+ All Categories
Home > Documents > Optimizing Ion Chromatography for MSD hyphenation · • “Real World Samples” submitted by...

Optimizing Ion Chromatography for MSD hyphenation · • “Real World Samples” submitted by...

Date post: 06-Sep-2018
Category:
Upload: dinhnhi
View: 221 times
Download: 0 times
Share this document with a friend
25
3/21/2014 1 Optimizing Ion Chromatography for MSD hyphenation Presented by Jay Gandhi, PhD Metrohm USA 1 What we will cover today Basics of Ion Chromatography Hyphenated Techniques ICMS ICMSMS Case Study of USEPA Method for PerChlorate IC-ICPMS Case Study of USEPA SW846 Method 6800 Summary 2 Introduction into IC What is Ion Chromatography? • Analytical method to determine ions or polar substances • Liquid mixture of substances as input • Separation of chemically similar substances in one run • Components are separated by a stationary and a mobile phase • Different mechanisms are known: ion exchange chromatography ion pair chromatography ion exclusion chromatography • Independent determinations for anions and cations Concentration range: ppt, ppb, ppm, %
Transcript

3/21/2014

1

Optimizing Ion Chromatography for MSD hyphenation

Presented byJay Gandhi, PhD

Metrohm USA

1

What we will cover today

• Basics of Ion Chromatography• Hyphenated Techniques

• ICMS• ICMSMS

• Case Study of USEPA Method for PerChlorate

• IC-ICPMS• Case Study of USEPA SW846Method 6800

• Summary

2

Introduction into ICWhat is Ion Chromatography?

• Analytical method to determine ions or polar substances• Liquid mixture of substances as input• Separation of chemically similar substances in one run• Components are separated by a stationary and a mobilephase• Different mechanisms are known:

ion exchange chromatographyion pair chromatography ion exclusion chromatography

• Independent determinations for anions and cations• Concentration range: ppt, ppb, ppm, %

3/21/2014

2

Method distinction based on the polarities of the stationary and mobile phases

Group 1 – Traditional Thin Layer + HPLC1. normal phase : less polar mobile phase

(e.g. n-hexane ) than stationary phase (e.g. SiO2)

2. reversed phase : more polar mobile phase (e.g. methanol/water) than stationary phase (e.g. C18)

Group 2 – Ion Chromatography4. ion exchange chromatography3. ion pair chromatography5. Ion exclusion chromatography

General Chromatography

Anion and Cation Chromatography

I II III IV V VI VII VIII I II III IV V VI VII VIII

H He

Li Be B C N O F Ne

Na Mg Al Si P S Cl Ar

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

Fr Ra Ac Ku

PumpEluent DetectorSample Injection

Separation

• The mobile phase (eluent) is pumped through the system with a constant flow

• The sample is injected into it

• The mobile phase carries the sample through the static phase (separator) where the sample is split up into its component ions

• In the detector single components are recognized by a change in conductivity

Components of Ion Chromatograph

3/21/2014

3

Setup

C

Mobile phaseHigh pressure pumpInjection valveAnalytical column»MSM II» SuppressorDetectorSample

E

P

C

D

Suppressed Ion Chromatography:

• Anions• Organic acids

This image cannot currently be displayed.

Column

• Stationary phase• Different columns for anions & cations• Composition of columns:

resin carrier + spacer + functionality group• Different column materials for optimum of

robustness and efficiency, e.g. polystyrene-divinylbenzene, polymethacrylate, polyalcohol polymers

• Selectivity based on different polarity & functional groups

• Capacity based on column dimensions and composition

• Wide range of columns is available, there is the best column for each application

The Invention

Separation Column

Suppressor Detector

Conductivity high high to low low

9

3/21/2014

4

Suppression

Eluent:

- Na+

+ H+

Sample:

all cations are replaced by H+

MSMCO2

Suppressor

CO2 is removed

Reduction of the background conductivity andincrease of analyte conductivity.

