more things:1. What is the size of the SSL belonging to a permutation?2. We must know whether two permutations belong to the same SSL ornot.

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 7 / 19

Page 14: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Permutations and diagrams 2.

Let π ∈ Sh. Consider βπ =∨h

i=1 con∨(cell(i , π(i))).

Lemma

G/βπ is a slim semimodular diagram.

Lemma

The mapping π 7→ G/βπ is a bijection between the elements of Sh and the

slim semimodular diagrams of length h.

In other words, we can count permutations instead of SSLs. We only needto know two more things:1. What is the size of the SSL belonging to a permutation?2. We must know whether two permutations belong to the same SSL ornot.

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 7 / 19

Page 15: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Permutations and diagrams 2.

Let π ∈ Sh. Consider βπ =∨h

i=1 con∨(cell(i , π(i))).

Lemma

G/βπ is a slim semimodular diagram.

Lemma

The mapping π 7→ G/βπ is a bijection between the elements of Sh and the

slim semimodular diagrams of length h.

In other words, we can count permutations instead of SSLs. We only needto know two more things:

1. What is the size of the SSL belonging to a permutation?2. We must know whether two permutations belong to the same SSL ornot.

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 7 / 19

Page 16: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Permutations and diagrams 2.

Let π ∈ Sh. Consider βπ =∨h

i=1 con∨(cell(i , π(i))).

Lemma

G/βπ is a slim semimodular diagram.

Lemma

The mapping π 7→ G/βπ is a bijection between the elements of Sh and the

slim semimodular diagrams of length h.

In other words, we can count permutations instead of SSLs. We only needto know two more things:1. What is the size of the SSL belonging to a permutation?

2. We must know whether two permutations belong to the same SSL ornot.

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 7 / 19

Page 17: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Permutations and diagrams 2.

Let π ∈ Sh. Consider βπ =∨h

i=1 con∨(cell(i , π(i))).

Lemma

G/βπ is a slim semimodular diagram.

Lemma

The mapping π 7→ G/βπ is a bijection between the elements of Sh and the

slim semimodular diagrams of length h.

In other words, we can count permutations instead of SSLs. We only needto know two more things:1. What is the size of the SSL belonging to a permutation?2. We must know whether two permutations belong to the same SSL ornot.

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 7 / 19

Page 18: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Permutations and diagrams 3. - another example

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 8 / 19

Page 19: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Permutations determine the size

Let inv(π) denote the number of inversions in π ∈ Sh, that is, the numberof (i , j) ∈

(h2

)for which i < j and π(i) > π(j).

Proposition

Let K be the lattice belonging to the h × h grid G and π ∈ Sh. Then|K/βπ| = h + 1+ inv(π).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 9 / 19

Page 20: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Permutations determine the size

Let inv(π) denote the number of inversions in π ∈ Sh, that is, the numberof (i , j) ∈

(h2

)for which i < j and π(i) > π(j).

Proposition

Let K be the lattice belonging to the h × h grid G and π ∈ Sh. Then|K/βπ| = h + 1+ inv(π).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 9 / 19

Page 21: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Permutations belonging to the same lattice 1.

Let π ∈ Sh. The interval S = [i , . . . , j ] is a segment of π if π(S) = S ,π({1, . . . , i − 1}) = {1, . . . , i − 1}, π({j + 1, . . . , h}) = {j + 1, . . . , h},and there is no [i ′, . . . , j ′] ( S with the same property.

De�nition

For π1, π2 ∈ Sh, π1 ∼ π2 if their segments are the same and for each

segment S : π2|S = π1|S or π2|S = (π1|S)−1.

For example:(1 2 3 4 5 61 3 4 2 6 5

)∼(

1 2 3 4 5 61 4 2 3 6 5

).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 10 / 19

Page 22: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Permutations belonging to the same lattice 1.

Let π ∈ Sh. The interval S = [i , . . . , j ] is a segment of π if π(S) = S ,π({1, . . . , i − 1}) = {1, . . . , i − 1}, π({j + 1, . . . , h}) = {j + 1, . . . , h},and there is no [i ′, . . . , j ′] ( S with the same property.

De�nition

For π1, π2 ∈ Sh, π1 ∼ π2 if their segments are the same and for each

segment S : π2|S = π1|S or π2|S = (π1|S)−1.

For example:(1 2 3 4 5 61 3 4 2 6 5

)∼(

1 2 3 4 5 61 4 2 3 6 5

).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 10 / 19

Page 23: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Permutations belonging to the same lattice 2.

Lemma

Let π, σ ∈ Sh. The SSLs G/βπ and G/βσ are isomorphic i� π ∼ σ.

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 11 / 19

Page 24: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Counting 1.

P(h, k) := {π ∈ Sh : inv(π) = k}, p(h, k) := |P(h, k)|.

We can determine p(h, k) using its generating function:

Theorem (Rodriguez)∑(h2)

j=0 p(h, j)xj =

∏hj=1

1−x j1−x .

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 12 / 19

Page 25: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Counting 1.

P(h, k) := {π ∈ Sh : inv(π) = k}, p(h, k) := |P(h, k)|.

We can determine p(h, k) using its generating function:

Theorem (Rodriguez)∑(h2)

j=0 p(h, j)xj =

∏hj=1

1−x j1−x .

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 12 / 19

Page 26: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Counting 2.

Let I (h, k) = {π ∈ Sh : inv(π) = k, π2 = id}, i(h, k) := |I (h, k)|.

Proposition

i(h, k) = i(h − 1, k) +∑h

s=2 i(h − 2, k − 2s + 3).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 13 / 19

Page 27: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Counting 2.

