+ All Categories
Home > Documents > Optimizing Least-Squares Rational Filters for Solving...

Optimizing Least-Squares Rational Filters for Solving...

Date post: 05-Aug-2019
Category:
Upload: phungnhan
View: 212 times
Download: 0 times
Share this document with a friend
39
Optimizing Least-Squares Rational Filters for Solving Interior Eigenvalue Problems Jan Winkelmann, Edoardo Di Napoli {winkelmann,dinapoli}@aices.rwth-aachen.de Aachen Institute for Advanced Studies in Computational Engineering Science July 6, 2016 Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 1 / 29
Transcript
Page 1: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Optimizing Least-Squares Rational Filters for SolvingInterior Eigenvalue Problems

Jan Winkelmann, Edoardo Di Napoli{winkelmann,dinapoli}@aices.rwth-aachen.de

Aachen Institute for Advanced Studies in Computational Engineering Science

July 6, 2016

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 1 / 29

Page 2: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

1 Introduction and Motivation

2 Least-Squares Filters

3 Comparison to State of the Art

4 Optimization of Least-Squares Filters

5 Conclusion

6 Constrained LSOP

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 2 / 29

Page 3: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Filtered Subspace Iteration

Consider the interior hermitian eigenvalue problem

Ax = λx , with A = AH ∈ Cn×n sparse and λ ∈ I = [λmin, λmax ]

Can be extended to generalized interior (non-hermitian) eigenproblems

Algorithm Sketch1 Filter: X̂n+1 := ρ(A)Xn

2 Rayleigh-Ritz:[Q,Λ] := eig(X̂H

n+1 · A · X̂n+1)

Xn+1 := X̂n+1 · Q

X0 initial guess of eigenvectorsρ(A) spectral projector

Example (Gauss filter)

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

1

Real axis

Filte

rva

lue

Π(x)Gauss

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 3 / 29

Page 4: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Rational filter methods

Classic rational filter methods use numerical integration of a contour

ρ(A)X =12πı

∮C

(zI − A)−1Xdz ≈N∑i=1

ωi (zi I − A)−1X

We can use any function that yieldscheap system solves. For Example:

ρ(A) =N∑i=1

αi (zi I − A)−1

Previous WorkSS-Method 1

FEAST 2

Zolotarev Filters 3

Least-Squares 4,5

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 4 / 29

Page 5: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Rational filter methods

Classic rational filter methods use numerical integration of a contour

ρ(A)X =12πı

∮C

(zI − A)−1Xdz ≈N∑i=1

ωi (zi I − A)−1X

We can use any function that yieldscheap system solves. For Example:

ρ(A) =N∑i=1

αi (zi I − A)−1

Previous WorkSS-Method 1

FEAST 2

Zolotarev Filters 3

Least-Squares 4,5

1Sakurai, Sugiura. Journal of Computational and Applied Mathematics; 20032Polizzi. Physical Review B; 20093Güttel, et.al. SIAM Journal on Scientific Computing; 20154Barel. Linear Algebra and its Applications; 20155Xi, Saad, Y. Preprint; 2015

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 4 / 29

Page 6: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Least-Squares based filters

The idea:

minαi ,zi 1≤i≤N

∫ ∞−∞

∣∣∣∣∣∏(x)−N∑i=1

αi

zi − x

∣∣∣∣∣2

dx

Note that:∏(x) is the the indicator

function on [−1, 1].Coefficients αi , and poles zi arecomplex-valued.We optimize coefficients andpoles of the rational function.

Potential Benefits:Faster convergenceIncreased flexibilityProblem specific filters

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 5 / 29

Page 7: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

First Results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Real axis

Filte

rva

lue

GaussLSOPΠ

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 6 / 29

Page 8: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

First Results

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 210−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Real axis

Filte

rva

lue

GaussLSOP

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 6 / 29

Page 9: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Our Goals

Filtered Subspace Iteration is sensitive to the spectrumAppropriate choice of subspace size and degree requiredDifferent filter types have different strengthsEven with some prior knowledge:Optimal choice of parameters is difficult.This is a difficult problem ⇒ We will not change this

The filter should be "smart"Take advantage of the spectrumIdeally, this would work automatically

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 7 / 29

Page 10: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

State of the Art Filters

Gauss FilterFrom Gauss(-Legendre) QuadratureBenefits from larger search subspace (≈ 1.5)