highconductivity

- Na+

+ H+

lowconductivity

highconductivity

lowconductivity

Na+ + Cl- H+ + Cl-

lowestconductivity

Na+ + HCO3- H2CO3 H2O + CO2

10

11

2003-2007

Trace Level Perchlorate Analysis Various USEPA methods

Perchlorate Background

12

• Used as rocket propellant• Used in electroplating industry• Used in fireworks• There are also evidence of “naturally occurring

Perchlorate – Chilean fertilizer”

Why Analyze?• It is persistent in environment• It is believed to inhibit Iodine uptake in thyroid

gland causing hypo thyroidism

3/21/2014

5

Perchlorate Background

Map provided as public information on USEPA website

13

Possible Perchlorate PathwayFertilizers containing

Perchlorate

Edible Plants (Fruits, Vegetables, Leaves)

Consumed by Animals

Meat and Dairy Products

Consumed by Humans

Leading threat for

Thyroid disease??

Perchlorate Containing Irrigational Water

14

USEPA Methods

• Perchlorate• USEPA 314.2• USEPA 314.0 enhanced• USEPA 332.0 / SW846 6860• USEPA 331.0 / SW846 6850• USEPA 314.1

15

3/21/2014

6

USEPA Methods• Perchlorate

• USEPA 314.2• USEPA 314.0 enhanced• USEPA 332.0 / SW846 6860• USEPA 331.0 / SW846 6850• USEPA 314.1

16

US EPA method314.0 enhanced

Perchlorate by Suppressed Conductivity

17

Using a Functionalized Monolithic Column or Anion Exchanger Column

USEPA method 314.0 (enhanced)

AW US6-0071AW US6-0130

18

3/21/2014

7

5 ppb Perchlorate in Ultra Pure Water

Metrosep Dual 4 – 50 mm

1 Perchlorate 5 ppb

LiOH/p-cyanophenol; 5/12 mM; 1.75 mL/min; 750 µL

USEPA method 314.0

AW US6-0071AW US6-0130

19

0.13 ppb Perchlorate in Ultra Pure Water

Metrosep Dual 4 – 50 mm

1 Perchlorate 0.13 ppb

LiOH/p-cyanophenol; 5/12 mM; 1.75 mL/min; 750 µL

USEPA method 314.0

AW US6-0071AW US6-0130

20

Metrosep Dual 4 – 50 mm

Chloride 1’000 ppm

Carbonate 1’000 ppm

Sulfate 1’000 ppm

1 Perchlorate 0.54 ppb

LiOH/p-cyanophenol; 5/12 mM; 1.75 mL/min; 750 µL

USEPA method 314.0

AW US6-0071AW US6-0130

21

3/21/2014

8

Metrosep Dual 4 – 50 mm

1 Perchlorate in Reagent Water

50 ppm Cl-, HCO3-, SO4

2-

250 ppm Cl-, HCO3-, SO4

2-

500 ppm Cl-, HCO3-, SO4

2-

750 ppm Cl-, HCO3-, SO4

2-

1’000 ppm Cl-, HCO3-, SO4

2-

LiOH/p-cyanophenol; 5/12 mM; 1.75 mL/min; 750 µL

USEPA method 314.0ppb Levels Perchlorate in High Ionic Matrix

AW US6-0071AW US6-0130

22

Applications

23

IC-MS

24

IC-MS

Electro Spray Ionization

3/21/2014

9

Perchlorate Mass

-Chlorine (Cl) = 35

+

4 x Oxygen (O) = 4 x 16 = 64

25

Perchlorate mass (Cl35) =35 + 64 = 99

Perchlorate mass (Cl37) =37 + 64 = 101

Perchlorate Mass / interferenceSulfur (S) = 32

+

26

4 x Oxygen (O) = 4 x 16 = 64

HSO4-1 (S32) =

1+32 + 64 = 97

HSO4-1 (S34) =

1+32 + 64 = 99

The Samples (USEPA method validation)

• UHP water matrix (18meg Ω)• Simulated Matrix (with 1ppb Perchlorate)

