+ All Categories
Home > Documents > Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled...

Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled...

Date post: 16-Aug-2019
Category:
Upload: tranxuyen
View: 215 times
Download: 0 times
Share this document with a friend
22
Daiya Daiya Kaji Kaji and RIKEN GARIS Group and RIKEN GARIS Group Operation of the GARIS Operation of the GARIS (and chemistry plans) (and chemistry plans) RIKEN (The institute of Physical and Chemical Research), RIKEN (The institute of Physical and Chemical Research), Wako Wako - - shi, Saitama 351 shi, Saitama 351 - - 0198, JAPAN 0198, JAPAN 3rd Workshop on 3rd Workshop on Recoil Separator for Super Recoil Separator for Super - - heavy Element Chemistry heavy Element Chemistry August 27, 2004 August 27, 2004 Gesellschaft Gesellschaft f f ü ü r r Schwerionenforschung Schwerionenforschung , Darmstadt, Germany , Darmstadt, Germany
Transcript
Page 1: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

DaiyaDaiya KajiKaji and RIKEN GARIS Groupand RIKEN GARIS GroupOperation of the GARIS Operation of the GARIS (and chemistry plans)(and chemistry plans)

RIKEN (The institute of Physical and Chemical Research),RIKEN (The institute of Physical and Chemical Research),WakoWako--shi, Saitama 351shi, Saitama 351--0198, JAPAN0198, JAPAN

3rd Workshop on3rd Workshop on Recoil Separator for SuperRecoil Separator for Super--heavy Element Chemistry heavy Element Chemistry August 27, 2004 August 27, 2004 GesellschaftGesellschaft ffüürr SchwerionenforschungSchwerionenforschung, Darmstadt, Germany, Darmstadt, Germany

Page 2: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

ContentsContents

I. Introduction of GARIS (a gas-filled recoil separator at RIKEN)A) Ion-optical characteristics of GARIS

B) Windowless operation

C) Target system

D) Detection system for the heaviest element search

II. Operation of the GARISA) Equilibrium charge state of heavy element in a helium gas,

B) Collection efficiency

III. Transactinide chemistry plans using GARISA) GARIS + gas-jet transport + chemistry

Page 3: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

GGARIS (A gasARIS (A gas--filled recoil separator at RIKEN)filled recoil separator at RIKEN)-- IonIon--optical characteristics of GARIS optical characteristics of GARIS --

Part I Part I -- (A)(A)

Page 4: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

GARIS (a gasGARIS (a gas--filled recoil separator at RIKEN)filled recoil separator at RIKEN)

Projectile

Projectile

D1D1

Magnification (X)Magnification (X) --0.760.76

Magnification (Y)Magnification (Y) --1.991.99AcceptanceAcceptance 12.2 12.2 msrmsr

Total path lengthTotal path length 5.76 m5.76 mMaximum magnetic rigidityMaximum magnetic rigidity 2.16 Tm2.16 Tm

DispersionDispersion 0.97 cm/%0.97 cm/%

Q1Q1 Q2Q2 D2D2

Differential pumping systemDifferential pumping system

Target systemTarget system

Detection systemDetection system

1 1 µµm Mylar foilm Mylar foil

Beam envelope of ERsBeam envelope of ERs

Beam stopper (Ta)Beam stopper (Ta)

[D1] Bending radius[D1] Bending radius 1.44 m1.44 m

[D1] Bending angle[D1] Bending angle 45 degree45 degree

[D1] Pole gap[D1] Pole gap 150 mm150 mm

[Q1, Q2] Pole length[Q1, Q2] Pole length 500 mm500 mm

[Q1, Q2] Bore radius[Q1, Q2] Bore radius 150 mm150 mm

[Q1, Q2] Maximum field gradient[Q1, Q2] Maximum field gradient 5.2 T/m5.2 T/m

[D2] Bending angle[D2] Bending angle 10 degree10 degree

[D2] Pole gap[D2] Pole gap 160 mm160 mm

[D2] Maximum filed[D2] Maximum filed 1.04 T1.04 T

Page 5: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

Windowless operationWindowless operationPart I Part I –– (B)(B)

