+ All Categories
Home > Documents > Optical spectroscopy as a probe of charge and energy ...

Optical spectroscopy as a probe of charge and energy ...

Date post: 19-Jan-2022
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
84
Optical spectroscopy as a probe of charge and energy transfer in two-dimensional materials Stéphane BERCIAUD IPCMS, Université de Strasbourg and CNRS [email protected] New Frontiers in 2D materials Winterschool/Workshop Villard de Lans, January 16, 2017
Transcript

Optical spectroscopy as a probe of charge and energy transfer

in two-dimensional materials

Stéphane BERCIAUD IPCMS, Université de Strasbourg and CNRS

[email protected]

New Frontiers in 2D materials Winterschool/Workshop Villard de Lans, January 16, 2017

Graphene and 2D materials at IPCMS

Fundamental properties

• Field-effect transistors, memories, sensors

• 2DM-nanoemitter hybrids • van der Waals heterostructures

• Gr-based tunnel junctions

Devices, Hybrid Systems, Heterostructures

0.9 1.0 1.1 1.2

5L

6L

7L

bulk

Photo

lum

. (u

.a.)

Energy (eV)

1L

2L

3L

4L

MoTe2

•Transition metal dichalcogenides

• Suspended graphene

• 6 Permanent staff, 5 Postdocs + 9 PhD (currently, 1 + 4)

• Nanofabrication facility (StNano, 180 m2)

• Optical spectroscopy, optoelectronics, optomechanics, electron transport, spintronics, chemtronics, straintronics…

• Cross-disciplinary work on graphene and 2DM since 2012

Advanced Mat. DOI: 10.1002/adma.201604837

Let us try to understand this…

…and discuss what this can be useful for.

Mo

Se2

PL

Inte

nsi

ty (

arb

. u.)

MoSe2

SLG

5 µm

SLG on MoSe2

0

1

G-m

od

e f

req

ue

ncy

(cm

-1)

1582 cm-1

1589 cm-1

1590

1585

1580 Data : G. Froehlicher, E. Lorchat, SB (in preparation)

Förster energy transfer: near field dipole-diople interaction

𝐄𝐷 =1

4𝜋𝜀0𝑘2 𝐫˄𝝁𝐷 ˄𝝁𝐷

𝑒𝑖𝑘𝑟

𝑟2+

3𝐫 𝐫. 𝝁𝐷𝑟2

− 𝝁𝐷1

𝑟3−𝑖𝑘

𝑟2𝑒𝑖𝑘𝑟

Th. Förster Annalen der Physik 437, 55 (1948) Novotny, Hecht Principles of Nano Optics, Ch 8 R0 : Förster radius

Förster energy transfer: near field dipole-diople interaction

𝐄𝐷 =1

4𝜋𝜀0𝑘2 𝐫˄𝝁𝐷 ˄𝝁𝐷

𝑒𝑖𝑘𝑟

𝑟2+

3𝐫 𝐫. 𝝁𝐷𝑟2

− 𝝁𝐷1

𝑟3−𝑖𝑘

𝑟2𝑒𝑖𝑘𝑟

Th. Förster Annalen der Physik 437, 55 (1948) Novotny, Hecht Principles of Nano Optics, Ch 8 R0 : Förster radius

Nature structural biology 10, 93 (2003)

FRET: Distance sensing at the single molecule level

𝜂 =𝛾0

𝛾0+ 𝛾𝐷𝐴

= 1 +𝑅0

𝑅

6 −1

Nature Methods, 5, 507 (2008)

Chem.Soc.Rev., 43, 1144 (2014)

Förster and Dexter energy transfer

Coulomb (FRET) term ‘Long’ range (power law) Implies spectral overlap

Exchange (Dexter) term Short range (exponential, idem CT) Implies overlap of molecular orbitals

1 2 Förster 1946-51

Dexter 1953

A Govorov, PL Hernandez Martinez, HV Demir Understanding and Modeling Förster-type Resonance Energy Transfer (FRET), Springer 2016

Photoinduced Charge Transfer and Energy Transfer

Key near-field phenomena in nano-optoelectronic devices

Sensitive to: donor-acceptor distance dimensionality band alignment excitonic effects Fermi energies/doping levels

Affect: (photo)excited states dynamics Fermi energies/doping levels

Experimental techniques: Raman spectroscopy (CT) Photoluminescence spectroscopy (CT & ET) Non-linear (pump-probe) spectroscopy (CT & ET)

How to probe charge and energy transfer ?

Devices: Nanofabrication Custom devices Electrical control

Today’s menu

I. Introduction • Two-dimensional materials (2DM) • Semiconductor nanostructures • Hybrid and van der Waals heterostructures • Optoelectronic devices • Optical spectroscopies

II. Near-field coupling in hybrid heterostructures • Energy transfer: distance scaling, dimensionality, screening • Electrical control of near-field coupling

III. Near-field coupling in van der Waals Heterostructures • TMD-TMD heterostructures • Charge vs energy transfer in graphene-TMD heterostructures

IV. Conclusion and outlook • Novel optoelectronic devices • Towards opto-electro-mechanics

Introducing 2D materials

Ajayan, Kim, Banerjee - Physics Today (2016)

Graphene: a unique, tunable 2D electron gas

FvkE

Momentum En

ergy

X Eex

VG VSD

Source Drain

Electric field effect

Si

SiO2

+ + + + + + + + + + +

- - - - - - - - - - - - - -

- - - - - - - - - - - - - -

E

1st observation: Novoselov et al., Science (2004) Data: G. Froehlicher and SB, PRB 91, 205413 2015 See also J. Yan et al. PRL 2007, Pisana et al. Nat Mater 2007

-5 0 5

2

3

So

urc

e-D

rain

cu

rre

nt I S

D (

µA

)

Gate Bias VG

(V)

EF <0

p doping

EF=0

EF >0

n doping

quantum electron transport (QHE) electron-phonon coupling electromechanics optoelectronics

Graphene: a unique, tunable 2D electron gas

FvkE

Momentum

Ener

gy

X Eex

VG VSD

Source Drain

Electric field effect

Si

SiO2

+ + + + + + + + + + +

- - - - - - - - - - - - - -

- - - - - - - - - - - - - -

E

1st observation: Novoselov et al., Science (2004)

quantum electron transport (QHE) electron-phonon coupling electromechanics optoelectronics