• Low Matrix = 200ppm each of Cl-1, CO32-, SO4

2-

• Mid Matrix = 500ppm each of Cl-1, CO32-, SO4

2-

• High Matrix = 1000ppm each of Cl-1, CO32-, SO4

2-

• “Real World Samples” submitted by customers

27

3/21/2014

10

In Collaboration withUSEPA (OSW)

28

US EPA method331.0 / SW846 6850Perchlorate by LCMS / LCMSMS

Agilent 1100 LC/MSD

Very High Ionic water (RR study)

min2 4 6 8 10 12

200

250

300

350

400

450

MSD1 85, EIC=84.7:85.7 (0113MPER\SIG10039.D) API-ES, Neg, SIM, Frag: 210

8.2

85

MSD1 83, EIC=82.7:83.7 (0113MPER\SIG10039.D) API-ES, Neg, SIM, Frag: 210 MSD1 89, EIC=88.7:89.7 (0113MPER\SIG10039.D) API-ES, Neg, SIM, Frag: 210

min2 4 6 8 10 12 14 16

200

250

300

350

400

450

MSD1 85, EIC=84.7:85.7 (0105KPER\SIG10020.D) API-ES, Neg, SIM, Frag: 210 MSD1 83, EIC=82.7:83.7 (0105KPER\SIG10020.D) API-ES, Neg, SIM, Frag: 210 MSD1 89, EIC=88.7:89.7 (0105KPER\SIG10020.D) API-ES, Neg, SIM, Frag: 210

Column - 1

Column - 2

LC MS with LC Column

LC MS with IC Column

30

3/21/2014

11

Total Ion Chromatograms (TIC) Calib. Standards

min2 4 6 8 10 12

500

750

1000

1250

1500

1750

2000

2250

MSD1 TIC, MS File (0215MPER\SIG10003.D) API-ES, Neg, SIM, Frag: 210 MSD1 TIC, MS File (0215MPER\SIG10004.D) API-ES, Neg, SIM, Frag: 210 MSD1 TIC, MS File (0215MPER\SIG10005.D) API-ES, Neg, SIM, Frag: 210 MSD1 TIC, MS File (0215MPER\SIG10006.D) API-ES, Neg, SIM, Frag: 210 MSD1 TIC, MS File (0215MPER\SIG10007.D) API-ES, Neg, SIM, Frag: 210 MSD1 TIC, MS File (0215MPER\SIG10008.D) API-ES, Neg, SIM, Frag: 210 MSD1 TIC, MS File (0215MPER\SIG10009.D) API-ES, Neg, SIM, Frag: 210 MSD1 TIC, MS File (0215MPER\SIG10010.D) API-ES, Neg, SIM, Frag: 210 MSD1 TIC, MS File (0215MPER\SIG10011.D) API-ES, Neg, SIM, Frag: 210

Calibration Range from

0.2 ppb to 10.0 ppb

Metrohm LC column

Amount Ratio0 5

Area Ratio

0

2

4

6

8

10

12

8765

4

3

2

1

Perch 99 -> 83, MSD1 83

Correlation: 0.99998

Rel. Res%(6): 3.849

Area Ratio = 1.21815035*AmtRatio -0.0112055

Amount Ratio0 0.5

Area Ratio

0

0.2

0.4

0.6

0.8

112345678

ISTD 107 -> 89, MSD1 89

Correlation: 1.00000

Rel. Res%(3): 0.000

Area Ratio = 1*AmtRatio +0

Amount Ratio0 5

Area Ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

8765

4

3

2

1

Perch 101 -> 85, MSD1 85

Correlation: 0.99999

Rel. Res%(5): 1.329

Area Ratio = 0.40632472*AmtRatio +0.002521

Range for Calibration Standards0.2ppb to

10ppb (ClO41-)

Mass 99 83 Mass 101 85

Mass 107 89

Salty MSD Interface after 40 injections (LC/MS) – no suppressor)

33

3/21/2014

12

In Collaboration withUSEPA (ODW-OGW / OSW)

34

US EPA method332.0 / SW846 6860

Perchlorate by ICMS / ICMSMS

Metrohm Advanced Modular IC – Agilent 1100 MSD

35

Picture of Instrument Set-up

36

3/21/2014

13

Instrument Set – Up (2003)

• Metrohm Advanced IC• 100 uL loop injection• Column: MetroSep ASUPP-5 (4mm x 100mm)

• Eluant: 30mM NaOH + 30% Methanol• Flow rate: 0.8 ml/min with NO SPLITTING.