Page 6: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

Differential pumping Differential pumping systemsystem

TMPTMP150 150 l/sl/s

TMPTMP280 280 l/sl/s

MBPMBP280 280 l/sl/s

140 140 l/sl/sMBPMBP

Top viewTop view

Side viewSide view

ProjectilesProjectiles

ProjectilesProjectiles

ToToGARISGARIS

1010221010--22 1010111010001010--11 Vacuum [Pa]Vacuum [Pa]

Orifice : Orifice : φφ 25 mm25 mm

Page 7: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

Target systemTarget systemPart I Part I –– (C)(C)

Page 8: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

GasGas--cooled rotating targetcooled rotating target

φφ 300 mm300 mm

Target composition (Metal=208Pb and 209Bi)C-backing / Metal / C-cover = 30 / 450 / 10 [µg/cm2]

ωω = 2000 rpm= 2000 rpmA helium gas introduced in GARIS is filled A helium gas introduced in GARIS is filled in target chamber.in target chamber.

This situation enable the gas cooling of This situation enable the gas cooling of the target.the target.

16 targets on a rotating wheel16 targets on a rotating wheel

Page 9: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

Target chamberTarget chamber

CCD #1CCD #1

CCD #1CCD #1

CCD #1CCD #1

CCD #2CCD #2

CCD #2CCD #2

CCD #2CCD #2

CCD #4CCD #4

CCD #4CCD #4

CCD #4CCD #4

CCD #3CCD #3

CCD #3CCD #3

Top viewTop view Side viewSide view

Page 10: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

Detection systemDetection systemfor the heaviest element searchfor the heaviest element search

Part I Part I –– (D)(D)

Page 11: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

Focal Plane DetectorsFocal Plane Detectors

MCP1MCP1MCP2MCP2

SSD boxSSD box

ERsERsTimeTime--ofof--flight detectors (MCP1, MCP2)flight detectors (MCP1, MCP2) PSD ( x 1)PSD ( x 1)TransmissionTransmission

Time resolutionTime resolution(FWHM for (FWHM for αα of of 241241Am)Am)

Detection efficiencyDetection efficiency(For (For αα of of 241241Am)Am)

: 94 %: 94 % : 16 strip (3.75 mm x 60 mm): 16 strip (3.75 mm x 60 mm)Number of stripsNumber of strips

: 530 : 530 psps

: 90 : 90 -- 99 %99 %

Positional resolutionPositional resolution : within +/: within +/--1 mm 1 mm

: 40 keV: 40 keVEnergy resolutionEnergy resolution

SSD ( x 4)SSD ( x 4)

60 mm

60 m

m

Energy resolutionEnergy resolution(Sum of PSD and SSD)(Sum of PSD and SSD)

: 70 keV: 70 keV

SSD box (PSD + SSD)SSD box (PSD + SSD)Geometrical detection efficiencyGeometrical detection efficiency : 85 %: 85 %

Page 12: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

Performance of detection systemPerformance of detection system

0 20 40 60 80 1000

10

20

30

40

50

Energy / MeV

Cou

nts

per 1

0 ke

V

TOF / ns

Ener

gy /

MeV

209209Bi+Bi+6464Ni reaction (Ni reaction (Main.033, strip 13)Main.033, strip 13)

2722721111110 5 10 15 20 25

110

100

0

5

0

5

8 9 10 11 12

8 9 10 11 12

TotalTotal

Total [ ROI = 8 Total [ ROI = 8 -- 12MeV ]12MeV ]

AntiAnti--coincidence with TOF detectorscoincidence with TOF detectors

ERER--αα correlation (correlation (∆∆PP=+/=+/--1 mm, 1 mm, ∆τ∆τ=30 s)=30 s)272272111111268268MtMt264264BhBh260260DbDb256256LrLr

TOFTOF--energy spectrumenergy spectrum ERER--αα correlation analysiscorrelation analysis

BeamBeam--like particleslike particles

TargetTarget--like particleslike particles

Light charged particlesLight charged particles

8 9 10 11 120

5

0.5 cps0.5 cps

2.4x102.4x10--22 cpscps

1.8x101.8x10--33 cpscps

Page 13: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

Operation of the GARISOperation of the GARIS-- Equilibrium charge state of heavy elementEquilibrium charge state of heavy element

in a helium gas in a helium gas --

Part II Part II –– (A)(A)

