+ All Categories
Home > Documents > Optical Synchronization System with femtosecond...

Optical Synchronization System with femtosecond...

Date post: 18-Jul-2018
Category:
Upload: phamkien
View: 214 times
Download: 0 times
Share this document with a friend
26
FLASH/XFEL Holger Schlarb, DESY Bjorn Wiik Prize, 19.11.2007 Optical Synchronization System with femtosecond precision for FLASH and the European XFEL Holger Schlarb MPY • Motivation • General remarks on synchronization • Sources of electron bunch arrival time jitter • Layout of laser based synchronization system • Summary
Transcript
Page 1: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Optical Synchronization Systemwith femtosecond precision

for FLASH and the European XFELHolger Schlarb

MPY

• Motivation• General remarks on synchronization• Sources of electron bunch arrival time jitter• Layout of laser based synchronization system• Summary

Page 2: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

2

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Motivation: shorter electron bunch length

Towards shorter electron pulse duration 1 ps = 10-12 s= 1000 fs= 300µm/c0

Synchrotron light sources …BESSY σz = 10mm ~ 20 psLow-alpha Multi Bunch Hybrid Modus ~ 2 ps

Linac driven colliders … SLC σz = 2 mm ~ 6 ps ILC =0.3 mm ~ 1 ps

Free Electron Lasers … XFEL σz = 20 um ~ 60 fs Short pulse operation @FLASH: FEL pulses < 5 fs

Circ = 240 m

t

σt

31km~ 10-3

Page 3: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

3

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Motivation: FEL requires high peak currents

Radiation power:

Prad = P0⋅ exp ( z/Lg)

Gain length:

Lg ~ ( γ 3 σ2r / Ipeak)1/3

Ipeak = Peak current ~ 2.5 kAOnly achievable with short bunches

Exp. Growth ⇒Requires very high level of beam control⇒Good understanding of accelerator parameters

Large current ⇒ Driver for collective beam instabilities⇒New field of beam instrumentation⇒Demanding tolerances for sub-systems (RF)⇒High precision synchronization

Page 4: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

4

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Motivation: Pump-probe experiments

Atomic / Molecular Physics// Solid state dynamics

Classical setup:Variable delay

pump

probeProbe = flash

Pump

Shot pulses fs ps

Knowledge of time delay and very small time jitter are crucial!

Same source

Pump pulse initiate reaction, probe pulse records current state.

Problem: two different pulse sources: FEL and optical laser

Page 5: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

5

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Motivation: Lasers for FELs

Generic layout of single pass FELsinjector pre-linac main linac

chicanechicane

Phot

o-ca

thod

e

Las

er h

eate

r EO

E-S

ASE

Opt

ical

rep

lica

EO

Seed

Seed

Few

cyc

le la

ser

Pum

p-pr

obe

Plas

ma

lase

r

Man

ipul

atio

n

Man

ipul

atio

n

RF RF

Master LaserOscillator

>> 100 m but < 10fs

Page 6: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

6

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Motivation: seeding with higher harmonics (sFLASH)

Ti:Sa LaserGas cell 800nm30nm

Dogleg of Collimator

Variable gap undulatorSeparation chicane

100kW>1 GW

Experiment

Transfer line ~ 40m < 10 fs

Electron beam

Temporal overlap

Advantages:• fully longitudinal coherent• intrinsically synchronized• reduced power fluctuation• parasitic operation

Requirements:• longer electron bunches >120 fs• synchronization laser/e- ~ 40 fs Collaboration Uni. HH & DESY(Drescher, Khan, Rossbach)

Gain 104

Page 7: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

7

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Motivation: summary

• Accelerator technology advanced from picosecond bunch duration →few 10 fs bunches

to meet the requirements

• Facility length increased from ~100m to 3.5km XFEL & 31km ILC

• Optical laser systems become an integral part of FEL facilities– for the beam generation, – beam diagnostics, – beam conditioning/seeding and – for user experiments

⇒ Changed the requirements on synchronization from ps to fs precision

Page 8: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

8

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Synchronization

Electron beam transport through acceleratorE = 1 GeV → Lorenz factor γ = E/m0c2 β≈ 1 - = 0.999999869 1

2γ 2

0 m 1000 m

∆T = 435fs between light pulse and electron beam (T=3.33µs)

Typical energy deviation δE/E < 0.1% ⇒δt < 0.8 fs ☺

∆T

Typical orbit deviation δx < 50µm ⇒δt < 0.04 fs ☺

Light pulseElec. bunch

10 m

Defines start Predicts arrival

⇒ Beam transport over large (straight) distances is no problem!!!

Page 9: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

9

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Synchronization

Prediction of arrival using atomic clocks

0 m 1000 m

Desired prediction accuracy ~ 10 fs: Problem: drift during long measurement time ~ 1000sec

∆TElec. bunch

Defines start Predicts arrival

Precision of clock: = ~ 10-17∆tt

∆ff

Resynchronization required

Resynchronization requires constant propagation time of signal

Detector with femtosecond accuracy (short & long term)

Light pulse ?

Page 10: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

10

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Synchronization

Laser pulses transported in length-stabilized optical fibersWhat are the requirements for the fiber laser?