• Agilent 1100LC/MSD ESI • Negative mode “auto-tune”

• Vcap = 1400V, Drying Gas = 9L/min@320 C.

• Nebulizer Pressure=20 psig.• Fragmentor = 140 V.

37

Metrohm Advanced IC – Agilent MSD

38

Instrumental Setup (Standard Configuration)

IC-MS

39

3/21/2014

14

Instrument Set – Up (2008)

• Metrohm Professional Anion IC• 100 uL loop injection (even 25uL will work)• Column: MetroSep ASUPP-7 (4mm x 250mm)

• Eluant: 10.5mM Na2CO3 + 25% Acetonitrile• Flow rate: 0.8 ml/min with NO SPLITTING.

• Agilent 1100LC/MSD ESI • Negative mode “auto-tune”

• Vcap = 1800V, Drying Gas = 10L/min@350 C.

• Nebulizer Pressure=40 psig.• Fragmentor = 140 V.

40

Calibration Data for MSD

41

Calibration Data (m/z 99)

Range for Calibration Standards

0.1ppb to 10ppb (ClO41-)

Amount[ng/ml]0 2

Area

0

100000

200000

300000

400000

500000

600000

700000

1

2

3

4

5

perchlorate 101, MSD1 99

Correlation: 0.99942

Rel. Res%(3): 1.9387e-2

Area = 143840.996*Amt -2810.7345

42

3/21/2014

15

Calibration Data (m/z 101)

Range for Calibration Standards

0.1ppb to 10ppb (ClO41-)

Amount[ng/ml]0 2

Area

0

50000

100000

150000

200000

1

2

3

4

5

perchlorate 99, MSD1 101

Correlation: 0.99874

Rel. Res%(4): -3.377

Area = 44472.7433*Amt -1931.1962

43

Chromatography

44

Total Ion Chromatograms (TIC) Calib. Standards and Blank

min2 4 6 8 10 12 14 16

10000

15000

20000

25000

30000

35000

MSD1 TIC, MS File (ICDATA~1\ICBLK1D\IC000001.D) API-ES, Neg, SIM, Frag: 140, "neg sim" MSD1 TIC, MS File (ICDATA~1\ICBLK1D\IC000002.D) API-ES, Neg, SIM, Frag: 140, "neg sim" MSD1 TIC, MS File (ICDATA~1\ICBLK1D\IC000003.D) API-ES, Neg, SIM, Frag: 140, "neg sim" MSD1 TIC, MS File (ICDATA~1\ICBLK1D\IC000004.D) API-ES, Neg, SIM, Frag: 140, "neg sim" MSD1 TIC, MS File (ICDATA~1\ICBLK1D\IC000005.D) API-ES, Neg, SIM, Frag: 140, "neg sim" MSD1 TIC, MS File (ICDATA~1\ICBLK1D\IC000006.D) API-ES, Neg, SIM, Frag: 140, "neg sim"

Calibration Range from 0.1 ppb to 10.0 ppb

45

3/21/2014

16

min2 4 6 8 10 12 14 16

2000

3000

4000

5000

6000

7000

8000

9000

10000

MSD1 99, EIC=98.7:99.7 (ICDATA~1\ICBLK1D\IC000004.D) API-ES, Neg, SIM, Frag: 140, "neg sim" MSD1 101, EIC=100.7:101.7 (ICDATA~1\ICBLK1D\IC000004.D) API-ES, Neg, SIM, Frag: 140, "neg sim"