Page 14: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

Measurement of Measurement of qq in a helium gasin a helium gas0 degree target recoils0 degree target recoils

TargetTarget T [ T [ µµg/cmg/cm22]] ProjectileProjectile EEpp [[MeVMeV]] EERR [[MeVMeV]] v/vv/v00 Pressure [Pa]Pressure [Pa]169169TmTm 6060 4040ArAr 191191 116116±±0.50.5 5.255.25±±0.010.01 7373208208PbPb 140140 4040ArAr 114114 5656±±2.32.3 3.293.29±±0.070.07 7676208208PbPb 120120 4848CaCa 191191 100100±±1.21.2 4.404.40±±0.030.03 7373208208PbPb 250250 5858FeFe 282282 186186±±2.52.5 6.006.00±±0.040.04 7676208208PbPb 270270 6464NiNi 313313 217217±±2.62.6 6.486.48±±0.040.04 7676209209BiBi 300300 4040ArAr 114114 2222±±2.32.3 2.062.06±±0.110.11 7676209209BiBi 130130 4848CaCa 191191 100100±±0.70.7 4.394.39±±0.010.01 7676209209BiBi 240240 5858FeFe 282282 184184±±2.72.7 5.595.59±±0.040.04 7676209209BiBi 240240 6464NiNi 313313 217217±±2.32.3 6.466.46±±0.030.03 7676

Recoil atoms produced by nuclear reactions

762.47±0.0339±1.02182503 µ208Pb(48Ca, 2n)254No

762.46±0.0238±0.82182500.4 µ209Bi(48Ca, 2n)255Lr

762.22±0.0330±0.719721018 n208Pb(40Ar, 3n)245Fm

762.31±0.0331±0.9197260197Au(40Ar, 3n)234Bk

762.92±0.0345±0.9218210169Tm(48Ca, 5n)212Ac

762.63±0.0235±0.6197210169Tm(40Ar, 6n)203Fr

762.59±0.0234±0.6191210169Tm(40Ar, 5n)204Fr

764.33±0.0193±0.331030Nat.Ce(58Fe, pxn)200At

764.33±0.0191±0.331030Nat.Ce(64Ni, αxn)196Po

764.06±0.0179±0.331030Nat.Ce(58Fe, αxn)193Bi

Pressure [Pa]v/v0ER [MeV]Ep [MeV]T [ µg/cm2]σ [ barn]Reaction

Page 15: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

Empirical formula on qEmpirical formula on q--bar in a helium gasbar in a helium gas

Equilibrium charge state

Deviation / %

Equilibrium charge state

Deviation / %

(v/v0) x Z1/3

Dev

iatio

n / %

q-ba

r

169Tm

254No, 255Lr

245Fm, 234Bk

196Po, 200At

193Bi

204,203Fr

208Pb, 209Bi

208Pb, 209Bi

208Pb, 209Bi

208Pb, 209Bi

208Pb, 209Bi

0 5 10 15 20 25 30 350

5

10

15

20

25

30

0 10 20 30-20

-10

0

10

20

265265HsHs

271271Ds, Ds, 272272111111

277277112112

Page 16: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

Operation of the GARISOperation of the GARIS-- Collection efficiency Collection efficiency --

Part II Part II –– (B)(B)

Page 17: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

Collection efficiency of GARISCollection efficiency of GARIS

simulationsimulation

0 2 4 6 8100

101

102

v/v0

Col

lect

ion

effic

ienc

y / %

208208Pb(Pb(4848Ca, 2n)Ca, 2n)254254NoNo209209Bi(Bi(4848Ca, 2n)Ca, 2n)255255LrLr

208208Pb(Pb(4040Ar, 3n)Ar, 3n)245245FmFm

169169Tm(Tm(4040Ar, 6n)Ar, 6n)203203FrFr

208208PbPb

209209BiBi

208208Pb(Pb(5858Fe, n)Fe, n)265265HsHs

Recoil velocity of Recoil velocity of ZZ=110=110--113113produced by cold fusion typed reactionsproduced by cold fusion typed reactions

