+ All Categories
Home > Documents > Onboard energy storage- The experience of a tramway manufacturer.pdf

Onboard energy storage- The experience of a tramway manufacturer.pdf

Date post: 23-Oct-2015
Category:
Upload: ethanroc
View: 45 times
Download: 1 times
Share this document with a friend
Popular Tags:
45
TRANSPORT Jean-Paul Moskowitz 13/04/2010 Onboard Energy Storage: The experience of a Tramway Manufacturer
Transcript

TRANSPORT

Jean-Paul Moskowitz13/04/2010

Onboard Energy Storage: The experience of a Tramway Manufacturer

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 2

Agenda

Market requirements – Energy needs Page 2

Energy Storage technologies : Flywheel Page 14

Energy Storage technologies : NiMH Batteries Page 23

Energy Storage technologies : Supercapacitors: STEEM project Page 28

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 3

The need for clean public urban transport keeps growing…

• with new market expectations …Visual impact: no overhead contact line

autonomy

Energy optimisationconsumption reductionreduction in peak power required from power supply network

From a crossroad ...(e.g. Nizza, ~500m)

… to the preservation of a whole historical city center

(e.g. Bordeaux, ~30% line)

Dublin (IRL)

Barcelona (S)Lyon (F)

Bordeaux(F)

• … and usual constraintsAcquisition Cost, Life Cycle CostAvailability, Safety (fire/smoke …)Weight, volume, axle loadNoise, shock, vibrationRemain a zero-emission vehicleKeep passenger capacity unchanged

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 4

Erasing the OverHead Contact Line:makes tramway integration into the city easier

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 5

Erasing the OverHead Contact Line:makes tramway integration into the city easier

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 6

Erasing the OverHead Contact Line:makes tramway integration into the city easier

Copyright: CANCA/Eric Boizet

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 7

Typical tramway operator’s requirementsover a catenaryless section

• Nominal trip: Speed >= 30 km/h with no unscheduled stop

• Heavy traffic: Reduced speed, twice the nominal time

• Tramway stopped:Possibility to have one, two or three non scheduled stops between regular passenger exchange stations

• Failed train: Allow push-pull operation by another train

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 8

Braking energy recovery

Sub-station Traction Braking

Electric Sub-station

Recovery Grid restitution

Rheostatic losses

Braking energy recovery WITHOUTOnboard Energy Storage System (ESS)

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 9

Braking energy recovery

TractionTraction Braking

Electric Sub-station

Recovery Grid restitution

Rheostatic lossesESS discharge ESS recharge

Sub-station

Braking energy recovery WITHOnboard Energy Storage System (ESS)

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 10

Erasing the OverHead Contact Line

Partial Autonomy (~400m) withOnboard Energy Storage System (ESS)

ESS Recharge from Substation whileStopped in passengerstation

ESS discharge Traction Energy Refill

ESS RechargeRheostatic losses

Braking Energy

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 11

Typical tramway figures

Some vehicle orders of magnitude

weight:

Mean consumption: Peak power:Mean power:

inc. auxiliaries: Life time:

Some tramway line characteristics

Average distance between stations: 400 mYearly tram mileage: 60 000 kmMean stop time in station: 20 s

50 t (empty) to 80 t (6 passagers/m²)6-7 kWh/km1000 to 1300 kW100 to 180 kW

15 to 80 kW30 years

Vehicle length 40 m

40 t (empty) to 60 t (6 passagers/m²)4-5 kWh/km650 to 900 kW80 to 150 kW

15 to 60 kW30 years

30 m

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 12

Energy consumption (40m tram)

AW0 / Paux=18kWEnergie CdT + Aux (kWh)

= f(Vmax, pente)

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700d (m)

E (k

Wh)

0% - 30km/h0% - 20 km/h2% - 30 km/h2% - 20km/h4% - 30km/h

AW0 / Paux=45kWEnergie CdT + Aux (kWh)

= f(Vmax, pente)

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700d (m)E

(kW

h)

0% - 30km/h0% - 20 km/h2% - 30 km/h2% - 20km/h4% - 30km/h

Influence of auxiliaries

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 13

Energy consumption (40m tram)

Influence of passenger loadAW0 / Paux=45kW

Energie CdT + Aux (kWh)= f(Vmax, pente)

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700d (m)

E (k

Wh)

0% - 30km/h0% - 20 km/h2% - 30 km/h2% - 20km/h4% - 30km/h

AW2 / Paux=45kWEnergie CdT + Aux (kWh)

= f(Vmax, pente)

0

1

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700d (m)

E (k

Wh)

0% - 30km/h0% - 20 km/h2% - 30 km/h2% - 20km/h4% - 30km/h

AW3 / Paux=45kWEnergie CdT + Aux (kWh)

= f(Vmax, pente)

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700d (m)

E (k

Wh)

0% - 30km/h0% - 20 km/h2% - 30 km/h2% - 20km/h4% - 30km/h

AW2 : 4 pax / m²

AW3 : 6 pax. / m²

AW0 : Empty

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 14

Economy: for an even better braking energy recovery

Autonomy: erasing the OverHead Contact Line

Key parameters

• Energy consumption depends on:gradient, load, speed, auxiliaries ...Operational conditions: number of unscheduled stops, comfort level(HVAC)...