Z.Q. Li at al. Nature Physics (2008) F. Wang et al. Science (2008)

Absorption edge at E~2EF

• MX2 with M = Mo, W, Re,… X = S, Se, Te • Well documented in the bulk Wilson and Yoffe Adv. Phys. 1969

• In this talk: Semiconducting MX2 only

M. Chhowalla et al., Nat. Chem. 5, 263 (2013)

X M

c

a

1L

X

• Trigonal prismatic phase • 2Hc-MX2 (AbA,BaB stacking) MoS2, MoSe2, WS2, WSe2, MoTe2

Introducing Transition Metal Dichalcogenides

M

Some remarkable properties of 2Hc-TMD

• All optical valley polarization Mak et al. + Zeng et al., Nat. Nano 2012

• Valley-Hall effect

K. F. Mak, PRL 105, 136805 (2010)

• Photodetection, electroluminescence, photovoltaics • Type II van der Waals heterostructures (Seattle, ICFO, Columbia, Berkeley, Manchester, MIT, Vienna, EPFL, U. Kansas,…)

Photonics

Optoelectronics

Valleytronics

• Indirect (bulk) to direct (1L) bandgap

• Tightly bound excions (trions, biexcitons)

• Single photon emitters* • Towards large PL quantum yields

Nat. Nano 2014 (TU Vienna, MIT, Seattle)

Mak et al. Science 2014

Columia, Berkeley, Case Western, Hong Kong, INSA Toulouse, Vanderbilt, LNCMI, Geneva… *Nat Nano 2015 (ETH, Rochester, LNCMI, Hefei/Seattle) Amani et al. Science 2015

K. F. Mak, PRL 105, 136805 (2010)

Basic optical properties of TMD

Spin-valley locking

MoSe2

Exciton

Trion

Bi-exciton

Koperski et al. arXiv:1612.05879 (review)

Mak & Shan, Nat. Photon. 2016 (review)

Ab

sorb

ance

Photon Energy (eV)

Excitonic Effects

MoS2 A B

0.9 1.0 1.1 1.2

5L

6L

7L

bulk

Photo

lum

. (u

.a.)

Energy (eV)

1L

2L

3L

4L

MoTe2

Froehlicher et al., PRB 2016 (also Ruppert NL 2014, Lezama NL 2015)

30+ years of colloidal semiconductor nanostructures

Quantum dots (0D), rods (~1D), wells (2D)

Size and shape tunable properties

Broadband absorption / narrow emission

Contexte scientifique

10 nm

10 nm

TEM image

TEM image

𝝆𝟎 = 𝟒. 𝟖 nm

𝐿𝑥 = 9 nm

𝐿𝑦 = 22 nm

𝐿𝑧 = 5 nm

30+ years of colloidal semiconductor nanostructures

Quantum dots (0D), rods (~1D), wells (2D)

Size and shape tunable properties

Broadband absorption / narrow emission

Contexte scientifique

Ithurria et al. Nat. Mater. 10, 936-941 (2011)

𝝆𝟎 = 𝟒. 𝟖 nm

𝐿𝑥 = 9 nm

𝐿𝑦 = 22 nm

𝐿𝑧 = 5 nm

Hybrid systems and heterostructures: why the interest?

• Graphene: 2D semi-metallic channel Quasi-transparent (~2% absorption per layer) High carrier mobility and large carrier density

• TMD: atomically thin semiconducting channel Strong light matter interaction Tunable properties

• Semiconductor nanostuctures: 0D, 1D, 2D Broadband absorption & size tunable emission Highly photostable

Harnessing near-field interactions in new optoelectronic devices

Hybrid systems and heterostructures

Y. Liu et al., Nature Review Materials doi: 10.1038/natrevmats.2016.42

FRET in hybrid optoelectronic devices

Energy Transfer Pumping Achermann et al. Nature (2004) (Los Alamos)

+ Energy/exciton funnelling Substrate sensitization Color conversion Long Range (>> 1 nm) How to separate the transferred excitons?

B. Guzelturk & HV Demir Advanced Functional Materials 10.1002/adfm.201603311

Charge Transfer in hybrid photodetectors

Quartz

Ion gel VG

Gate

Drain VSD Source

Elaser

+ + +

+ +

+

+

+

- -

-

- - - -

-

Core “only” CQDs with short ligands

Graphene

High gain Photodetectors

+-

ElaserPhotoinduced

Charge Transfer

+ Photodetection Short range (< 1 nm) Selectivity/Sensitivity Processability

Short range… Highly sensitive to: Surface states Adsorbates Interfaces/ligands

Konstantatos et al. Nat. Nano (2012) (ICFO)

Charge Transfer in hybrid photodetectors

Quartz

Ion gel VG

Gate

Drain VSD Source

Elaser

+ + +

+ +

+

+

+

- -

-

- - - -

-

Core “only” CQDs with short ligands

Graphene

High gain Photodetectors

+-

ElaserPhotoinduced

Charge Transfer

+ Photodetection Short range (< 1 nm) Selectivity/Sensitivity Processability

Short range… Highly sensitive to: Surface states Adsorbates Interfaces/ligands

Konstantatos et al. Nat. Nano (2012) (ICFO)

Charge Transfer in hybrid photodetectors

Quartz

Ion gel VG

Gate

Drain VSD Source

Elaser

+ + +

+ +

+

+

+

- -

-

- - - -

-

Core “only” CQDs with short ligands

Graphene

High gain Photodetectors

+-

ElaserPhotoinduced

Charge Transfer

+ Photodetection Short range (< 1 nm) Selectivity/Sensitivity Processability

Short range… Highly sensitive to: Surface states Adsorbates Interfaces/ligands

Kufer et al. Advanced Mat. (2015)

van der Waals Heterostructures

Haigh, Gorbachev et al., Nature Materials 2012 Manchester Group

Castellanos-Gomez et al. 2D Materials 1 011002 (2014)

No dangling bounds No lattice mismatch issues Rotational degree of freedom • 2010 : Graphene on hBN • 2017 : wet or dry transfer, pick up and lift,… • Numerous possibilities!

