+ All Categories
Home > Documents > OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3!...

OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3!...

Date post: 21-Sep-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
19
OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET SYSTEM HISHAM KAMAL SAYED BROOKHAVEN NATIONAL LABORATORY MAP COLLABORATION MEETING FERMILAB 2013
Transcript
Page 1: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET SYSTEM

HISHAM KAMAL SAYED BROOKHAVEN NATIONAL LABORATORY

MAP COLLABORATION MEETING FERMILAB 2013

Page 2: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

INTRODUCTION & LAYOUT

Muon Capture in Target & Front END

Ø  Capture Solenoid Field Study: Ø  Optimizing quantity: Muon (Pions) count – transverse capture

-  Target Solenoid peak field -  Final end field

Ø  Optimizing quality: Muon (Pions) longitudinal phase space (transverse-longitudinal coupling) – transverse-longitudinal capture - Taper field profile

Ø  Optimizing the time of flight of incident beam (Buncher-Rotator RF phase) Ø  Transverse focusing field in decay-channel-buncher-rotator Ø  Match to ionization cooling channel for every end field case 1.5 T à 3.5 T Ø  Performance of front end as a function of proton bunch length Ø  Realistic Coil Design & performance optimization

Hisham Sayed - MAP meeting 2013 6/20/13

2

Page 3: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

MUON COLLIDER/NEUTRINO FACTORY LAYOUT

Target System Solenoid: Capture µ± of energies ~ 100-400 MeV from a 4-MW proton beam (E ~ 8 GeV).

Hisham Sayed - MAP meeting 2013 6/20/13

3

Page 4: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

TARGET SYSTEM CURRENT BASELINE DESIGN

Ø  Production of 1014 µ/s from 1015 p/s (≈ 4 MW proton beam)

Ø  Proton beam readily tilted with respect to magnetic axis.

Ø  Shielding of the superconducting magnets from radiation is a major issue.

SC magnets

Resistive magnets

Proton beam and Mercury jet

Tungsten beads

Mercury collection pool With splash mitigator

5-T copper magnet insert; 10-T Nb3Sn coil + 5-T NbTi outsert. Desirable to eliminate the copper magnet (or replace by a 20-T HTS insert).

Ø  Hg Target Ø  Proton Beam

Ø  E=8 GeV Ø  Solenoid Field

Ø  IDS120h à 20 T peak field at target position (Z=-37.5) Ø  Aperture at Target R=7.5 cm - End aperture R = 30 cm Ø  Fixed Field Z = 15 m à Bz=1.5 T

Ø  Production: Muons within energy KE cut 40-180 MeV end of decay channel

Ø  Nμ+π+κ/NP=0.3-0.4

Hisham Sayed - MAP meeting 2013 6/20/13

4

Page 5: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

TAPERED TARGET SOLENOID OPTIMIZATION

0

5

10

15

20

0 5 10 15 20 25 30 35

Bz

[T]

z [m]

Ltaper= 5 [m]Ltaper=15 [m]Ltaper=25 [m]Ltaper=35 [m]

0

5

10

15

20

0 5 10 15 20 25 30 35

Bz

[T]

z [m]

Ltaper= 5 [m]Ltaper=15 [m]Ltaper=25 [m]Ltaper=35 [m]

0

5

10

15

20

0 5 10 15 20 25 30 35

Bz

[T]

z [m]

Ltaper= 5 [m]Ltaper=15 [m]Ltaper=25 [m]Ltaper=35 [m]

0

5

10

15

20

0 5 10 15 20 25 30 35

Bz

[T]

z [m]

Ltaper= 5 [m]Ltaper=15 [m]Ltaper=25 [m]Ltaper=35 [m]

0

5

10

15

20

0 5 10 15 20 25 30 35

Bz

[T]

z [m]

Ltaper= 5 [m]Ltaper=15 [m]Ltaper=25 [m]Ltaper=35 [m]

0

5

10

15

20

0 5 10 15 20 25 30 35

Bz

[T]

z [m]

Ltaper= 5 [m]Ltaper=15 [m]Ltaper=25 [m]Ltaper=35 [m]

0 5

10 15

20 25

30 35 0

0.05 0.1

0.15 0.2

0.25 0.3

0.35 0.4

0.45 0.5

0 2 4 6 8

10 12 14 16 18 20

Bz(

z,R

) [T

]

z [m]

R [m]

Bz(

z,R

) [T

]

Inverse-Cubic Taper Bz (0, zi < z < z f ) =

B1[1+ a1(z− z1)+ a2 (z− z1)

2 + a3(z− z1)3]p

a1= − B1'

pB1a2 = 3

(B1 / B2 )1/p −1

(z2 − z1)2 −

2a1z2 − z1

a3 = −2(B1 / B2 )

1/p −1(z2 − z1)