• Availability is of paramount importance – Degraded modes are key factors High amount of energy is required

• 60 000 km/year 150 000 cycles/year in nominal mode 400m/interstation

• Lifetime and cyclability are essential

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 15

Erasingcatenary

NiMHbatteries

APS

Technologies to meet market requirements

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 16

Erasingcatenary

NiMHbatteries

APS

Technologies to meet market requirements

Economy

Reversible Sub-station

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 17

Erasingcatenary

NiMHbatteries

APS

Technologies to meet market requirements

Economy

Reversible Sub-station

supercapacitors

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 18

Erasingcatenary

NiMHbatteries

APS

Technologies to meet market requirements

Economy

Reversible Sub-station

supercapacitors

Flywheel

Li-Ionbatteries

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 19

Agenda

Market requirements – Energy needs Page 2

Energy Storage technologies : Flywheel Page 14

Energy Storage technologies : NiMH Batteries Page 23

Energy Storage technologies : Supercapacitors: STEEM project Page 28

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 20

Energy Storage technologies : FlywheelRotterdam experience

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 21

Schematic view of Flywheel Motor/Generator Unit

Function of the electronicpower converter

Energy Storage technologies: Flywheel

Storage of electric power : conversion to kinetic energy

rotor

Bearing unitStator

Cooling unit

Containment unit

Magnetic unit

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 22

• Dimensions (mm): 2300x1400x514

• Weight (all inc.): 1200 kg

• Power max.: 325 kW

• Power continous: 213 kW

• Usable energy: 4 kWh

SOC rotation speed(rpm) energy

stored

(kWh)energyusable

(kWh)-0.33 0 0 -

0 11 000 1.33 00.2 13 914 2.13 0.80.4 16 316 2.93 1.60.6 18 407 3.73 2.40.8 20 283 4.53 3.21 22 000 5.33 4

Energy Storage technologies: FlywheelRotterdam Experience

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 23

Energy Storage technologies: FlywheelRotterdam Experience

Performances for autonomy

• AW0 max: 2 km - 50 km/h

• AW3 max: 1.5 km - 45 km/h (without heating)

• Mean interstation in AW3: 500 m – 45 km/h - 0,45 m/s²(see figures)

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 24

Energy Storage technologies: FlywheelRotterdam Experience

Performances under catenary (1/3) : peak shaving

Idc FW (A)Ipanto (A)

Without Flywheel : I panto max = 1000A

With Flywheel : I panto max = 700A

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 25

Energy Storage technologies: FlywheelRotterdam Experience

Performances under catenary (2/3) : smoothing catenary voltage

Without Flywheel With Flywheel

Rotterdam nominal voltage is 600V (not 750 V)

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 26

Energy Storage technologies: FlywheelRotterdam Experience

Performances under catenary (3/3): braking energy recovery

Without Flywheel: Prheo = 300 kW

With Flywheel: Prheo = 0 kW

Pdc FW (kW)Ppanto (kW)Prheo (kW)

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 27

Energy Storage technologies: Flywheel

Good balance Energy/Power

Actual equipments are prototypes which have not yet reached industrial maturity:

• Weight/volume optimisation• Industrialisation process• Improved reliability and safety

Ongoing R&D project, with the support of ANR, aims at developing the product suiting railways constraints.

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 28

Agenda

Market requirements – Energy needs Page 2

Energy Storage technologies : Flywheel Page 14

Energy Storage technologies : NiMH Batteries Page 23

Energy Storage technologies : Supercapacitors: STEEM project Page 28

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 29

Energy Storage technologies: NiMH batteries Partial Autonomy in Nice (F)

Batteries NiMH SAFT: NHP 10-340 68 modules - 12V eachOperating temperature : 25 °C - cooling: glycoled waterMax power (end of life): 200 kWUseful capacity: 34 Ah

Battery box

Switchgear box

ChargerBTMS (Battery Thermal Management System)

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 30

Energy Storage technologies: NiMH batteries Partial Autonomy in Nice (F)

Battery box

Charger box

Switchgear box

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 31

Energy Storage technologies: NiMH batteries Partial Autonomy in Nice (F)

Battery boxPantographsupport

Voltage – temperature measure board

Fans

Batteries Modules

Accessoriescompartment

Fuses

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 32

Energy Storage technologies: NiMH batteries Partial Autonomy in Nice (F)

• Revenue service in november 2007

• 8,7 km, 21 stations, 20 Citadis 302 trams

• No overhead wires on places Masséna (435 m) and Garibaldi (485 m)