C-H Lee et al. Nat. Nano (2014) (Columbia)

Atomically thin p-n junctions

24

Optoelectronic devices based on vdWH: key mechanisms

BN

3L

WSe

2

BN/Gr/WSe2/Gr/BN

M. Massicotte et al., Nat. Nano. 11, 42 (2016)

Atomic dimensions ≠ conventional heterostructures

+ losses: exciton recombination

Photoactive material: WSe2

Electrical contacts: graphene

Electric field: VB

1 Exciton formation

EF EF EF

Charge transfer

Energy transfer

EF EF EF

VB 𝑬

Exciton dissociation 2

Charge transport 3

Interfacial transfer 4

Optoelectronic devices based on vdWHs: key mechanisms

BN

3L

WSe

2

BN/Gr/WSe2/Gr/BN

+ losses: exciton recombination

Photoactive material: WSe2

Electrical contacts: graphene

Electric field: VB

1 Exciton formation

VB 𝑬

Exciton dissociation 2

Charge transport 3

Interfacial transfer 4

M. Massicotte et al., Nat. Nano. 11, 42 (2016)

Photo

respo

nse

rate

(s

-1)

Re

sp

on

se

tim

e

3L

Ener

gy (

eV)

0

-4

-2

-6

-8

Cd

Se

Cd

S

Cd

Te

Mo

S 2

Mo

Se2

Mo

Te2

WS 2

WSe

2

Gra

ph

en

e

Ground state

Egap

Egap,0

dEe-e

Eopt

dEb

Band alignment and excitonic effects En

ergy

(eV

)

0

-4

-2

-6

-8

Cd

Se

Cd

S

Cd

Te

Mo

S 2

Mo

Se2

Mo

Te2

WS 2

WSe

2

Gra

ph

en

e

Ground state

Egap

Egap,0

dEe-e

Eopt

dEb

Optical Gap < Transport Gap Type I (CdSe/ZnS) or II (CdSe/CdTe) Heterojunctions

TMD: Y. Liang et al., APL 103, 42106 (2013), M. Ugeda et al., Nat. Mater. 5, 1091 (2014) Graphene: Y.-J. Yu et al., Nano Lett. 9, 3430 (2008), II-VI semicond : Norris et al. Science 2008

Graphene, TMD, hybrid system, heterostructure,…

Source Drain

VBG

Si

SiO2 VSD

Filter(s)

To detector(s)

(micro)-optical spectroscopy Photoluminescence, Raman,…

Exciton dynamics Time correlated photon counting

Nanofabrication Optoelectronics (electro-)optomechanics

SiO2

1µm

M . Han (Columbia U.)

Graphene FET

SB et al. PRL 2010

Our experimental approach

virtual (or real) states

phis EEE

phE

iE

28

1200 1400 1600 2600 28000

1

2

3

4

5

(no) D mode

2L sus

1L sus

G mode

Co

un

ts (

arb

. u

nits)

Raman Shift (cm-1)

2D mode

Graphene, TMD, hybrid system, heterostructure,…

Source Drain

VBG

Si

SiO2 VSD

Filter(s)

To detector(s)

SiO2

1µm

M . Han (Columbia U.)

Graphene FET

SB et al. PRL 2010

Our experimental approach

virtual (or real) states

phis EEE

phE

iE

29

2D

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

1584

1586

1588

1590

1592

1594

1596

1598

1600

1602

VTG

(V)

wG (

cm

-1)

-2

0

2

4

6

8

10

12

14

DG

G (

cm

-1)

A

G

G

FGGG E

E

EEEfEEfP

d4)(

)sgn()()(

2 202

20

)

2()

2(

4

00

0 FG

FG

GG EfEf

Data. G. Froehlicher & SB PRB 2015 See also: M. Lazzeri & F. Mauri, PRL 97, 266407 (2006) S. Pisana et al., Nat. Mat. 6, 198 (2007) J. Yan et al., PRL 98, 166802 (2007)

FvkE

= 0.031

Electron-phonon coupling and Raman spectroscopy

X ℏ𝜔𝐺

G phonon renormalization

A

G

G

FGGG E

E

EEEfEEfP

d4)(

)sgn()()(

2 202

20

)

2()

2(

4

00

0 FG

FG

GG EfEf

Data. G. Froehlicher & SB PRB 2015 See also: M. Lazzeri & F. Mauri, PRL 97, 266407 (2006) S. Pisana et al., Nat. Mat. 6, 198 (2007) J. Yan et al., PRL 98, 166802 (2007)

FvkE

= 0.031

Electron-phonon coupling and Raman spectroscopy

-300 -200 -100 0 100 200 300 400

-5.5 -2.4 -0.6 0.0 0.6 2.4 5.5 9.8

1584

1586

1588

1590

1592

1594

1596

1598

1600

1602

n (x1012

cm-2)

EF (meV)

wG (

cm

-1)

-2

0

2

4

6

8

10

12

14

DG

G (

cm

-1)

X ℏ𝜔𝐺

G phonon renormalization

Separating doping and strain

0 5 10 15 20 25

-15

-10

-5

0

5

10

15

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

2

D -

0 2D(c

m-1)

G-

0

G(cm

-1)

strain

2.22

D

G

55.02

D

G

h+

2.02

D

G

e-

Well-defined and useful correlations between Raman parameters

Data : Froehlicher & Berciaud, PRB 2015 Metten et al., PRApplied 2014 Zabel et al., Nano Lett 2012 Lee et al., Nano Lett 2012 See also : A. Das et al., Nat Nano 2008 Lee et al., Nat Comm 2012

Stra

in

Do

pin

g

0 5 10 15 20 25

0

5

10

15 electrons

holes

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

G (

cm

-1)

G (cm

-1)

0 100 200 300

0

1

2

Ra

ma

n in

ten

sity (

arb

. u

nits)

Raman shift (cm-1)

Low frequency 5 - 40 cm-1

Layer breathing mode

Layer shear mode

N = 2

𝐸𝑔 𝐸𝑢 𝐴1𝑔

𝐴2𝑢

Raman Spectrum of bilayer MoTe2

EL = 2.33 eV

0 100 200 300

0

1

2

Ra

ma

n in

ten

sity (

arb

. u

nits)

Raman shift (cm-1)

Low frequency 5 - 40 cm-1

LBM

LSM

Layer breathing mode

Layer shear mode

N = 2

𝐸𝑔 𝐸𝑢 𝐴1𝑔

𝐴2𝑢

Raman Spectrum of bilayer MoTe2

0 100 200 300

0

1

2

Ram

an inte

nsity (

arb

. units)