3 +a1

(z2 − z1)2

Bz (r, z) = (−1)nn∑ a0

(2n) (z)(n!)2

( r2)2n

Off-axis field approximation Br (r, z) = (−1)n+1n∑ a0

(2n+1)(z)(n+1)(n!)2

( r2)2n+1

a0(n) =

dna0dzn

=dnBz (0, z)

dzn

1.5 T 2.5 T 3.5 T

1.5 T 2.5 T 3.5 T

5

6/20/13 Hisham Sayed - MAP meeting 2013

Page 6: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

MARS SIMULATIONS & TRANSMISSION

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

500 1000 1500 2000 2500 3000 3500 4000 4500

N[m

uons

]/N[p

]

Zend [m]

Bz=20 -> 1.5 T15 -> 1.5 T

15 -> 1.66 T15 -> 1.8 T

MARS1510 Simulation: Counting muons at 50 m with K.E. 80-140 MeV

Ltaper [cm]

rfinal =30 cm

Rini=7.5-10 cm

Bi=20-15 T

Hisham Sayed - MAP meeting 2013 6/20/13

6

Page 7: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

LONGITUDINAL PHASE SPACE DISTRIBUTIONS (SHORT VERSUS LONG TAPER)

Hisham Sayed - MAP meeting 2013 6/20/13

7

Long adiabatic taper 40 m

Short taper 4 m

End  of  taper   End  of  Decay  

Page 8: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

PHASE SPACE DISTRIBUTIONS (SHORT VERSUS LONG TAPER)

Short Taper Long Taper

T-Pz Correlations at end of decay channel Long Solenoid taper: Ø  More particles Ø  More dispersed (misses the buncher acceptance windows) Short Solenoid taper: more condensed distributions that fits more particles within the buncher acceptance windows

Hisham Sayed - MAP meeting 2013 6/20/13

8

Page 9: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

PHASE SPACE DISTRIBUTIONS (SHORT VERSUS LONG TAPER)

Short Taper 4 m Long Taper 40 m

T-Pz phase space at end of decay channel

Hisham Sayed - MAP meeting 2013 6/20/13

9

Long Solenoid taper: Ø  More particles Ø  More dispersed (misses the buncher

acceptance windows)

Short Solenoid taper: Ø  Higher density t-pz distribution Ø  Fits more particles within the

acceptance of buncher/rotator

Page 10: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

PHASE SPACE - SHORT VERSUS LONG TAPER

0

0.2

0.4

0.6

0.8

1

160 180 200 220 240 260 280 300

Pz [GeV/c]

T [nsec]

Bz=20-1.5 z=50 m

Ltaper=4.00 GoodLtaper=40.00 Good

Shor

t Tap

er

Long

Tap

er

Short Taper

Long Taper

T-Pz Correlations at end of decay channel of good particles

Good Particles

Green: Initial distribution of good particles which were bunched and cooled in 4D cooling channel

Hisham Sayed - MAP meeting 2013 6/20/13

10

Page 11: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

PERFORMANCE  DEPENDENCE  ON  TIME  OF  FLIGHT  (RF  PHASE)  

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10

Meson/Proton

Time [nsec]

t=2.044e-09 sect=2.544e-09 sect=3.044e-09 sect=3.544e-09 sect=4.044e-09 sec

t=4.544e-09 sec -BSLINEt=5.044e-09 sect=5.544e-09 sect=6.044e-09 sect=6.544e-09 sec

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-5 0 5 10 15

MARS1015 2012OLDOLD

TOA  Proton

s  at  z=-­‐200  cm

 

TOA  Proton

s  at  z=-­‐75  cm  

Hisham  Sayed  -­‐  MAP  meeJng  2013  6/20/13  

11  

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300 350

Muon+/proton

z [m]

TOA vs. End n1 Ltaper=8 m B=20-1.5T

TOA=5.38012e-09TOA=4.88014e-09TOA=3.88019e-09TOA=2.88023e-09TOA=1.88028e-09TOA=1.3803e-09

TOA=8.80321e-10TOA=3.80343e-10

TOA=-6.19613e-10TOA=-1.61957e-09TOA=-2.11955e-09TOA=-3.1195e-09

TOA=-4.11946e-09

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25 30 35

Muon

Iteration

"output.all.dat" u 2Optimizing RF Phase

Page 12: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

FRONT END PERFORMANCE

Using baseline cooling section (140 cooling cell)

Using longer cooling section (200 Cooling cell)

Hisham Sayed - MAP meeting 2013 6/20/13

12

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 5 10 15 20 25 30 35 40

Muon/proton

Taper Length [m]

Bz=20-1.5TBz=15-1.5TBz=15-2.5T

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0 5 10 15 20 25 30 35 40

Muon/proton

Taper Length [m]

Bz=20-1.5TBz=15-1.5TBz=15-2.5T

~ 30%

~ 30%

High statistics tracking of Muons through the front end

Page 13: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

FRONT END PERFORMANCE Using longer cooling section

(200 Cooling cell)

Hisham Sayed - MAP meeting 2013 6/20/13

13

High statistics tracking of Muons through the front end

0 5 10 15 200.08

0.09

0.1

0.11

0.12

0.13

0.14

Taper Length [m]

