+ All Categories
Home > Documents > Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential...

Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential...

Date post: 12-Jul-2020
Category:
Upload: others
View: 26 times
Download: 0 times
Share this document with a friend
35
Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results Optimal Solvers for Elliptic Optimal Control Problems F. Ibrahim, S. Turek and M. Köster Institut for Applied Mathematics and Numerics (LSIII) Technische Universität Dortmund [email protected] ICAAMMP 2014 Istanbul, Turkey, 20.08.2014 TU Dortmund University Optimal Solvers for Elliptic Optimal Control Problems
Transcript
Page 1: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Optimal Solvers for Elliptic Optimal ControlProblems

F. Ibrahim, S. Turek and M. Köster

Institut for Applied Mathematics and Numerics (LSIII)Technische Universität Dortmund

[email protected]

ICAAMMP 2014Istanbul, Turkey, 20.08.2014

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 2: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Outline

Motivating Examples

Existence and Uniqueness

Optimize first, then discretize

Numerical results

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 3: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Outline

Motivating Examples

Existence and Uniqueness

Optimize first, then discretize

Numerical results

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 4: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Outline

Motivating Examples

Existence and Uniqueness

Optimize first, then discretize

Numerical results

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 5: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Outline

Motivating Examples

Existence and Uniqueness

Optimize first, then discretize

Numerical results

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 6: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

References

Optimal Control of System Governed by Partial DifferentialEquations: Lions (1971)Optimal Steuerung partial DifferentialgleichungenTheorie:Tröltzsch (2005)

Exact and Approximate Controllability for DistributedParameter Systems: A Numerical Approach:Lions, Glowinskiand He (2008)Optimization with PDE Constraints:Ulbrich and others (2009)Optimal Control of Partial Differential Equations:Theory,Methods and Applications Tröltzsch (2010)

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 7: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

References

Optimal Control of System Governed by Partial DifferentialEquations: Lions (1971)Optimal Steuerung partial DifferentialgleichungenTheorie:Tröltzsch (2005)Exact and Approximate Controllability for DistributedParameter Systems: A Numerical Approach:Lions, Glowinskiand He (2008)

Optimization with PDE Constraints:Ulbrich and others (2009)Optimal Control of Partial Differential Equations:Theory,Methods and Applications Tröltzsch (2010)

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 8: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

References

Optimal Control of System Governed by Partial DifferentialEquations: Lions (1971)Optimal Steuerung partial DifferentialgleichungenTheorie:Tröltzsch (2005)Exact and Approximate Controllability for DistributedParameter Systems: A Numerical Approach:Lions, Glowinskiand He (2008)Optimization with PDE Constraints:Ulbrich and others (2009)

Optimal Control of Partial Differential Equations:Theory,Methods and Applications Tröltzsch (2010)

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 9: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

References

Optimal Control of System Governed by Partial DifferentialEquations: Lions (1971)Optimal Steuerung partial DifferentialgleichungenTheorie:Tröltzsch (2005)Exact and Approximate Controllability for DistributedParameter Systems: A Numerical Approach:Lions, Glowinskiand He (2008)Optimization with PDE Constraints:Ulbrich and others (2009)Optimal Control of Partial Differential Equations:Theory,Methods and Applications Tröltzsch (2010)

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 10: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

References

Optimal Control of System Governed by Partial DifferentialEquations: Lions (1971)Optimal Steuerung partial DifferentialgleichungenTheorie:Tröltzsch (2005)Exact and Approximate Controllability for DistributedParameter Systems: A Numerical Approach:Lions, Glowinskiand He (2008)Optimization with PDE Constraints:Ulbrich and others (2009)Optimal Control of Partial Differential Equations:Theory,Methods and Applications Tröltzsch (2010)

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 11: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Part 1: Motivating Examples