M/z = 99

M/z = 101

46

Extracted Ion Chromatograms for 0.5 ppb standard

Replicates - TIC 0.5 ppb Standards

min2 4 6 8 10 12 14 16

7000

8000

9000

10000

11000

12000

13000

MSD1 TIC, MS File (ICDATA~1\ICBLK1D\IC000003.D) API-ES, Neg, SIM, Frag: 140, "neg sim" MSD1 TIC, MS File (ICDATA~1\ICBLK1D\IC000009.D) API-ES, Neg, SIM, Frag: 140, "neg sim" MSD1 TIC, MS File (ICDATA~1\ICBLK1D\IC000013.D) API-ES, Neg, SIM, Frag: 140, "neg sim" MSD1 TIC, MS File (ICDATA~1\ICBLK1D\IC000014.D) API-ES, Neg, SIM, Frag: 140, "neg sim" MSD1 TIC, MS File (ICDATA~1\ICBLK1D\IC000015.D) API-ES, Neg, SIM, Frag: 140, "neg sim" MSD1 TIC, MS File (ICDATA~1\ICBLK1D\IC000016.D) API-ES, Neg, SIM, Frag: 140, "neg sim" MSD1 TIC, MS File (ICDATA~1\ICBLK1D\IC000017.D) API-ES, Neg, SIM, Frag: 140, "neg sim"

47

Results of DW Fortified with Perchlorate

0.5 ppb replicates

1.0 ppb replicates

SAM PLE ID

TRUE CONCENTRATION

PPB (M /Z = 99)

% Recovery (m /z99)

PPB (M /Z = 101)

% Recovery (m /z101)

0.5 PPB 0.480 0.487 101.46% 0.519 108.13%0.5 PPB 0.480 0.477 99.38% 0.471 98.13%0.5 PPB 0.480 0.460 95.83% 0.490 102.08%0.5 PPB 0.480 0.477 99.38% 0.492 102.50%0.5 PPB 0.480 0.520 108.33% 0.505 105.21%0.5 PPB 0.480 0.494 102.92% 0.509 106.04%

Average 0.480 0.486 101.22% 0.498 103.68%Std. Dev 0.020 0.042 0.017 0.035RSD 4.18% 4.18% 3.41% 3.41%

SAM PLE ID

TRUE CONCENTRATION

PPB (M /Z = 99)

% Recovery (m /z99)

PPB (M /Z = 101)

% Recovery (m /z101)

1.0 PPB 0.780 0.756 96.92% 0.768 98.46%1.0 PPB 0.780 0.810 103.85% 0.830 106.41%1.0 PPB 0.780 0.776 99.49% 0.772 98.97%1.0 PPB 0.780 0.799 102.44% 0.754 96.67%1.0 PPB 0.780 0.788 101.03% 0.768 98.46%1.0 PPB 0.780 0.792 101.54% 0.807 103.46%

Average 0.780 0.787 100.88% 0.783 100.41%Std. Dev 0.019 0.024 0.029 0.037RSD 2.40% 2.40% 3.70% 3.70%

48

3/21/2014

17

Synthetic Matrix Spikes Overlaid with 1ppb Standard

min2 4 6 8 10 12 14 16

8000

10000

12000

14000

16000

18000

MSD1 TIC, MS File (ICDATA~1\ICBLK1D\IC000045.D) API-ES, Neg, SIM, Frag: 140, "neg sim" MSD1 TIC, MS File (ICDATA~1\ICBLK1D\IC000046.D) API-ES, Neg, SIM, Frag: 140, "neg sim" MSD1 TIC, MS File (ICDATA~1\ICBLK1D\IC000047.D) API-ES, Neg, SIM, Frag: 140, "neg sim" MSD1 TIC, MS File (ICDATA~1\ICBLK1D\IC000048.D) API-ES, Neg, SIM, Frag: 140, "neg sim"