Raman shift (cm-1)

Mid frequency 100 - 200 cm-1

iX

oX

N = 2 iX oX

𝐸𝑔 𝐸𝑢 𝐴1𝑔

𝐴2𝑢

Raman Spectrum of bilayer MoTe2

0 100 200 300

0

1

2

Ra

ma

n in

ten

sity (

arb

. u

nits)

Raman shift (cm-1)

High frequency 200 - 300 cm-1

oMX iMX

N = 2 oMX iMX

𝐴1𝑔 𝐴2𝑢 𝐸𝑔 𝐸𝑢

Raman Spectrum of bilayer MoTe2

-50 0 50 100150200250300

0

12L MoTe

2oMX

iMX

oX

iX

Breathing

Ra

man

Inte

nsity (

arb

. un

its)

Raman Shift (cm-1)

Shear

168 172 176

2L

5L

4L

3L

1L oX mode

Ram

an Inte

nsity (

arb

. units)

Raman Shift (cm-1)

0 2 4 6 8 10 12

169

170

171

172

173

174

Fre

qu

en

cy (

cm

-1)

Number of Layers

oX

Mo Te

Interlayer interactions: Davydov splitting and unified description of the phonon modes

Froehlicher et al., Nano Lett. 15, 6481 2015 (MoTe2), Lorchat et al. ACS Nano 2016 (ReS2 and ReSe2)

Raman Spectrum of bilayer MoTe2

Luo et al., PRB 88, 075320 (2013)

Related works: • M. Grzeszczyk et al., 2D Materials 3, 25010 (2016) (MoTe2) • Q. J. Song et al., PRB 93, 115409 (2016) (MoTe2) • K. Kim et al., ACS Nano 10, 8113 (2016) (MoSe2)

-40 -30 -20 -10 10 20 30 40

* x 5

Ra

ma

n in

ten

sity (

arb

. u

nits)

Raman shift (cm-1)

1234567

89

1011

12bulk

Low Frequency Interlayer Modes

LBM

LSM

Hyperspectral Imaging of N-layer MoTe2

0 5 10 15 20 25-1

0

3

4

5

6

Rela

tive H

eig

ht (n

m)

Horizontal Distance (µm)

~ 1.2 nm

~ 0.6 nmSiO

2

2L3L

4L

6L

~ 3.3 nm

~ 0.6 nm~ 0.6 nm

5 µm

Optical image

0 40Height (nm)0 40Height (nm)

AFM image

B1 mode Frequency B1 (cm-1)

Ram

an I

nte

nsity (

arb

. units)

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Ram

an Intensity (arb. units)

0

10

20

30

0 5 10 15 20 25 301st Breathing mode frequency (cm-1)

Hyperspectral Raman map

C.H Lui et al., PRB 91, 165403 (2015)

Interlayer modes in van der Waals Heterostructures

• Interlayer breathing modes In TMD/TMD heterostructures

• Charge and Energy transfer In vdWH and hybrid hterostructures: MX2 + semiconductor nanostructure (nanocrystal, nanoplatelet) ANR H2DH : IPCMS, LPN, ESPCI

TCSPC electronics

sample on 2Dpiezo scanner

CCD

pulsedlaser

APD

start (t1)

stop (t2)

dichroicmirror

objectivelens

t

(Time resolved) photoluminescence

Tunable pulsed laser pulse width : 100 fs 70 ps rep.rate 100 kHz 80 MHz) Fast avalanche photodiode (resolution ≈ 50 ps) Photon counting board

Rep rate L

VG

VSD

TCSPC Electronics Histogram of Δt=|t1-t2|

Camera and/or Spectrometer

Pulsed Laser

APD

t

Start (t1)

Stop (t2)

Dichroic Mirror

Op

tica

l cry

ost

at

Objective on PZT

Rep rate L

TCSPC electronics

sample on 2Dpiezo scanner

CCD

pulsedlaser

APD

start (t1)

stop (t2)

dichroicmirror

objectivelens

t

(Time resolved) photoluminescence

Tunable pulsed laser pulse width : 100 fs 70 ps rep.rate 100 kHz 80 MHz) Fast avalanche photodiode (resolution ≈ 50 ps) Photon counting board

1L MoSe2

Rep rate L

1.3 1.4 1.5 1.6 1.7 1.8 1.9

0

1

PL

in

ten

sity (

arb

. u

nits)

Photon energy (eV)

PL Spectrum 1L MoSe2

VG

VSD

TCSPC Electronics Histogram of Δt=|t1-t2|

Camera and/or Spectrometer

Pulsed Laser

APD

t

Start (t1)

Stop (t2)

Dichroic Mirror

Op

tica

l cry

ost

at

Objective on PZT

Rep rate L

TCSPC electronics

sample on 2Dpiezo scanner

CCD

pulsedlaser

APD

start (t1)

stop (t2)

dichroicmirror

objectivelens

t

(Time resolved) photoluminescence

Tunable pulsed laser pulse width : 100 fs 70 ps rep.rate 100 kHz 80 MHz) Fast avalanche photodiode (resolution ≈ 50 ps) Photon counting board

Rep rate L

0 2 4 6 8 10 12 14 16 1810

-3

10-2

10-1

100

1L MoSe2

PL

Co

unts

(a

rb.

units)

Time Delay (ns)

IRF

PL Decay

VG

VSD

TCSPC Electronics Histogram of Δt=|t1-t2|

Camera and/or Spectrometer

Pulsed Laser

APD

t

Start (t1)

Stop (t2)

Dichroic Mirror

Op

tica

l cry

ost

at

Objective on PZT

Rep rate L

Hamamatsu

Spectroscopy + TRPL Time resolution down to ~1ps !

Streak Camera: an optical oscilloscope

mpip- Mainz Laquai’s group

Data from Insa Toulouse : G. Wang et al. APL 2015 & C. Robert et al. PRB 2016

MoSe2

Graphene

Quartz

Graphene

Quartz

TMD

Quartz

Outline

• Near-field coupling in hybrid heterostructures

Distance dependence Dimensionality effects

Dielectric screening Elecrical control

• Charge and energy transfer in van der Waals heterostructures

M

X

X

C MoSe2

Graphene

Graphene onMoSe2

5µm

TMD

Quartz

Nano-emitter graphene FRET

Useful for Raman studies Xie et al., JACS 2009

First theoretical studies: Swathi and Sebastian J. Chem. Phys. 2008 & 2009 Single particle studies ? Distance dependence ? Dimensionality effects ? Electrical control ?