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 12: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Optimal stationary boundary temperature: Heating of a body Ωbya controlled boundary temperature u to reach the desiredtemperature yd

infy,u

J(y, u) =1

2||y − yd||2L2(Ω) +

α

2||u||2L2(Γ) (P)

subject to state equation

−∆y = 0 in Ω

y = u on Γ,

and control constraints

a ≤ u ≤ b on Γ

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 13: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Optimal stationary heat source: The body Ω is heated e.g. bymicrowaves. The goal is to find u that minmizes the distance of yand yd

infy,u

J(y, u) =1

2||y − yd||2L2(Ω) +

α

2||u||2L2(Ω) (P1)

subject to state equation

−∆y = u in Ω

y = 0 on Γ,

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 14: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Notation and dataJ is the objective functional and yd is the desired stateα > 0 is regularization parameterOptimal control problems with linear state equation andquadratic objective functional called linear-quadratic(P) is a linear-quadratic elliptic boundary control Problem(P1) is a linear-quadratic elliptic distributed control Problem

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 15: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Part 2:Existence and Uniqueness of optimal controlproblem

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 16: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Problem P1: Defining the control- to- state map G : u → yfrom L2(Ω) to H1

0 (Ω) , a linear and bounded operator whichassigns to a control u ∈ L2(Ω) the unique solution y = y(u)of the state equation,writing the state y = Gu

introduce the reduced objective functional

infy,u

Jred(u) :=1

2||Gu− yd||2L2(Ω) +

α

2||u||2L2(Ω)

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 17: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Problem P1: Defining the control- to- state map G : u → yfrom L2(Ω) to H1

0 (Ω) , a linear and bounded operator whichassigns to a control u ∈ L2(Ω) the unique solution y = y(u)of the state equation,writing the state y = Gu

introduce the reduced objective functional

infy,u

Jred(u) :=1

2||Gu− yd||2L2(Ω) +

α

2||u||2L2(Ω)

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 18: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

TheoremThe reduced optimal control problem has a unique optimal solution(y, u) ∈ H1

0 (Ω)× L2(Ω) .

ProofDirect method of the calculus of variations(minimizing sequence) .

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 19: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Part 3: Optimize first, then discretize

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 20: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Theorem

Let (y, u) ∈ H10 (Ω)× L2(Ω) be the optimal solution of Problem

P1. Then, there exists an adjoint state p ∈ H10 (Ω) as a weak

solution of−∆p = y − yd in Ω

p = 0 on Ω

and the control equation

p+ αu = 0 in Ω.

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 21: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Finite Element Approximation of Distributed Control ProblemLet Th := Th(Ω) be a shape-regular, quadrilateral triangulation andlet

Vh := vh ∈ C(Ω) | vh|T ∈ Q1(T ) , T ∈ Th(Ω), | vh|Γ = 0

be the FE space of continuous piecewise linear finite elements.Then a possible FE approximation of (P1) is as follows:

inf J(yh, uh) :=1

2

∫Ω

|yh − yd|2 dx +α

2

∫Ω

|uh|2 dx

subject toa(yh, vh) = (uh, vh), ∀vh ∈ Vh

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 22: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Optimality Conditions for the FE Distributed Control Problemthere exists an adjoint state ph ∈ Vh such that the triple(yh, uh, ph) satisfies the following optimality conditions,

a(yh, vh) = (uh, vh), ∀vh ∈ Vh

a(ph, vh) = (yh − yd, vh), ∀vh ∈ Vh

(uh, vh) = −α−1(ph, vh) ∀vh ∈ Vh

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 23: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

The discrete KKT system

Ah 0 −Mh

−Mh Ah 00 Mh αMh

yhphuh

=

0−ydh0

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 24: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

A Reduced KKT systemIf we substitute uin the state equation by means of the controlequation according to u = −α−1 ph, the discrete KKT system canbe stated as (

Ah α−1Mh

Mh Ah

)(yhph

)=

(0

−ydh

).

There exist also solution methods, which rely on a reduction of theKKT system. In this method, the optimality system is reduced to asingle integral equation for the control u

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 25: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

A Reduced KKT systemIf we substitute uin the state equation by means of the controlequation according to u = −α−1 ph, the discrete KKT system canbe stated as (

Ah α−1Mh

Mh Ah

)(yhph

)=

(0

−ydh

).