• Battery contractual lifetime: 5 years, i.e. 35 000 cycles

Comte de Falicon

Jean MédecinMasséna

Jean Jaurès

Garribaldi

Pont Michel

4100 m

3200 m

435 m

485 m332 m

Nice Line 1

CENTRE DE MAINTENANCE

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 33

Agenda

Market requirements – Energy needs Page 2

Energy Storage technologies : Flywheel Page 14

Energy Storage technologies : NiMH Batteries Page 23

Energy Storage technologies : Supercapacitors: STEEM project Page 28

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 34

R&D project between Alstom Transport, RATP and INRETS, with the support of ADEME underPREDIT national funding program

: Operate between 2 stations with pantograph loweredEvaluate energy savingsTest quick recharge in depotAcquire REX on supercapacitors, their behaviourAcquire REX on the operation of a tram with supercapacitors

Energy Storage technologies: SupercapacitorsSTEEM project (ALSTOM – RATP – supported by ADEME)

Experience objectives

RATP T3: 7.9 km17 stations21 Citadis 402(18 during peak hours)

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 35

STEEM : Energy consumption simulations for T3 line

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 36

STEEM : energy needed for catenaryless runs

Bd V

icto

rBa

lard

Desn

ouet

tes

Pte

Vers

aille

sG.

Bra

ssen

sBr

anci

onPt

e de

Van

ves

Dido

tJe

an M

oulin

Pte

d’Or

léan

sM

onts

ouris

Cité

Uni

vers

itaire

Stad

e Ch

arlé

tyPe

uplie

rsPt

e d’

Ital

iePt

e de

Cho

isy

Pte

d’Iv

ry

Bd V

icto

rBa

lard

Desn

ouet

tes

Pte

Vers

aille

sG.

Bra

ssen

sBr

anci

onPt

e de

Van

ves

Dido

tJe

an M

oulin

Pte

d’Or

léan

sM

onts

ouris

Cité

Uni

vers

itaire

Stad

e Ch

arlé

tyPe

uplie

rsPt

e d’

Ital

iePt

e de

Cho

isy

Autonomy zone

AW3 : 6 pax / m²

1,6kWh

Pte

d’Iv

ry

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 37

W utile = 1,62 KWhP soc 0 = 350 KWP soc 1 = 500 KW

Msc=720 kg

Recharge time < 20 s

STEEM : Use of Batscap modules

Cell: 2600F 1 module = 20 cells connected in series

STEEM supercaps box:48 modules, 6 branches in parallel, each with 8 modules in series

U = 2,5 V

U = 50 V

U = 400 V

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 38

STEEM : supercaps modules and chopper

Supercaps

Power ElectronicsV= 2300 x 1600 x 590 mm

Weight : 1350kg

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 39

STEEM:Installation of supercapacitors on roof of RATP Citadis

ESS box: supercaps and chopper

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 40

Défauts

Tests MaintenanceExploitationEtat

du tram

M1 M2

NN

MODEM1 M2

SS

FREINS

SNP

SNM

NNM

12 14 1611 13 15

21322231

23252426

750 V

Présence tensions

24 V 400 V Retourécran ICS

Divers

Etdu

5%

750 V

Disjoncteur principal

Disjoncteur SATEE

30Km/h

STEEM: Modifications in driver’s cab

commutators

buttons

Driver’s screen

3 driving modes :•By catenary with ESS support : ECO mode (onboard braking energy recovery)•Without catenary, only ESS :AUTONOMY mode (between Porte d’Italie and Porte de Choisy)•Only by catenary (T3 actual tram)

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 41

STEEM: Operation in revenue service – end of March

15 761 km with 998 round trips

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 42

STEEM – performances in autonomy

• Porte d’Italie-Porte de Choisy (300m) : tested at night in AW3 (6 passengers/m²)

• With passengers in revenue service

• In manual mode or automatic mode (detection by GPS)

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 43

STEEM – performances in Ecomode : up to 30%

Braking energy stored in supercaps is reused for acceleration and auxiliaries during next traction phase

Comparison with another tram in operation at the same time

These preliminaries result must be watched over a long period of time to avoid bias

Comparison of energy consumption

0

50

100

150

200

250

300

14:55:00 16:07:00 17:19:00 18:31:00 19:43:00

Time

Ener

gy (k

Wh)

STEEM tram Classic tram

Influencing parameters

peak/off-peak hours

auxiliaries consumption (HVAC, depending on temperature)

driving

IET RTS 2010 ; 13 - 15 April 2010, Birmingham, UK - P 44

Advantages of onboard energy storage

• Supercapacitors allow both autonomy and economy modes

• OverHead Contact Line removal on some parts of the line, for aesthetic reasons, construction requests, depending on operational conditions

• Energy savings up to 30%

• CO2 reduction

• Reduction of peak power demand

• Smoothing of supply voltage

• Safe operation (STEEM certification by Certifer)

www.alstom.com


Recommended