Aptasensors Chang et al. Anal Chem 2010

Z. Chen, S. Berciaud et al. ACS Nano (2010)

Energy transfer between individual nanocrystals and graphene

• Core/shell nanocrystals on graphene : wide field fluorescence microscopy • “Proof of concept” experiment: evidence for efficient energy transfer

Graphene

Quartz

Elaser Elum

CdSe

Optical image

Graphene

Elaser Elum

CdSe

Z. Chen, S. Berciaud et al. ACS Nano (2010)

Energy transfer between individual nanocrystals and graphene

• Core/shell nanocrystals on graphene : wide field fluorescence microscopy • “Proof of concept” experiment: evidence for efficient energy transfer

Graphene

Luminescence image

Quartz

Elaser Elum

CdSe

Graphene

Elaser Elum

CdSe

Graphene

Quartz

Graphene

Quartz

Graphene Graphene

Energy transfer between individual nanocrystals and graphene

Energy transfer between individual nanocrystals and graphene

• Much faster decay on graphene and Reduced photoinduced blinking • Energy transfer efficiency > 95%

2.0 2.20

1

0 200 4001

10

2.0 2.20

1

0 50 1000

5

10

0 200 4001

10

0 50 1000

5

10

Photon energy (eV)

P

L c

ounts

(arb

. units)

0 200

Occurrence

Time delay (ns)

PL c

ounts

(arb

. units)

PL c

ounts

(arb

. units)

Photon energy (eV)

L=78 MHz

PL c

ounts

(x100 H

z)

Time (s)

0 500

Occurrence

PL c

ounts

(arb

. units)

Time delay (ns)

0 5 101

10

PL c

ounts

(x100 H

z)

Time (s)

L=1.9 MHz

g0=0.011 ns-1

g0=0.55 ns-1

F. Federspiel et al. Nano Letters 15, 1252 (2015)

Graphene

Quartz

Graphene

Quartz

0 100 2001

10

100

0 20 400

10

0 100 2001

10

100

0 20 400

10

1.8 2.00

1

1.8 2.00

1

c)

Time delay (ns)

PL c

ou

nts

(a

rb.

un

its)

e)

PL c

ou

nts

(x1

00 H

z)

Time (s)

f)

PL c

ou

nts

(a

rb.

un

its)

Time delay (ns)

0 5

10

100

b)

PL c

ou

nts

(x1

00 H

z)

Time (s)

L=3.9 MHz

L=78 MHz

Photon energy (eV)

Photon energy (eV)

PL c

ou

nts

(a

rb.

un

its) a)

d)

PL c

ou

nts

(a

rb.

un

its)

0 100

Occurence

0 100

Occurence

Graphene

Quartz

Graphene

Quartz

Energy transfer between individual nanoplatelets and graphene

• Much faster decay on graphene and Reduced photoinduced blinking • Energy transfer efficiency > 95%

F. Federspiel et al. Nano Letters 15, 1252 (2015)

Graphene

Quartz

• Mechanically exfoliated graphene monolayers on quartz

• CdSe/CdS nanocrystals (B. Dubertret, ESPCI)

• Smooth MgO films grown by MBE (D. Halley, IPCMS)

• Characterization by Raman spectroscopy and AFM

Epitaxial growth of MgO on graphene: F. Godel et al. (Nanotechnology 2013)

0 10 20 30 40 50 60 70 80 90

0.1

1

0.6 nm

2.6 nm

3.4 nm

6.0 nm

11.0 nm

17.0 nm

Co

un

ts (

arb

. u

nits)

Time delay (ns)

MgO thickness

CVD graphene

Quartz

MgO

F. Federspiel et al. Nano Letters 15, 1252 (2015)

Distance scaling of the energy transfer rate

Demonstration of a graphene-based molecular ruler (1/d4 scaling)

r0= 5.5 nm, z0= 11.5 nm .

0

constN

NN

em

absem

g

g

g

4

0

00 1

rz

zgg

r0 (TEM)= 4.75 1 nm z0 (theory)~ 12 nm

0D-2D Förster Energy Transfer*

*Kühn J. Chem Phys 1970 Chance, Prock, Silbey Adv. Chem. Phys. 37 65 (1978)

0 1 10 100

0.1

1

MgO thickness (nm)

g (n

s-1

)

F. Federspiel et al. Nano Letters 15, 1252 (2015)

CVD graphene

Quartz

MgO

Distance scaling of the energy transfer rate

Demonstration of a graphene-based molecular ruler (1/d4 scaling)

.

0

constN

NN

em

absem

g

g

g

4

0

00 1

rz

zgg

r0 (TEM)= 4.75 1 nm z0 (theory)~ 12 nm

0D-2D Förster Energy Transfer*

*Kühn J. Chem Phys 1970 Chance, Prock, Silbey Adv. Chem. Phys. 37 65 (1978)

0.1 1 10 1000

2

MgO thickness (nm)

Nem

g (

a.u

.)

0.1

1

g (n

s-1

)

F. Federspiel et al. Nano Letters 15, 1252 (2015)

CVD graphene

Quartz

MgO

Distance scaling of the energy transfer rate

0

223

2

g

q

qd

T eeqdq

Dimensionality matters: platelets vs. dots

maxq

max

qd

T

qq

eqdq

0 22

23

gF

maxv

Eq

0

nm7.5Tkm

h

Bx2

4

1

dT gFor d>>1/qmax 0.3 nm q = 0 q 0 q = qmax

E0

d >> 1/qmax

Lx,Ly> and Lz<<d

Swathi & Sebastian JCP 2008 & 2009 Gomez-Santos & Stauber PRB 2011 Gaudreau et al. Nano Lett 2013

D. M. Basko et al. EPJB 1999 Kos et al. PRB 2005

0D - Graphene

2D - Graphene

0 1 10 100

0.1

1

gT~1/d

4

2D-graphene model

MgO thickness (nm)

gg T

g

(ns

-1)