There exist also solution methods, which rely on a reduction of theKKT system. In this method, the optimality system is reduced to asingle integral equation for the control u

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 26: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

The integral equation methodWe introduce the operator A : y 7→ (−∆y) and the adjointoperator A∗ : p 7→ (−∆p). The KKT system reads in the followingform:

A = u in Ω

A∗ = y − yd in Ω

u =− α−1p in Ω.

The last equation can be reformulated by the first two equationsto the fixed point equation

u = (−α−1A−∗A−1)u− (−α−1A−∗)yd

=Ku+ q

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 27: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

which we can rewrite it in the compact form as follows:

(I − K)u =q.

Based on this compact form, we formulate the following fixedpoint iteration:

un :=Kun−1 + q, n ∈ N ,

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 28: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Part 4:Numerical results

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 29: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Example

u =sin(3πx1) sin(3πx2)

y =sin(3πx1) sin(3πx2)

p =− α sin(3πx1) sin(3πx2)

We get the corresponding desired state as

yd =18π2α sin(3πx1) sin(3πx2) + sin(3πx1) sin(3πx2).

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 30: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Table: Comparison of iterations to solve Example 1. with different valuesof α and different mesh sizes for tolerance of 1E − 12 for Multigrid withdifferent smoother (A Reduced KKT system)

smoother level \α 1 1E-02 1E-04 1E-08 1E-126 7 7 9 div. div.

Jacobi(0.5) 7 6 6 7 10 div.8 5 5 5 7 div.9 4 4 4 5 div.6 5 5 6 div. div.

Gaus Seidel 7 5 5 6 div. div.8 5 5 5 27 div.9 6 6 6 9 div.6 7 7 8 div. div.

SSOR(0.5) 7 6 6 7 div. div.8 6 6 6 10 div.9 6 6 6 8 div.

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 31: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Table: Comparison of iterations to solve Example 1. with different valuesof α and different mesh sizes for tolerance of 1E − 12 for Multigrid withdifferent smoother and preconditioner (A Reduced KKT system)

smoother Preconditioner level \α 1 1E-02 1E-04 1E-08 1E-126 7 8 19 div. div.

SSOR(1.5) 7 8 10 10 163 div.8 8 8 9 28 div.9 8 8 9 26 div.6 4 5 7 39∗ div.

BICGSTAB SSOR(0.5) 7 5 5 6 16 div.8 5 5 6 10 419 5 5 5 8 296 4 4 7 9∗ 9∗

SSOR(0.5) 7 5 5 6 8 98 5 5 5 7 10

GMRES(30) 9 5 5 5 7 10

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 32: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Table: Comparison of iterations to solve Example 1. with different valuesof α and different mesh sizes for tolerance of 1E − 12 for Multigrid withdifferent smoother and preconditioner ( KKT system)

smoother Preconditioner level \α 1 1E-02 1E-04 1E-08 1E-126 4 5 9 div div

SSOR(0.5) 7 5 6 8 137 div.8 5 5 6 13 div.

BICGSTAB 9 5 6 7 9 div.6 4 4 7 98∗ 104∗

SSOR(0.5) 7 5 5 6 35 7678 5 5 5 11 1106

GMRES(30) 9 5 5 5 7 23

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 33: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Table: Comparison of iterations to solve Example 1. with different valuesof α at different grid level for tolerance of 1E − 12 with different solver(integral equation)

solver level \α 1 1E-02 1E-04 1E-08 1E-126 2 2 2 576∗ -

BICGSTAB 7 2 2 2 1281 -8 2 2 2 2318 -9 2 2 2 2429 -6 2 2 4 3∗ 3∗

GMRES 7 2 2 3 7 88 2 2 3 4 49 2 2 4 4 4

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 34: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

Figure: Example 1: Change in L2-error with level for different values of α

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems

Page 35: Optimal Solvers for Elliptic Optimal Control Problems...Optimal Control of Partial Differential Equations:Theory, Methods and Applications Tröltzsch (2010) TU Dortmund University

Motivating Examples Existence and Uniqueness Optimize first, then discretize Numerical results

TU Dortmund University

Optimal Solvers for Elliptic Optimal Control Problems


Recommended