Page 18: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

TransactinideTransactinide chemistry planschemistry plansusing GARISusing GARIS

Part IIIPart III

Page 19: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

GARIS + gasGARIS + gas--jet transport + chemistryjet transport + chemistry

Projectile

Projectile

D1D1 Q1Q1 Q2Q2 D2D2

Chemistry apparatus Detection system

Gas-jet transport system

Page 20: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

GasGas--jet chamber coupled with GARISjet chamber coupled with GARIS

Vacuum window

Vacuum monitor

He gas (+ aerosols)100 mm

Spacer Spacer ((2020,,4040,,60 mm60 mm))

To chemistry To chemistry apparatusapparatus

Made of Made of diflondiflon

He gas (+ aerosols)

ERsERsseparated by GARISseparated by GARIS GasGas--jet chamberjet chamber

Vacuum windowVacuum window

φ 60 mm

Vacuum windowVacuum windowThickness of Mylar foil : 2.5 Thickness of Mylar foil : 2.5 µµmmHoneycomb mesh : 0.5 mm thick SUSHoneycomb mesh : 0.5 mm thick SUSTransparency of mesh : 93 %Transparency of mesh : 93 %

Page 21: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

Experimental plans of Experimental plans of transactinidetransactinide chemistry chemistry using using 232232Th+Th+4040Ar reactionAr reaction

160 165 170 175RfDbSgBhHsMt110111112113114115

155Neutron number

Prot

on n

umbe

r

150

The reason for selecting this reactionThe reason for selecting this reaction4040Ar beam with high intensity over 5 Ar beam with high intensity over 5 ppµµAA is available at the RILAC facility.is available at the RILAC facility.269269Hs, Hs, 267267Bh, and Bh, and 265265Sg can be produced without using Sg can be produced without using 248248Cm and Cm and 249249Bk target.Bk target.It is important to directly produce It is important to directly produce 269269Hs and Hs and 265265Sg for the confirmation of the decay Sg for the confirmation of the decay

chain of chain of 277277112 produced by 112 produced by 208208Pb+Pb+7070Zn reaction.Zn reaction.

After measurement of excitation function for this system,After measurement of excitation function for this system,

transtrans--actinide chemistry at RIKEN will be started.actinide chemistry at RIKEN will be started.

208208Pb(Pb(7070Zn, n)Zn, n)277277112112

ExamplesExamples269269Hs (Hs (TT1/2 1/2 = 14 s) : = 14 s) : 248248Cm(Cm(2626Mg, 5n)Mg, 5n)------>>232232Th(Th(4040Ar, 3n)Ar, 3n)267267Bh (Bh (TT1/21/2 = 17 s) : = 17 s) : 249249Bk(Bk(2222Ne, 4n) Ne, 4n) ------> > 232232Th(Th(4040Ar, p4n)Ar, p4n)265265Sg (Sg (TT1/21/2 = 7.9 s) : = 7.9 s) : 248248Cm(Cm(2222Ne, Ne, 5n5n) ) ------>>232232Th(Th(4040Ar, Ar, αα3n3n))

Page 22: Operation of the GARIS (and chemistry plans) fileContents I. Introduction of GARIS (a gas-filled recoil separator at RIKEN) A) Ion-optical characteristics of GARIS B) Windowless operation

SummarySummary

TransactinideTransactinide chemistry plans using GARISchemistry plans using GARISA gasA gas--jet system coupled with GARIS has been developed.jet system coupled with GARIS has been developed.Measurement of excitation function for Measurement of excitation function for 232232Th+Th+4040Ar reaction is planed for Ar reaction is planed for

SHE chemistry near future.SHE chemistry near future.

Operation of the GARISOperation of the GARISHeavy element search using heavy ion beam with high intensity oHeavy element search using heavy ion beam with high intensity overver

1 1 ppµµAA can be performed.can be performed.An empirical formula on qAn empirical formula on q--bar of heavy elements in a helium gas was bar of heavy elements in a helium gas was

deduced. deduced. This formula will be applicable to the search for heavy elementsThis formula will be applicable to the search for heavy elementswith large atomic numbers over 112.with large atomic numbers over 112.

A systematic of the cA systematic of the collection efficiency was deduced as a function of ollection efficiency was deduced as a function of recoil velocity.recoil velocity.


Recommended