0 m 1000 m

∆tElec. bunch

Fiber laser provides excellent stability on short time scales ☺But drifts due to environmental changes over long time scales

tl - tr

PZT

∆tt

∆ffDesired length stabilization ~ 1µm (3fs) ⇒ = ~ 3⋅ 10-10

Round trip time t ~ 10µs (ng=1.5)

x

x

Fiber laser ~ 216MHz Optical fiberMirror

Light pulse ?

Low noiseRF Osc.

RubidiumClock

Stability (1s)∆f/f ~ 10-11

Aging (year)∆f/f ~ 5⋅ 10-10

Requires locking of the fiber laser to an atomic clock (Rb sufficient) ☺

Page 11: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

11

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Fiber laser for synchronizationISO

PBS

• /4

• /2

• /4

collimatorcollimator

WDM980 nm Pump

10 cmSMF

50 cmEr doped fiber 10 cm

SMF

10 cmSMF

10 cmSMF

ISO

PBS

• /4

• /2

• /4

collimatorcollimator

WDM980 nm Pump

10 cmSMF

50 cmEr doped fiber 10 cm

SMF

10 cmSMF

10 cmSMF

• Erbium doped soliton fiber laser λ= 1550 nm• Passive mode locked by self-phase polarization rotation • Repetition rate of 216 MHz (=1.3GHz/6)• Amplitude stability ~ 0.004% (1Hz-1MHz)• Output power ~ 100 mW• Pulse duration ~ 100 fs• Timing jitter ~ 12 fs (1kHz-40MHz)

Courtesy of Jeff Chen, MIT/F. Löhl DESY

Page 12: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

12

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Link stabilization: Balanced optical cross-correlator

-

From Laser

Link

150fs

Principle of error signal generation [Proposed by MIT]

Reflect

Direct

• background free (type II SHG)• balanced (dA/A suppressed)• robust & reproducible (envelope)• compact & drift free

SNR = 1% ⇒1.5 fs resolution

1560 nm

780 nm

Courtesy of J.W. KIM, MIT/F. Löhl DESY

Page 13: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

13

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

40ps

Length variation of fiber

Piezo stretcher

Out-of-loop timing error

25 fs

4.4fs rmstiming jitter over 2 minutes: 4.4 ± 1.1 fs (rms) timing drift over 12 hours: 25 fs measurement bandwidth: 200 kHz

Link stabilization: Results from test bench

Courtesy: F. Löhl

Test bench in acc. Bld 26

fibers

350 m

Syn. Lab.

Page 14: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

14

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Sources of timing jitter in accelerator

RF gun Accelerator Undulatorγ

bunch compressor Main Linac

Photo-cathodelaser

Pump-probelaser

• longitudinal and transverse electron beam quality • arrival time jitter at entrance to undulator

Sources of timing jitter (uncorrelated): σt = [Σ (wj σj)2 ]1/2

1. Photo-cathode laser w ~ 40-60%2. RF phase of RF gun (non-relativistic electrons) w ~ 60-40%3. Seed and Pump-probe laser w ~ 100%

Seedlaser

Eacc

Energy chirp + energy dependent path length

t

Page 15: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

15

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Sources of timing jitter in accelerator

RF gun Accelerator Undulatorγ

bunch compressor Main Linac

Photo-cathodelaser

Pump-probelaser

• longitudinal and transverse electron beam quality • arrival time jitter at entrance of undulator

Sources of timing jitter (uncorrelated): σt = [Σ (w σt,I)2 ]1/2

1. Photo-cathode laser w < 5%2. RF phase of RF gun (non-relativistic electrons) w < 5%3. Seed and Pump-probe laser w ~ 100%4. RF amplitude and phase w ~ 100%

Seedlaser

Timing jitter behind BC

Gradient

XFEL: 3.3 ps/%FLASH: 5.5ps/%

2 ps/deg 0.05 ps/ps

Phase Incomingcompressionfactor C ~100

A/φ

σ σ

stabilize Ipeak

THz

Page 16: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

16

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Sources of timing jitter in accelerator

RF gun Accelerator Undulatorγ

bunch compressor Main Linac

Photo-cathodelaser

Pump-probelaser

• longitudinal and transverse electron beam quality • arrival time jitter at entrance of undulator

Sources of timing jitter (uncorrelated): σt = [Σ (w σt,I)2 ]1/2

1. Photo-cathode laser w < 50%2. RF phase of RF gun (non-relativistic electrons) w < 50%3. Seed and Pump-probe laser w ~ 100%4. RF amplitude w ~ 100%5. RF phase w ~ 100%

Seedlaser

A/φstabilize Ipeak

THz

FBtiming

⇒ Robust system to control the beam requires several measurements⇒ Flexible synchronization scheme for RF & diagnostics

FBIpeak

tiδt

δt δt

stabilize tarrival

Page 17: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

17

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

NarrowBand.

EOMs/Seeding

Two color bal. Opt. cross-corr.

End-station

FiberLaser RF Osc.

Laser pulse Arrival beam/laser Klystron

A & φ cavityDesired point-to-point stability ~ 10 fs

<5fs

Direct

Distribution

RF Osc.