No Matrix

200ppm Cl, CO3, SO4

500ppm Cl, CO3, SO4

1000ppm Cl, CO3, SO4

49

Single Ion Chromatograms of High Matrix Spike

min2 4 6 8 10 12 14 16

0

2000

4000

6000

8000

10000

12000

MSD1 99, EIC=98.7:99.7 (ICDATA~1\ICBLK1D\IC000048.D) API-ES, Neg, SIM, Frag: 140, "neg sim" MSD1 101, EIC=100.7:101.7 (ICDATA~1\ICBLK1D\IC000048.D) API-ES, Neg, SIM, Frag: 140, "neg sim"

m/z = 99

m/z = 101

50

What is Ion Suppression

• In LCMS / ICMS world, this is commonly known term• Explanation of “ion suppression”

3/21/2014

18

Effects of Ion SuppressionISTD Area counts in 50 injections(16 hours of continous operation)

050000

100000150000200000250000300000350000400000450000

1 6 11 16 21 26 31 36 41 46

ISTD

Linear (ISTD)

MDL Study for HIW SamplesSample ID m/z 99, ppb

m/z 101, ppb

m/z 107, ppb

True Value, ppb

m/z 99, % Rec

m/z 101, % Rec

HIW-0.5ppb-1 0.4529 0.4820 1.00 0.502 90.22% 96.02%

HIW-0.5ppb-2 0.4727 0.4892 1.00 0.502 94.16% 97.45%

HIW-0.5ppb-3 0.4698 0.5133 1.00 0.502 93.59% 102.25%

HIW-0.5ppb-4 0.4269 0.5865 1.00 0.502 85.04% 116.83%

HIW-0.5ppb-5 0.5541 0.5176 1.00 0.502 110.38% 103.11%

HIW-0.5ppb-6 0.4916 0.5186 1.00 0.502 97.93% 103.31%

HIW-0.5ppb-7 0.4794 0.5375 1.00 0.502 95.50% 107.07%

Average 0.478 0.521 1.000 0.502 95.26% 103.72%

Std Deviation 0.039 0.035 0.078 0.069

% RSD 8.24% 6.64% 8.24% 6.64%

Calculated MDL, ppb 0.124 0.109

MDL Study for HIW SamplesSample ID m/z 99, ppb

m/z 101, ppb

m/z 107, ppb

True Value, ppb

m/z 99, % Rec

m/z 101, % Rec

HIW-5.0ppb-1 5.6846 5.8867 1.00 5.99 94.90% 98.27%

HIW-5.0ppb-2 5.6971 5.8566 1.00 5.99 95.11% 97.77%

HIW-5.0ppb-3 5.7143 5.8664 1.00 5.99 95.40% 97.94%

HIW-5.0ppb-4 5.7931 5.8270 1.00 5.99 96.71% 97.28%

HIW-5.0ppb-5 5.6886 5.7892 1.00 5.99 94.97% 96.65%

HIW-5.0ppb-6 5.6702 5.8107 1.00 5.99 94.66% 97.01%

HIW-5.0ppb-7 5.6693 5.8294 1.00 5.99 94.65% 97.32%

Average 5.702 5.838 1.000 5.990 95.20% 97.46%

Std Deviation 0.043 0.034 0.007 0.006

% RSD 0.75% 0.58% 0.75% 0.58%

Calculated MDL, ppb 0.135 0.106

3/21/2014

19

Synthetic Matrix Spikes Overlaid with 1ppb Standard

min2 4 6 8 10 12

0

25000

50000

75000

100000

125000

150000

175000

MSD1 TIC, MS File (EPA_ROB1\011-2701.D) API-ES, Neg, SIM, Frag: 150

Are

a: 8

8318

8

11.

874

MSD1 99, EIC=98.7:99.7 (EPA_ROB1\011-2701.D) API-ES, Neg, SIM, Frag: 150

Are

a: 3

4193

5

11.

845

MSD1 101, EIC=100.7:101.7 (EPA_ROB1\011-2701.D) API-ES, Neg, SIM, Frag: 150

Are

a: 1

1894

1

11.

897

MSD1 105, EIC=104.7:105.7 (EPA_ROB1\011-2701.D) API-ES, Neg, SIM, Frag: 150

Are

a: 6

5070

11.