Nm

uon/

Npr

oton

Bz=20−1.5TBz=20−2.0TBz=20−2.5TBz=15−1.5TBz=15−2.0TBz=15−2.5T

Page 14: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0 0.5 1 1.5 2 2.5 3

Muon+/proton

Proton Bunch Length [nsec]

Bz(Target)=15 TBz(Target)=20 T

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16

1.5 2 2.5 3 3.5

Muon+/proton

Constant Bz [T]

MUON YIELD VERSUS END FIELD & BUNCH LENGTH

Bunch length=0 nsec

Muon yield versus end field Muon yield versus Proton Bunch Length

Performance of FE as function of Constant solenoid filed in Decay Channel – Buncher – Rotator (matched to +/- 2.8 T ionization cooling channel)

~ 3% loss per 1 nsec increase in bunch length

Baseline

Bz(Target)=20 T 20% for every 1 T incerease in

constant field

Hisham Sayed - MAP meeting 2013 6/20/13

14

Page 15: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

NEW SHORT TARGET CAPTURE REALISTIC MAGNET (WEGGEL)

6/18/13

15

Muon Target Capture Magnet Short Taper length =7 m- B=20-1.5 T

−5 0 5 10 15 20 25−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Z [m]

Y [m

] Bz=1.5T

Bz=20 T

On axis field [scale /20 T]

Target Magnets

Decay channel Triplet

Taper Magnets

Hisham Sayed BNL −5 0 5 10 15 20 25−3

−2

−1

0

1

2

3

Z [m]

Y [m

] Bz=2.5T

Bz=20 T

On axis field [scale /20 T]

Target Magnets

Decay channel Triplet

Taper Magnets

Muon Target Capture Magnet Short Taper length =5 m- B=20-2.5 T

Page 16: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

0 5 10 15 20 25Z [m] 0 0.05

0.1 0.15

0.2 0.25

0.3

R [m] 0 2 4 6 8

10 12 14 16 18 20

z [T] 0 2 4 6 8 10 12 14 16 18 20

NEW SHORT TARGET CAPTURE MAGNET (WEGGEL)

6/18/13

16

Muon Target Short Taper Magnet taper length =7 m- B=20-1.5 & 2.5 T

Target SC Magnets Field Map calculated from realistic coils

Bz [T]

Hisham Sayed BNL

Engineering (V. Grave) IDS120_20-1.5T7m2+5 Cryo 1

Page 17: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

NEW DECAY CHANNEL REALISTIC MAGNET (WEGGEL)

6/19/13

17

Hisham Sayed BNL

0 2 4 6 8 101.3

1.35

1.4

1.45

1.5

1.55

1.6

Magnet   Length  [m]   Inner  R  [m]   Outer  R  [m]   J  [A/mm2]  

1   0.19   0.6   0.68   47.18  

2   3.8   0.6   0.63   40.00  

3   0.19   0.6   0.68   47.18  

IDS120L20-1.5T 7m

Ø The pions produced in the target decay to muons in a Decay Channel (50 m) Ø Three superconducting coils (5-m-long ) Bz(r=0) ~ 1.5 or 2.5 T solenoid field. Ø Suppress stop bands in the momentum transmission.

Axial-field profile of two Decay-Channel modules

7 m 5 m

Page 18: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

REALISTIC COIL BASED DECAY CHANNEL SOLENOID STOP BAND STUDY

6/21/13

18

Suppression of stop bands in the Decay Channel: Tracking muons through decay channel 10 cells (50 m) optimize magnet design for best performance

Transmission: Constant 1.5 Solenoid Field %67 IDS120L20to1.5T7m %62 Modified IDS120L20to1.5T7m %66

Hisham Sayed BNL

0

100

200

300

400

500

600

700

800

900

1000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

N

P [GeV/c]

Modified 1.5 T Channel v021.5 T Channel v02

IDS120L20to1.5T7m IDS120L20to1.5T7m

0

100

200

300

400

500

600

700

800

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Muon

Ptot [GeV/c]

1.5 T constant solenoid fieldField generated from Coils

Optimization

Page 19: OPTIMIZED SOLENOID BASED CAPTURE MECHANISM FOR A …€¦ · Hisham Sayed - MAP meeting 2013! 3! TARGET SYSTEM CURRENT BASELINE DESIGN!! 14Production of 10 µ/s from 1015 p/s (≈

CONCLUSION & SUMMARY

Hisham  Sayed  -­‐  MAP  meeJng  2013  6/20/13  

19  

1- Target Solenoid parameters that affect the particle Capture & Transmission at target or after cooling Initial peak Field – Taper length – End Field 2- Impact: Short taper preserves the longitudinal phase-space à muons can be captured efficiently in the buncher-phase rotation sections and more muons at the end of cooling. The maximum yield requires taper length of 7-5 m for all cases (20-15T) (1.5-3.5T) for any bunch length. 3- Final constant end field increases the yield by 20% for every 1 T increase in the field beyond the 1.5 T baseline 4- Initial proton bunch length influence the muon/proton yield at the end of the cooling channel ~ 3% reduction per 1 nsec increase in bunch length. 5- Realistic Coil design.


Recommended