Let I (h, k) = {π ∈ Sh : inv(π) = k, π2 = id}, i(h, k) := |I (h, k)|.

Proposition

i(h, k) = i(h − 1, k) +∑h

s=2 i(h − 2, k − 2s + 3).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 13 / 19

Page 28: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Counting 3.

De�nition

π ∈ Sh is irreducible, if it consists of one segment.

Let I (h, k) = {π ∈ Sh : inv(π) = k, π2 = id , π is irreducible},i(h, k) := |I (h, k)|.

Proposition

i(h, k) = i(h, k)−∑h−1

s=1

∑kt=0 i(s, t)i(h − s, k − t).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 14 / 19

Page 29: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Counting 3.

De�nition

π ∈ Sh is irreducible, if it consists of one segment.

Let I (h, k) = {π ∈ Sh : inv(π) = k, π2 = id , π is irreducible},i(h, k) := |I (h, k)|.

Proposition

i(h, k) = i(h, k)−∑h−1

s=1

∑kt=0 i(s, t)i(h − s, k − t).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 14 / 19

Page 30: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Counting 4.

Let P(h, k) = {π ∈ Sh : inv(π) = k , π is irreducible}, p(h, k) := |P(h, k)|.

Proposition

p(h, k) = p(h, k)−∑h−1

s=1

∑kt=0 p(s, t)p(h − s, k − t).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 15 / 19

Page 31: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Counting 4.

Let P(h, k) = {π ∈ Sh : inv(π) = k , π is irreducible}, p(h, k) := |P(h, k)|.

Proposition

p(h, k) = p(h, k)−∑h−1

s=1

∑kt=0 p(s, t)p(h − s, k − t).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 15 / 19

Page 32: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Counting 5.

Denote by [π]∼ the ∼-class of π.

Let P∼(h, k) = {[π]∼ : inv(π) = k , π ∈ Sh}, p∼(h, k) := |P∼(h, k)|.

Proposition

p∼(h, k) = 12

∑hs=1

∑kt=0(p(s, t) + i(s, t))p∼(h − s, k − t).

Finally,

Theorem

Nssl(n) =∑n−1

h=0 p∼(h, n − h − 1).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 16 / 19

Page 33: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Counting 5.

Denote by [π]∼ the ∼-class of π.

Let P∼(h, k) = {[π]∼ : inv(π) = k , π ∈ Sh}, p∼(h, k) := |P∼(h, k)|.

Proposition

p∼(h, k) = 12

∑hs=1

∑kt=0(p(s, t) + i(s, t))p∼(h − s, k − t).

Finally,

Theorem

Nssl(n) =∑n−1

h=0 p∼(h, n − h − 1).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 16 / 19

Page 34: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Counting 5.

Denote by [π]∼ the ∼-class of π.

Let P∼(h, k) = {[π]∼ : inv(π) = k , π ∈ Sh}, p∼(h, k) := |P∼(h, k)|.

Proposition

p∼(h, k) = 12

∑hs=1

∑kt=0(p(s, t) + i(s, t))p∼(h − s, k − t).

Finally,

Theorem

Nssl(n) =∑n−1

h=0 p∼(h, n − h − 1).

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 16 / 19

Page 35: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Results with computer algebra 1.Nssl(1) = Nssl(2) = Nssl(3) = 1,Nssl(4) = 2,Nssl(5) = 3,Nssl(6) = 5,Nssl(7) = 9.

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 17 / 19

Page 36: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Results with computer algebra 2.

Nssl(50) = 14, 546, 017, 036, 127 ≈ 1.4 · 1013.(This was computed on a typical PC in a few hours).

The recursion by Heitzig and Reinhold for the number of all lattices of sizen takes far more time to compute � the exact number is known only up ton = 18.

Also, we proved that the number of slim, semimodular, planar latticediagrams of size n is asymptotically a constant times 2n.

Recently we used permutations in a similar way to improve our previousrecursion for SSLs of length h.

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 18 / 19

Page 37: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Results with computer algebra 2.

Nssl(50) = 14, 546, 017, 036, 127 ≈ 1.4 · 1013.(This was computed on a typical PC in a few hours).

The recursion by Heitzig and Reinhold for the number of all lattices of sizen takes far more time to compute � the exact number is known only up ton = 18.

Also, we proved that the number of slim, semimodular, planar latticediagrams of size n is asymptotically a constant times 2n.

Recently we used permutations in a similar way to improve our previousrecursion for SSLs of length h.

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 18 / 19

Page 38: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Results with computer algebra 2.

Nssl(50) = 14, 546, 017, 036, 127 ≈ 1.4 · 1013.(This was computed on a typical PC in a few hours).

The recursion by Heitzig and Reinhold for the number of all lattices of sizen takes far more time to compute � the exact number is known only up ton = 18.

Also, we proved that the number of slim, semimodular, planar latticediagrams of size n is asymptotically a constant times 2n.

Recently we used permutations in a similar way to improve our previousrecursion for SSLs of length h.

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 18 / 19

Page 39: On The Number Of Slim Semimodular Lattices · On The Number Of Slim Semimodular Lattices Gábor Czédli, amásT Dékány, László Ozsvárt, Nóra Szakács, Balázs Udvari Bolyai

Thank you for your attention!

Our paper's preprint can be viewed atwww.math.u-szeged.hu/∼czedli

Czédli,Dékány,Ozsvárt,Szakács,Udvari Slim Semimodular Lattices Szeged, 2012 19 / 19


Recommended