Optical link Optical link<5fs <5fs

Optical link

Layout of the synchronization system towards 10fs

EDFL, soliton, ∆t~100fs, f=216MHzadditive mode locked, P = 100mW, phase noise < 10fs (≥3kHz)

Free space distribution

Dispersion comp.,Polarization contr.,Collinear bal. opt. cross-corr.

Other lasers

Development in corporation with F.Kärtner@MIT

Page 18: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

18

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Direct use: Bunch arrival-time monitor (BAM)

Single bunch resolution < 30 fs.

Bunches in pulse train

Correlation #2 & #4 bunch

Courtesy: F. Löhl17mm

14.5mm 6.2mm

1.2mm thickAlumina disk

New pickup design &Improved readout

Courtesy: K. Hacker

⇒ resolution < 10 fs

Page 19: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

19

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Direct use: Beam position monitor for large apertures

Beam Path

PickupTaperingChannel

BPM

Courtesy K. Hacker

Compact!

-15 -10 -5 0 5 10 15-6

-4

-2

0

2

4

6Beam position (α = 18.0 deg)

delta [%]

po

sitio

n (c

m)

Beam position in dispersive chicane ⇒dE/E

∆t ~ ∆x

tl

tr

-

Measurements with broadband scope

Page 20: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

20

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

NarrowBand.

Direct/Interferometer

EOMs/Seeding

Two color bal. Opt. cross-corr.

End-station

Fiber Laser RF Osc.

Laser pulse Arrival beam/laser Klystron

A & φ cavityDesired point-to-point stability ~ 10 fs

<5fs

Direct

Distribution

RF Osc.

Optical link Optical link<5fs <5fs

Optical link

Layout of the synchronization system towards 10fs

EDFL, soliton, ∆t~100fs, f=216MHzadditive mode locked, P = 100mW, phase noise < 10fs (≥3kHz)

Free space distribution

Dispersion comp.,Polarization contr.,Collinear bal. opt. cross-corr.

Other lasers

Development in corporation with F.Kärtner@MIT

Page 21: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

21

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

RF generation from optical pulses

Direct conversion with photodetector (PD)– temperature drifts (0.4ps/C°)– AM to PM conversion (0.5-4ps/W)

PD BPFlaser pulses

frep f = n*frep

f = n*frep

~~~

Time domain Frequency domain

T = 5ns = 1/frep

Photo DetectorBandwidth PD

frep

100fs Phase noise

Sagnac loop interferometer– balanced optical mixer to lock RF osc.– insensitive against laser fluctuation – Very low temperature drifts

Results: f=10GHz jitter 12.8 fs (10Hz-10MHz)drifts < 50 fs (limited by detection)

f=1.3GHz jitter 35 fs (1Hz-10MHz) limited by detection

Courtesy F. Ludwig, B. Lorbeer, DESY/J.W. Kim MIT

Page 22: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

22

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

NarrowBand.

Direct/Interferometer

EOMs/Seeding

Two color bal. Opt. cross-corr.

End-station

FiberLaser RF Osc.

Laser pulse Arrival beam/laser Klystron

A & φ cavityDesired point-to-point stability ~ 10 fs

<5fs

Direct

Distribution

RF Osc.

Optical link Optical link<5fs <5fs

Optical link

FB

Layout of the synchronization system towards 10fs

EDFL, soliton, ∆t~100fs, f=216MHzadditive mode locked, P = 100mW, phase noise < 10fs (≥3kHz)

Free space distribution

Dispersion comp.,Polarization contr.,Collinear bal. opt. cross-corr.

Other lasers

Main issue: robustness and stability of a laser based synchronization system

Development in corporation with F.Kärtner@MIT

Page 23: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

23

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

From the laboratory …

Page 24: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

24

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

to a robust design!

First prototype of master fiber laser system

Page 25: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

25

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Summary & Conclusion

• Requirements for synchronization of accelerator subsystem have changed

- from the picoseconds to femtosecond accuracy- for large distances ~100m … 3.5 km- where laser systems becoming a key technology and- integrated part of the accelerator facility (as RF, cryogenics, magnets, water,…)

• Laser based synchronization technology is well advance

- fiber laser sources- stabilization of the laser pulse propagation in optical fibers- as efficient and high precision diagnostic tools- to synchronize other laser systems and- the generation of local RF signals

• Availability, robustness and maintainability for accelerator has to be demonstrated

Page 26: Optical Synchronization System with femtosecond …sc.desy.de/sites2009/site_esc/content/e15/e332/e334/e379/...– for user experiments ⇒Changed the requirements on synchronization

26

FLASH/XFEL

Holger Schlarb, DESYBjorn Wiik Prize, 19.11.2007

Thanks to Synchronization Team

V. Arsov, M. Felber, K. Hacker, B. Lorbeer, F. Löhl, F. Ludwig, K.H. Matthiesen, B. Schmidt, S. Schulz, A. Winter, J. Zemella

Special thanks to: S. Schreiber, P. Schmüser, J. Rössbach & R. Brinkmannthe FLASH/XFEL team for supportand my wife …


Recommended