+ All Categories
Home > Documents > Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

Date post: 13-Feb-2017
Category:
Upload: doantram
View: 231 times
Download: 0 times
Share this document with a friend
29
1 [email protected] Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes Ji Ung Lee College of Nanoscale Science and Engineering University at Albany-SUNY 6 th US-Korea Forum on Nanotechnology April 28-29, 2009 p n
Transcript
Page 1: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

1 [email protected]

Optical Spectroscopy ofCarbon Nanotube p-n Junction Diodes

Ji Ung Lee

College of Nanoscale Science and EngineeringUniversity at Albany-SUNY

6th US-Korea Forum on Nanotechnology April 28-29, 2009

p n

Page 2: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

2 [email protected]

The College of Nanoscale Science & Engineering and The College of Nanoscale Science & Engineering and Albany NanoTech Complex at the University at AlbanyAlbany NanoTech Complex at the University at Albany

Page 3: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

3 [email protected]

State-of-the-Art Infrastructure

$50M, 150K ft2

32K CleanroomCompleted: 03/04

NanoFab 300S

$175M, 228K ft2

60K Cleanroom

Completion: 10/08

NanoFab 300N

NanoFab 300E$100M, 250K ft2

Completion: 1Q/09 $16.5M, 70K ft2

4K Cleanroom

Completed: 06/97

NanoFab 200

750K ft2 cutting-edge facilities (96,000 ft2 300mm Wafer Cleanrooms).$4.5B investments and 2500 R&D jobs on site.

Page 4: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

4 [email protected]

ANT/CNSE will house over 125 state-of-the-art 300mm wafer tools when build out is completed.

Designed for 32nm node & beyond but compatible with previous generations.

• Unit process, module integration, and full flow capability.

• Facility will have a 45nm baseline process for use by partners.

Facility capable of 25 integrated wafer starts (WSD)

per day. • 24/7 operation, wafer release 6 Days / Week

300 mm Wafer Processing Capability

Page 5: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

5 [email protected]

Device fabrication on 300mm wafers

>1000 devices/die

~100 nm features

Advanced processes

70nm70nm

Page 6: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

6 [email protected]

Why study the p-n diode:

• The p-n junction diode is the most fundamental of all the semiconductor devices – it is the basis for the majority of solid state devices.

• For fundamental understanding of semiconductors: Example: Hall-Shockley-Read Theory.

For any new semiconductor, a proper characterization of the p-n diode is important.

Page 7: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

7 [email protected]

Interplay between transport and optical properties:

• SWNT Diode Fabrication and DC Characteristics

• Optical Properties:Photovoltaic Effect Enhanced Optical Absorption - Excitons

• Origin of the Ideal Diode Behavior (BGR-BandgapShrinkage)

Page 8: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

8 [email protected]

Bulk p-n junction diode basics:

EC

EV

EFEquilibrium

EC

EV

Forward Bias(Recombination)

I=Io(eqV/nKT-1)I

V

Diode Equation:(ideal if n=1)

N-type(electrons) P-type(holes)V

I

Reverse Bias(Generation)

EC

EV1

2

3

Page 9: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

9 [email protected]

Electrostatic doping:

CarrierConcentration

Split gates VG1,2 J.U. Lee et. al., APL: July 5, 2004

p n

Page 10: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

10 [email protected]

20µmVG1 VG2

DS2 gate device

3 and 4 gate devices

Page 11: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

11 [email protected]

J.U. Lee et. al., APL: July 5, 2004

CNT diode/rectifier:(p-n or n-p diode devices)

-1 10-6

-5 10-7

0 100

5 10-7

1 10-6

-1.5 -1 -0.5 0 0.5 1 1.5

VDS

(Volts)

pS D

p nS D

pnS D

-10V -10V

-10V +10V +10V -10V

Page 12: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

12 [email protected]

Nearly Ideal Diode Characteristics with n~1 (1.2)

)1( −= TnKqV

oBeII

p

n

pn

10 -11

10 -10

10 -9

10 -8

10 -7

-0.4 -0.2 0 0.2 0.4

VGS1,2=+/-10VFit

VDS

(Volts)

Page 13: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

13 [email protected]

Series Resistance Limits Current:

10 -11

10 -10

10 -9

10 -8

10 -7

-0.4 -0.2 0 0.2 0.4

VDS

(Volts)

Rs

Rs: measured from the resistive mode – due to n-type to metal contact resistance.

Page 14: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

14 [email protected]

(a) (b)

1 µm

Suspended SWNT Diodes:

p n

Suspended tube formed based on a self-registering technique

Page 15: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

15 [email protected]

Ideal Diodes with Ideality Factor n=1.0 for Suspended Diodes

VDS(V)10-13

10-12

10-11

10-10

10-9

10-8

10-7

-0.5 0 0.5 1

FitData

Rs

IDS

(Am

ps)

n=1.0

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

-0.5 0 0.5

SWNTs are perfect, substrates are not.