CVD graphene

Quartz

MgO

F. Federspiel et al. Nano Letters 15, 1252 (2015) see also arXiv:1501.03401

0

223

2

g

q

qd

T eeqdq

Dimensionality matters: platelets vs. dots

maxq

max

qd

T

qq

eqdq

0 22

23

gF

maxv

Eq

0

nm7.5Tkm

h

Bx2

4

1

dT gFor d>>1/qmax 0.3 nm q = 0 q 0 q = qmax

E0

d >> 1/qmax

Lx,Ly> and Lz<<d

Swathi & Sebastian JCP 2008 & 2009 Gomez-Santos & Stauber PRB 2011 Gaudreau et al. Nano Lett 2013

D. M. Basko et al. EPJB 1999 Kos et al. PRB 2005

0.1 1 10 1001E-6

1E-5

1E-4

1E-3

0.01

0.1

1

~d-4

~d-4

~d-3

~d-2

RE

T r

ate

gT (

arb

. u

nits)

distance (nm)

mX= 0.1 m

e

mX= 0.2 m

e

mX= 0.5 m

e

mX= m

e

mX= 1.5 m

e

~d-1

minimal distance

between graphene

and the center of the QW

dmin

~2.5 nm

measurement range

0D - Graphene

2D - Graphene

F. Federspiel et al. Nano Letters 15, 1252 (2015) see also arXiv:1501.03401

Related Results with other materials

Distance dependence of FRET to graphene Gaudreau et al. Nano Lett. 13, 2030 (2013) Tisler et al. Nano Lett. 13, 3152 (2013)

Single Qdots on graphene B. Rogez et al. JPCC 118, 18445 (2014) O. Ajayi et al. APL 104 171101 (2014) Distance dependence of FRET to TMDs Goodfellow et al. APL 2015 (MoSe2)

NV Centers

CdSe QD/hBN/MoSe2

TMD vs Graphene: Dielectric screening matters (1)

Imaginary part of the dielectric constant (A)

ED(rA) depends also on epsilon and its anisotropy

Raja et al. Nano Letters 2016, see also: Z. Chen et al. ACS Nano 2010, F. Prins et al. Nano Lett 2014

TMD

Quartz

TMD

Quartz

Theoretical prediction(s): Chance, Prock, Silbey 1970’s Gordon, Gartstein J. Phys Cond. Matter 2013

0 1 2 3 4 5 6 7 8 9 bulk

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FR

ET(N

)/ F

RE

T(b

ulk

)

Number of WSe2 Layers

FRET to monolayer TMD is more efficient than FRET to bulk TMD

• Dielectric screening (e’) • Optical absorption (e’’) • Anisotropy (e vs e)

FRET Engineering

Experiments: QDs on MoS2 layers Prins et al., Nano Letters 2014 Raja et al., Nano Letters 2016

Data: O. Zill Master’s project (2016)

TMD vs Graphene: Dielectric screening matters (2)

Quartz

Ion gelVG

Gate

Drain VSDSource

Laser

Quantum DotGraphene Hybrid phototransistors: electrical Control of FRET

Fermi Energy shifts ~ 1 eV Need for efficient gating methods

K. Tielrooij et al. Nature Physics (AOP, 2015) (Er+ ions on Graphene) See also Lee et al. Nano Letters 14, 7115 (2014) (PbS Nanocrystals on graphene)

• Electrical control of energy transfer between an ensemble of emitters and graphene State of the art: modulation of the emission rate by a factor of less than 2

x

EF<-Elum/2 EF>Elum/2

x

EF=0

Elum

Momentum

Ener

gy photoexcited

Donor

Elum FRET

Ion gel VTG

Gate

Graphene or TMD channel

Substrate (Quartz, Si/SiO2,…)

Drain Source VSD ++ + ++ +

_ _ _ ___+ + + + + +

_+

+ ++

+

__ _

__ + _

+

Paradisi et al. APL 2015

Lee et al. Nano Letters 14, 7115 (2014)

Eem= 0.9 eV

Eem= 1.3 eV

Electrical Control of FRET

Lee et al. Nano Letters 14, 7115 (2014)

PbS nanocrystals on graphene

K.J. Tielrooij et al., Nature Physics 2015

Coupling to graphene plasmons at high doping (EF~Eem)

Erbium ions on graphene

Electrical Control of FRET in QD-TMD devices

Challenges and open questions: Single particle studies Improving the modulation of the emission rate Gating efficiency? stability? reproducibility?

QD PL resonant with B exciton in MoS2 Gate-induced absorption modulation in MoS2

Gate-induced modulation of the FRET Rate

Prasai et al., Nano Lett. 2015 (K. Bolotin Group)

Raman shift (cm-1

)

VT

G (

V)

1400 1600 1800 2000 2200 2400 2600 2800

-2

0

2

4

Inte

nsity (

u.a

.)

200

400

600

800

1000

1200

G 2D

D

Beware of Polymer Electrolytes

1400 1600 2600 2800

0

1

2

before

2D

D'

G

Ra

ma

n I

nte

nsity (

a.u

.)

Raman shift (cm-1)

ID/I

G~2

after

VTG

= 0 V

1400 1600 2600 2800

2

4

6

8

10

12

p-doped

n-doped

2D

I2D

/IG 1I

D/I

G~ 1.1

ID/I

G~ 0.55

VTG

= - 2.9 V

- 1.3 V

+ 0.5 V

Ra

ma

n I

nte

nsity (

a.u

.)

Raman shift (cm-1)

+ 3 V

ID/I

G<<1

p-doped

neutral

G

Froehlicher & SB, PRB 2015

Partial conclusion

• Highly efficient « Förster-type » energy transfer (up to ~ 95%)

• Graphene-based molecular ruler at the single particle level

• Important role of dimensionality

• Electrical control : PL modulation by ~2x (graphene) up to 5x (MoS2)

• Charge transfer Photogating in Hybrid photodetectors

Outlook:

• Probing exciton dimensionality with FRET?

• Performance improvements with device engieering?