891

MSD1 107, EIC=106.7:107.7 (EPA_ROB1\011-2701.D) API-ES, Neg, SIM, Frag: 150

Are

a: 3

5431

2

11.

893

MSD1 TIC, MS File (EPA_ROB1\012-2801.D) API-ES, Neg, SIM, Frag: 150

11.

897

MSD1 TIC, MS File (EPA_ROB1\019-3501.D) API-ES, Neg, SIM, Frag: 150

11.

843

MSD1 TIC, MS File (EPA_ROB1\020-3601.D) API-ES, Neg, SIM, Frag: 150

11.

844

MSD1 TIC, MS File (EPA_ROB1\026-4201.D) API-ES, Neg, SIM, Frag: 150

11.

830

MSD1 TIC, MS File (EPA_ROB1\025-4101.D) API-ES, Neg, SIM, Frag: 150

11.

826

MSD1 TIC, MS File (EPA_ROB1\031-4701.D) API-ES, Neg, SIM, Frag: 150

11.

827

MSD1 TIC, MS File (EPA_ROB1\032-4801.D) API-ES, Neg, SIM, Frag: 150

11.

819

MSD1 TIC, MS File (EPA_ROB1\037-5301.D) API-ES, Neg, SIM, Frag: 150

0.8

53

11.

795

MSD1 TIC, MS File (EPA_ROB1\036-5201.D) API-ES, Neg, SIM, Frag: 150

11.

792

MSD1 TIC, MS File (EPA_ROB1\041-5701.D) API-ES, Neg, SIM, Frag: 150

0.9

01

11.

879

MSD1 TIC, MS File (EPA_ROB1\044-6001.D) API-ES, Neg, SIM, Frag: 150

11.

884

1000ppm each Cl, CO3, SO4

1200ppm each Cl, CO3, SO4

1400ppm each Cl, CO3, SO4

1600ppm each Cl, CO3, SO4

1800ppm each Cl, CO3, SO4

2000ppm each Cl, CO3, SO4

Simulated HIW Matrix

Statistical DataQA - Calculations

No Sample ID True Value, ppb M/z 99 M/z 1011 Reagent Blank

2 0.15ppb std 0.159 101.73% 105.95%

3 0.25ppb std 0.245 98.12% 98.25%

4 0.5ppb std 0.585 93.75% 94.34%

5 1.0ppb std 1.029 100.35% 93.73%

6 2.5 ppb std 2.575 103.50% 105.72%

7 5 ppb std 5.99 95.61% 99.29%

8 10 ppb std 10.87 103.81% 106.66%

9 Reagent Blank

10 CCC (0.5ppb) 0.599 101.54% 99.93%

11 750ppmTDS+0.799ppb – 1 (n=5) 0.799 94.54% 101.38%

16 CCC (5ppb) 5.99 99.09% 95.07%

17 1000ppmTDS+0.759ppb – 1 (n=5) 0.759 90.71% 83.81%

22 CCC (0.5ppb) 0.599 100.94% 81.58%

23 1600ppmTDS+1ppb – 1 (n=5) 1.023 94.23% 103.53%

28 CCC (5ppb) 5.99 98.02% 94.42%

29 1800ppmTDS+1ppb – 1 (n=5) 1.115 98.96% 99.93%

34 CCC (0.5ppb) 0.599 101.87% 99.51%

35 2000ppmTDS+1.3ppb – 1 (n=5) 1.311 105.04% 111.23%

40 CCC (5ppb) 5.99 105.34% 102.94%

41 500ppmTDS+0.711ppb – 1 (n=5) 0.711 98.25% 96.53%

46 CCC (10ppb) 10.87 105.37% 106.67%

avg 100.34% 98.67%56

MSD Interface after 150 injections

No Salt deposition

3/21/2014

20

58

IC/MSMS (US EPA R6 lab)

Metal Speciation using IC-ICPMS

59

60

IC-ICP/MSIC-ICP/MS

3/21/2014

21

61

Basic Construction of IC-ICP/MS

IC-ICP/MS

Chromium Speciation analysis

• USEPA Chromium-6 methods• SW 846 Method 7199 for soils and wastes• SW 846 Method 6800