J.U. Lee, Appl. Phys. Lett. 87, 073101 (2005)

Page 16: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

16 [email protected]

PVPD

LED

-8x10-12

-4x10-12

0

4x10-12

8x10-12

-0.2 -0.1 0 0.1VDS(V)

IDS

(Am

ps)

pn

Photovoltaic Effect

(λ =1.5 µm)

Isc

Voc

Voc and Isc:Completely define PV properties for an ideal diode

Increase Intensity

J.U. Lee, Appl. Phys. Lett. 87, 073101 (2005)

Page 17: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

17 [email protected]

-0.10 -0.05 0.00 0.05 0.1010-15

10-14

10-13

10-12

10-11

IDS

(A)

VDS(V)

Exciton Peaks in the Photocurrent Spectra(similar to SWNTs in solution)

0.5 1.0 1.50

1x10-14

2x10-14

3x10-14

4x10-14

I SC (A

)

Energy (eV)

1

2

3

4

5

1

3

J.U. Lee et.al., Appl. Phys. Lett. 90, 053103 (2007)

Page 18: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

18 [email protected]

DOS: One Electron ModelDOS: One Electron Model

3DBulk Semiconductor

2DQuantum Well

1DQuantum Wire

0DQuantum Dot

E

D. O

. S.

D. O

. S.

D. O

. S.

D. O

. S.

E E E

Page 19: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

19 [email protected]

Heh = −ε |re−rh |e 2

Electron-Hole Coulomb Interaction

EXCITONS IN CARBON NANOTUBES

results in the electron-hole binding that forms the exciton states below the conduction subband edge

Exciton Hydrogenic Levels n=1,2,3…

continuum

Page 20: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

20 [email protected]

Sommerfeld Factor: Coulomb Interaction

Absorption

Energy

2D:CoulombEffects

Absorption

Energy

E

3D:CoulombEffects

Excitons

Absorption

Energy

1D:CoulombEffects

Page 21: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

21 [email protected]

T. Ogawa and T. Takaghara, Phys. Rev. B 43, 14325 (1991)

Sommerfeld Factor in 1D -> 0 at Eg

Page 22: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

22 [email protected]

0.6 0.8 1.0 1.2 1.4

0.5

1.0

1.5

2.0 I S

C (N

orm

aliz

ed)

Energy (eV)

Spectra with similar first energies

EB

2

3 = E221 = E11

Lack of any features at Egdue to Sommerfeldfactor <1

Side bands measure dark exciton

J.U. Lee et.al., Appl. Phys. Lett. 90, 053103 (2007)

Page 23: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

23 [email protected]

1.0 1.2 1.4 1.6 1.8 2.00.4

0.8

1.2

1.6

2.0

100 200 300

Inte

nsity

(a.u

.)

Raman frequency (cm-1)

Ene

rgy

(eV

)

Diameter (nm)

Comparison to Photoluminescent Data:

+: Emperical KatauraWeisman et.al. Nano Lett. 3, 1235 (2003)

- E11 and E22– Exciton-phonon ▲ - Quasipaticle Bandgap

Continuum:1.55eV/nm

E11: 1.01eV/nm

EB: 0.54 eV/nm

Page 24: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

24 [email protected]

0.4 0.5 0.60.5

0.6

0.7

0.8

0.9

1.0

0.5 1.0 1.50

10

20

30

40

4

1 = E11

2

I SC (f

A)

Energy (eV)

3 = E22

5 = E33

E11

(eV

)

Ea(eV)

E11=Ea

Origin of the Ideal Diode Behavior and Exciton Dissociation:

Ea < E11 ??

-0.10 -0.05 0.00 0.05 0.10 0.15 0.2010-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

IDS

(A)

VDS (V)

Ideal Diodes:n=1.0

Two mechanism for n=1.0:1) Direct Band-to-Band2) Diffusion of Minority Carriers

from the doped regions

Page 25: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

25 [email protected]

Isc

D

pn

np

S

p

n

Isc

E111

2

3

EB Ea

L

EF

EC

EVEa

Many-Body Renormalization of Band structure (BGR – band gap renormalization) and Proposed Mechanism for Exciton Dissociation:

Formation of heterointerfaces along a homogenous material

J.U. Lee, Phys. Rev. B 75, 075409 (2007)

Page 26: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

26 [email protected]

Device Ideal for Studying BGR:

-0.10 -0.05 0.00 0.05 0.10 0.15 0.201E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8 6V 8V 11V

IDS

(A)

VDS (V)

Variable Doping with VG1,2: • Diode follows ideal relation with doping.

• Evidence of strong BGR: Io when Doping . w/o BGR Io when Doping .

p

SiO2

VG1 VG2

S D

L

n

Page 27: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

27 [email protected]

Ef Ef

w/o BGR: minority carrier decreases

Ef

w/ BGR: minority carrier increases!

Origin of increase in Io with Doping:

Increase Doping

Minority Carriers

No shrinkage of the band gap

Shrinkage of the band gap

P type semiconductor

Page 28: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

28 [email protected]

Conclusions:

• Bipolar devices are more fun to study.

• How do neutral excitons dissociate to generate large photocurrents?

• Window to the study of many-body effects: BGR, biexctions, etc…

Funding: NSF, NRI/INDEX, IFC, IBM and UAlbany

Page 29: Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes

29 [email protected]

Split Gates

1,2...layer graphene flake

nn--typetype pp--typetypenn--typetype pp--typetype

Future Work: Graphene p-n junctions: Optics-like manipulation of electrons


Recommended