Outline

• Near-field coupling in hybrid heterostructures

Distance dependence Dimensionality effects

Dielectric screening Elecrical control

• Charge and energy transfer in van der Waals heterostructures

M

X

X

C MoSe2

Graphene

Graphene onMoSe2

5µm

TMD

Quartz

-3

-4

-5

-6

--7

Gra

ph

en

e

Mo

S 2

Mo

Se2

Mo

Te2

WS 2

WSe

2

TMD: Y. Liang et al., APL 103, 42106 (2013), M. Ugeda et al., Nat. Mater. 5, 1091 (2014) Graphene: Y.-J. Yu et al., Nano Lett. 9, 3430 (2008)

-4.57

-3.89 -3.74

-4.09

-3.61

-4.29

Ene

rgy

(eV

)

TMD/TMD: Type II band alignment TMD/Graphene: Photoinduced TMD Gr e- transfer

Band alignments

Interlayer excitons in TMD/TMD heterostructures

Ultrafast (<ps) formation Long lived (>ns) Valley polarized Direct or indirect (q) PN Junctions

Schaibley et al., Nat. Rev. Materials doi:10.1038%2Fnatrevmats.2016.55

Fang et al., PNAS 2014 Hong et al., Nat Nano 2014 Lee et al., Nat Nano 2014 Rivera et al., Nat Comm 2015 Rivera et al., Science 2016 Ceballos et al., ACS Nano 2014 Ross et al., Nano Lett 2017 …

Energy Transfer in TMD/TMD heterostructures

(a)

D. Kozawa et al., Nano Lett. 2016

Open debate: competition between interlayer charge and energy transfer

Charge and energy transfer in a graphene/MoSe2

van der Waals heterostructure

Graphene + MoSe2

MoSe2

0.0 0.5 1.0 1.5

0

1

2

3

Heig

th (

nm

)

Distance (µm)

2

0.0 0.5 1.0 1.5

0

1

2

3

0.6

Heig

th (

nm

)

Distance (µm)

2

1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.000

0.003

PL inte

nsity (

arb

. units)

Photon energy (eV)

1.3 1.4 1.5 1.6 1.7 1.8 1.9

0

1

PL inte

nsity (

arb

. units)

Photon energy (eV)1.3 1.4 1.5 1.6 1.7 1.8 1.9

0

1

PL

in

ten

sity (

arb

. u

nits)

Photon energy (eV)

1.3 1.4 1.5 1.6 1.7 1.8 1.9

0

1

PL inte

nsity (

arb

. units)

Photon energy (eV)

5 µm

No graphene

2 nm 0.6 nm

Decoupled Gr/MoSe2 Coupled Gr/MoSe2

Strong PL Quenching ~ 300

AFM

Photoluminescence mapping

1500 2000 25000

1

Ra

ma

n in

ten

sity (

arb

. u

nits)

Raman shift (cm-1)

2D

G

1500 2000 25000

1

Ram

an inte

nsity (

arb

. units)

Raman shift (cm-1)

G

2D

1500 2000 25000

1

Ram

an inte

nsity (

arb

. units)

Raman shift (cm-1)

G-mode frequency

No graphene

Coupled Gr/MoSe2 Decoupled Gr/MoSe2

5 µm

Raman mapping

1590 2640 2680 2720

0

1

2

3

4

52D

Ra

ma

n in

ten

sity (

arb

. u

nits)

Raman shift (cm-1)

G

1590 2640 2680 2720

0

1

2

3

Ra

ma

n in

ten

sity (

arb

. u

nits)

Raman shift (cm-1)

2DG

1590 2640 2680 2720

0

1

2

3

4

5

Ra

ma

n in

ten

sity (

arb

. u

nits)

Raman shift (cm-1)

G 2D

1590 2640 2680 2720

0

1

Ra

ma

n in

ten

sity (

arb

. u

nits)

Raman shift (cm-1)

5 µm Reference on SiO2

No graphene

Coupled Gr/MoSe2

Decoupled Gr/MoSe2

Fph increases

Eex = 2.33 eV

Raman response vs photon flux (2)

1020

1021

1022

1023

456789

13141516171819

G (

cm

-1)

Fph

(cm-2

s-1)

1020

1021

1022

1023

1584

1586

1588

1590

1592 SLG/SiO2

Decoupled SLG/MoSe2

Coupled SLG/MoSe2

G (

cm

-1)

Fph

(cm-2

s-1)

G-mode frequency G-mode FWHM

Clear signatures of photoinduced charge transfer

Raman response vs photon flux (2)

Clear signatures of photoinduced charge transfer

Raman response vs photon flux (2)

1584 1586 1588 1590 15924

6

8

10

12

14

16

18

20

G (

cm

-1)

G (cm

-1)

increasing Fph

Width-Frequency Correlation

1584 1586 1588 1590 1592

2674

2675

2676

2690

2691

2692

2693

SLG/SiO2

Decoupled SLG/MoSe2

Coupled SLG/MoSe2

2

D (

cm

-1)

G (cm

-1)

0.11

• 2D and G mode correlations: separation of strain and e-/h+ doping

𝑒− transfer

1584 1586 1588 1590 15924

6

8

10

12

14

16

18

20

G (

cm

-1)

G (cm

-1)

increasing Fph

• Comparison with Gr/MoS2

W. Zhang et al., Scientific Reports 4, 3826 (2014)

electrical measurements

𝑒− transfer

0 5 10 15 20 25

-15

-10

-5

0

5

10

15

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

2D

-

0 2D(c

m-1)

G-

0

G(cm

-1)

55.02

G

D

h+

2.02

G

D

e-

holes

electrons

Evidence for TMD Gr electron transfer

-300 -200 -100 0 100 200 3001582

1584

1586

1588

1590

1592

1594

G (

cm

-1)

EF (meV)

-300 -200 -100 0 100 200 300 400

-5.5 -2.4 -0.6 0.0 0.6 2.4 5.5 9.8

1584

1586

1588

1590

1592

1594

1596

1598

1600

1602

n (x1012

cm-2)

EF (meV)

wG (

cm

-1)

-2

0

2

4

6

8

10

12

14

DG

G (

cm

-1)

G. Froehlicher and SB, PRB 91, 205413 (2015) G. Froehlicher et al., (in preparation, 2016)

031.0Electron-phono coupling at :

Transfered electron density nG

Quantifying photoinduced doping

-300 -200 -100 0 100 200 300

4

6

8

10

12

14

16

G (

cm

-1)

EF (meV)

Saturation at EF ~ 250-300 meV Does the ICT efficiency depend on EF?

0 2 4 6 8 10 12

-200

-100

0

100

200

300

sample 1

sample 2

sample 3

EF (

me

V)

Fph

(x1023

cm-2 s

-1)

1020

1021

1022

1023

0.01

0.1

1

I PL/F

ph

oto

ns (

arb

units)

Fphotons

(cm-2 s

-1)

PL vs Fphotons

• No PL saturation on Gr/MoSe2

Drastic reduction of the excitonic lifetime (~ 1 ps) Charge and Energy Transfer?

