+ All Categories
Home > Documents > ONR Sea Otter - NeSoil

ONR Sea Otter - NeSoil

Date post: 14-Feb-2022
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
13
ONR Sea Otter N0001409M0228 Rapid Mobile Geotechnical Measurement System for Amphibious Operations Dr. Drake ONR Coastal Geosciences Program 7036961206 1 C2I, Inc. C-2I, Inc Arnis Mangolds 978-257-4820 [email protected]
Transcript

ONR Sea Otter

N00014‐09‐M‐0228

Rapid Mobile Geotechnical Measurement System for Amphibious Operations

Dr. Drake

ONR Coastal Geosciences Program

703‐696‐1206

1C‐2I, Inc.

C-2I, IncArnis [email protected]

Problem & Approach 

• Establish and map trafficability

in hostile near shore,  estuarine, and riverine

amphibious terrain

• Alternatives:– Single point probes only good for uniform beaches, 

susceptible to drop error– Drifters are unpredictable – Hyperspectral

cannot penetrate murky or turbulent water

– SEAL teams are exposed and require considerable 

logistical support

• Bottom crawlers can cover large areas, obtain  continuous data.    

C‐2I, Inc. 2

Advantages of the Sea Otter

• Wide track capable of traversing weak soils

• Operates in high current environments (tested to 

4kts)

• Independent of surface conditions

• Close and constant contact with sols for range 

sensitive instruments (e.g. magnetometers)

• Can operate tethered or non tethered

• Instrumentation can be mounted externally or 

internally

• Operates at 3 km/hr (though slower is better)

• Covers large area

• Easy deployment form surface craft, beach  

C‐2I, Inc. 3

Sea Otter Output Data

• Penetration resistance • scaled CBR, CI, RCI relates to NATO trafficability model• Continuous measurement to 18‐in depth

• Continuous measurement identifies channels, bars,  other invisible features

• Shear strength, draw bar pull or tractive effort• Ground slope (contour)• Surface  ground roughness• Water depth • Current speed and direction

• Simple to include visual reconnaissance, turbidity,  comms surveys

4C‐2I, Inc.

Contour maps generated  by vehicle mounted  barometer and tilt.  Slope and obstacle alarms shown 

in red. 

C‐2I, Inc. 5

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

110

0

1

2

3

4

5

6

7

8

9

10

Raw altitude data Contour map generated from

raw data

0

1

2

3

4

5

6

7

8

9

10

Meters M

eter

s Meters

Met

ers

Elev

atio

n (M

eter

s)

1

2

3

4

5

6

7

8

9

10

11

Survey Area

110’

100’

Met

ers

0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

110

0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

110

0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

110

0 4 8 12 16 20 24 28

Legend

2: 8” dia. Log 1: 3” dia. Log

3: 6” high Rock

1 2

3

2

3

2

3

Degrees

0

1

2

3

4

5

6

7

8

9

10

Meters

Met

ers

0

1

2

3

4

5

6

7

8

9

10

Meters

Met

ers

0

1

2

3

4

5

6

7

8

9

10

Meters

Met

ers

Elev

atio

n (M

eter

s)

Elev

atio

n (M

eter

s)

Elev

atio

n (M

eter

s)

Actual contour 

map (USGS)Vehicle 

generated 

contour 

map

Phase 1 Test Sites selected for worst case low bearing  strength soil conditions

•Coastal plain Taunton clays with high plasticity •Sandy silts•Silty sands•Organic silts 

6C‐2I, Inc.

Vehicle mounted mast‐penetrometer correlated to  NATO mobility model

F orce vs . Dis placementHerring  R iver, C L , 1/8‐in  rod, E ‐ penetrometer 

‐4

‐2

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10

Displacement (in)

Force (lbs)

Tes t 1, Upper S and,Unmolded 

7C‐2I, Inc.

Mounted in Sea Talon class vehicle

Mounted on Lemmings class vehicle

Data has greater sensitivity and reliability than impact based systems

Ripper provides continuous soil strength data. Alarms when 

penetrometer data should be taken

•Indicates soil 

changes

•Newer self cleaning 

system designed

•Strength changes 

confirmed with 

penetrometer data 

8C‐2I, Inc.

Testing performed on various vehicle chassis and  correlated to standard soil mechanic instrumentation

•Tested in weak saturated 

marine sediments

•Compared to proving ring and 

hydraulic manual penetrometers

9C‐2I, Inc.

Lemmings vehicle in background, Sea Talon in foreground

10C‐2I, Inc.

Rabbit 3000 Microcontroller

Garmin GPS 35HV

Microstrain 3DM 3-axis compass

Honeywell HPB-200 Barometer

Test Vehicles 

C‐2I, Inc. 11

Autonomous Navigation:  Herring River using Draper 

Labs algorithms

Tested radio based data exfiltration

Transmitter antenna at 1 ft and receiver at 5 ft offers 1.4 NM range 20 ft  receiver antenna offers 2.8NM range

Approach Non-US Operation (433 MHz

ISM)

US Operation (915 MHz

ISM)

Comments

ISM Transceiver based on AD7021

5 ft [Note 1]: 1.4 NM

5 ft: 0.8 NM - 100 bps operation (provides very good sensitivity) - More external parts - Higher power consumption - More mature part - Has transmit capability from tag (growth path)

20 ft: 2.8 NM 20 ft: 1.5 NM

ISM Transceiver based on AD7023

5 ft: 0.7 NM 5 ft: 0.4 NM - 1 kbps operation (pretty good sensitivity) - Fewer external parts - Power consumption offset by ‘sleep’ & ‘wake-up’ features - Very new part (preliminary data sheets) - Has transmit capability from tag (growth path) - Specifically designed for world-wide ISM operation

20 ft: 1.5 NM 20 ft: 0.8 NM

RKE Transmitter & Receiver, Receivers based on Melexis TH7111 (US Operation) & Linx RXM-433-LR (Non-US Operation)

5 ft: 0.6 NM 5 ft: 0.3 NM - Very simple, low cost, low power RKE transmitter and receiver - Very few external parts - Will require two ‘flavors’ of radio, or two radios built together

20 ft: 1.2 NM 20 ft: 0.6 NM

COTS radio tested Test site; shore to far  

shore 

12C‐2I, Inc.

C‐2I, Inc. 13

Wide track with interior alley for smooth profile, low ground pressure Mast and ripper extended

Wide track with external instrumentation mounts


Recommended