• Instruments used for this study• Sample Preparation method efficacy

• Data for Sample Preparation study

62

Typical instrument setup

63

Picture is courtesy of Dr. Skip’s group at Duquesne University

3/21/2014

22

USEPA Method 6800 – Hamilton Column• Metrohm Ion Chromatogram:

• Column: Hamilton PRPX-100-250 (4mm ID Column)

• Eluent A: 60 mM HNO3 with 10 ppm Tm at pH 9.3

• Eluent B: 60 mM HNO3 with 10 ppm Tm at pH 1.2

• Flow rate: 1.0 mL/min

• Sample loop: 20uL

• ICPMS Detection: Using SIDMS technique

64

Chromatogram

65

Chromatograms for the analysis of a standard solution 25.0 g/L in Cr(III) and Cr(VI). Column: PRP-X100; mobile phases: (a) 60 mM HNO3 with 10 ppm Tm at pH 9.3 and pH 1.2, and (b) eluent composition as (a) with out Tm

USEPA Method 6800 – Metrohm Column• Metrohm Ion Chromatogram:

• Column: ASUPP3 - 250 (4mm ID Column)

• Eluent A: 60 mM HNO3 with 10 ppm Tm at pH 9.3

• Eluent B: 60 mM HNO3 with 10 ppm Tm at pH 1.2

• Flow rate: 1.0 mL/min

• Sample loop: 20uL

• ICPMS Detection: Using SIDMS technique

66

3/21/2014

23

Chromatogram

67

Chromatograms for the analysis of a 25.0 g/L standards of (a) Cr(III) and Cr(VI), (b) Cr(III) only, (c) Cr(VI) only, and (d) deionized water. Column: Metrosep A Supp 3; mobile phase: 60 mM HNO3

with 10 ppm Tm (pH 9.3 and pH 1.2) mobile phase

USEPA Method 6800 (Compare)

• Metrohm Ion Chromatogram:• Column: ASUPP4 - 250 (4mm ID Column)

PRPX100 - 100 (4mm ID Column)• Eluent: 25 mM NH4NO3 pH 9.6

• Flow rate: 1.0 mL/min

• Sample loop: 20uL

• ICPMS Detection: Using SIDMS technique

68

ISOCRATIC

Column Compare Chromatogram

69

Chromatograms for the analysis of a standard solution (25.0 g/L in Cr(III) and Cr(VI)) using (a) Metrosep A Supp 4 column, and (b) PRPX-100 column. (c) Chromatogram for the analysis of deionized water using Metrosep A Supp 4 column. Mobile phase: 25 mM NH4NO3 (pH 9.6).

3/21/2014

24

Data

70

USEPA Method for Analysis

6800 (SIDMS) 7199

7194 (draft)

Cr(VI) Cr(III) Cr(III)+Cr(VI) Total Cr

ug/g

2700A_quartz 12.28 12.6 13.8 317.8 330.1 341

2700B_glass 11.85 10.4 12.46 668.9 680.7 667.6

Sigma SRM 54.04 53.05 53.39 105.8 158.8 152.2

71

Arsenic / Selenium Speciation

IC-ICP/MS

72

Ultra Trace Analysis of Actinides in Urine

Eichrom: UT-B200-A (4x300)1 Neptunium 2372 Americium 2413 Plutonium 2394 Thorium 2325 Uranium 238

m/z

Urine dilution 1:10, Preconcentration 25 mL, IC as Sample Preparation3/2/0.032 M; Gradient HNO3/HCl/ Oxalic acid; 1.5 mL/min; 5 ppt

ICP/MS: without reaction or collision mode

Source: Hang, W.; Zhu, L; Zhong, W.; Mahan, C; JAAS; 2004, 19, 966 - 972

IC-ICP/MS

3/21/2014

25

Summary

History Theory of Ion Chromatography Various Applications for Ion Chromatography

Hyphenated techniques for Ion Chromatography

73

Final Take Home Message

Start a Reaction.


Recommended