Normalized PL: IPL

Fphotons

• PL saturation on bare and decoupled MoSe2: Exciton-Exciton Annihilation (EEA)

0 1 2 3 40.01

0.1

1

PL

co

unts

(a

rb.

un

its)

Time Delay (ns)

Graphene/MoSe2

MoSe2

IRFBare MoSe2

Decoupled Gr/MoSe2

Coupled Gr/MoSe2

EEA: N. Kumar et al., PRB 89, 125427 (2014), S. Mouri et al., PRB 90, 155449 (2014), D. Sun et al., Nano Lett. 14, 5625 (2014)

0 2 4 6 8 10 1210

-3

10-2

10-1

100

Bare MoSe2

Decoupled SLG/MoSe2

Coupled SLG/MoSe2

PL C

ounts

(arb

. units)

Time Delay (ns)

IRF

1020

1021

1022

1023

0.01

0.1

1

I PL/F

ph

oto

ns (

arb

units)

Fphotons

(cm-2 s

-1)

PL vs Fphotons

• No PL saturation on Gr/MoSe2

Drastic reduction of the excitonic lifetime (~ 1 ps) Charge and Energy Transfer?

Normalized PL: IPL

Fphotons

• PL saturation on bare and decoupled MoSe2: Exciton-Exciton Annihilation (EEA)

0 1 2 3 40.01

0.1

1

PL

co

unts

(a

rb.

un

its)

Time Delay (ns)

Graphene/MoSe2

MoSe2

IRFBare MoSe2

Decoupled Gr/MoSe2

Coupled Gr/MoSe2

EEA: N. Kumar et al., PRB 89, 125427 (2014), S. Mouri et al., PRB 90, 155449 (2014), D. Sun et al., Nano Lett. 14, 5625 (2014)

0 2 4 6 8 10 1210

-3

10-2

10-1

100

Bare MoSe2

Decoupled SLG/MoSe2

Coupled SLG/MoSe2

PL C

ounts

(arb

. units)

Time Delay (ns)

IRF

S. Mouri et al., PRB 2014

0 1 2 3 4 5

0

1

2

3

4

5

I PL (

arb

un

its)

Fph

(x1023

cm-2 s

-1)

0 1 2 3 4 5

1

2

3

4

5

nG (

x1

012 c

m-2)

Fph

(x1023

cm-2 s

-1)

Photoluminescence vs Raman

Graphene’s doping level MoSe2 PL

saturation

linear

Cannot be explained using ICT only

0 1 2 3 4 5 60

1

2

3

4

5

6

nG (

x1

01

2 c

m-2)

Fph

(x1023

cm-2 s

-1)

0 1 2 3 4 5 60

1

2

3

4

5

6

nG (

x1

01

2 c

m-2)

Fph

(x1023

cm-2 s

-1)

0 1 2 3 4 5 60

1

2

3

4

5

6

nG (

x1

01

2 c

m-2)

Fph

(x1023

cm-2 s

-1)

0 1 2 3 4 5 60

1

2

3

4

5

6

nG (

x1

01

2 c

m-2)

Fph

(x1023

cm-2 s

-1)

neutral

Toy model

CB

VB

MoSe2 graphene

+

− 𝑛G,max

ΓICT = ΓICT0 (1-nG/nG,max) X

Γ0

ΓIET

Γleaks

• At Φph = 0, 𝑛M = 0 and 𝑛G = 0

• ΓIET ≫ ΓICT, Γ0

Φphsat =

Γleaks ΓIET

ΓICT0

𝑛G,max

A

𝑛M ≈AΦph

ΓIET

𝑛G ≈𝑛G,max

1 + Φphsat Φph

Φphsat~2.5 x 1022 cm-2 s-1

Φphsat~1.25 x 1021 cm-2 s-1

air

vacuum

Γleaks ↓

𝑛G0 ≪ 𝑛G,max

MoSe2 𝑛M

𝑛G SLG

CB

VB

Γ0 ΓIET

ΓICT

Γleaks AΦph

adsorbates traps …

~ 1012 s-1

+

Efficient energy transfer from semiconductor nanostructures to 2D materials

Molecular rulers

FRET as a probe of exciton dimensionality

FRET engineering

Photoinduced e- transfer from TMD to graphene Towards local photogating of graphene

Fast IET is responsible for PL quenching

IET is more efficient than ICT

• Open questions Energy transfer mechanism in Gr-TMD? In TMD-TMD? Band alignment and excitonic effects? …

Study temperature, gate

MoSe2

Graphene

Graphene onMoSe2

5µm

Conclusion

Outlook 1: FRET-induced electrical currents

A. Brenneis et al. Nat. Nano 2015. (Holleitner group with Koppens group)

Outlook2: opto-electromechanics in 2DM

Optomechanical coupling and Raman spectroscopy in 2D resonators

D. Metten, G. Froehlicher and SB, 2D Materials 4 014004 (2017)

10 15 20 25 301E-6

1E-5

1E-4

0.001

0.01

Am

plit

ud

e (

V)

Frequency (MHz)

VG=1V

VG=-4V

2588J

Optical cryostat

VG

~

Si

SiO2

Photodiode

Am

p. (d

B)

Frequency

Spectrum analyser

2D-mode

Raman shift

G-mode

Spectrometer

Laser

Objective on PZT

Am

p. (d

B)

Frequency

Network Analyser

USIAS project: GOLEM. Collaboration: P. Verlot (ILM, Lyon) Data: K. Makles, D.Metten

Graphene drum

4 µm

Deflection, strain, doping Transport? Optomechanics?

Optoelectromechanical control of FRET

A. Reserbat-Platey, K. Schadler et al., Nat Comm. (2016) (Bachtold and Koppens groups)

Acknowledgements

JF Dayen,

A. Mahmood

B. Doudin

David Halley

Michi Romeo

Pierre Gilliot

StNano Clean Room

François Federspiel

Guillaume Froehlicher

Etienne Lorchat

Olivia Zill

Dominik Metten

FF

DM

Michel Nasilowski

Silvia Pedetti

Emmanuel Lhuillier (INSP)

Benoît Dubertret

Jeong-O Lee

Serin Park

EL

Funding:

GF

OZ


Recommended