Zolotarev FilterFrom Cauer, Elliptical, or Zolotarev FiltersDoes not benefit from larger subspacesMay have better convergence or load-balancing

Choosing optimal filter and parameters is difficultFEAST 3.0 as Benchmark toolAll Timings are for single threaded execution

Maximum of 40 iterationsTermination criterion: Residual ≤ 10−14

Filter–type, –degree and search subspace as indicated

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 8 / 29

Page 11: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Filter "Comparison", 4 Poles per Quadrant

0 0.5 1 1.5 2 2.5 310−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Real axis

Filte

rva

lue

ZolotarevLSOPGauss

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 9 / 29

Page 12: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

2D FEM: CNT Spectrum Visualization

10 20 30 40 50 60 70 80 90 100

−60

−40

−20

0

Arbitrary Index

Eige

nval

ue

Eigenvaluesλ minλ max

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 10 / 29

Page 13: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

2D FEM: CNT, 4 Poles per Quadrant

100 120 140 1600

10

20

30

% of target subspace

Iter

atio

ns

GaussZolotarev

LSOP

100 120 140 1600

10

20

30

% of target subspace

Tim

e(s)

GaussZolotarev

LSOP

Gauss filter benefits from larger subspacesLeast-Squares filter requires less iterations than ZolotarevSomewhat benefits from larger subspace

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 11 / 29

Page 14: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

2D FEM: CNT, 1 Pole per Quadrant

100 120 140 1600

10

20

30

40

% of target subspace

Iter

atio

ns

GaussLSOP

100 120 140 1600

10

20

30

% of target subspace

Tim

e(s)

GaussLSOP

Zolotarev does not converge within 40 iterations

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 12 / 29

Page 15: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

2D FEM: CNT, Complete Timings

100 120 140 160

10

20

30

% of target subspace

Tim

e(s)

Gauss-8Zolotarev-8LSOP-8Gauss-4

Zolotarev-4LSOP-4Gauss-1LSOP-1

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 13 / 29

Page 16: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

2D FEM: CNT, Complete Timings

100 120 140 160

10

20

30

% of target subspace

Tim

e(s)

Gauss-8Zolotarev-8LSOP-8Gauss-4

Zolotarev-4LSOP-4Gauss-1LSOP-1

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 13 / 29

Page 17: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

2D FEM: CNT, Complete Timings

100 120 140 160

10

20

30

% of target subspace

Tim

e(s)

Gauss-8Zolotarev-8LSOP-8Gauss-4

Zolotarev-4LSOP-4Gauss-1LSOP-1

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 13 / 29

Page 18: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

3D FEM: Caffeinep2 Spectrum Visualization

20 40 60 80 100 120 140 160 180 200−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

·10−16

Arbitrary Index

Eige

nval

ue

Eigenvaluesλ minλ max

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 14 / 29

Page 19: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

3D FEM: Caffeinep2, 4 Poles per Quadrant

100 120 140 160

10

15

20

% of target subspace

Iter

atio

ns

ZolotarevLSOP

100 120 140 160600

800

1,000

1,200

% of target subspace

Tim

e(s)

ZolotarevLSOP

Gauss does not converge(recall the large cluster at the edge of the interval)Zolotarev outperforms Least-Squares filters for any number of poles

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 15 / 29

Page 20: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Recall: Zolotarev vs LSOP Filters

0.9 0.95 1 1.05 1.1 1.15 1.210−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Real axis

Filte

rva

lue

ZolotarevLSOP

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 16 / 29

Page 21: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Wrap-up: Non Problem-Specific Filters

Results for unconstrained Least-Squares filtersWorks well even with low degreesThis is not the take away today

The take-away should be:1 Gather spectrum information (separate topic)2 Use appropriate filter and parameters3 Facilitated via custom Least-Squares filters

Least-Squares filters are very flexibleConstraints for asymmetry, steepness, decay possibleFast generation of filters possible

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 17 / 29

Page 22: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

1 Introduction and Motivation

2 Least-Squares Filters

3 Comparison to State of the Art

4 Optimization of Least-Squares Filters

5 Conclusion

6 Constrained LSOP

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 18 / 29

Page 23: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Approximating Π(x)

minγi ,zi 1≤i≤N/4

∫ ∞−∞

∣∣∣∏(x)− f (x , z , γ)∣∣∣2 dx , with

f (x , z , γ) =

N/4∑i=1

γizi − x

+γi

zi − x− γi

zi + x− γi

zi + x

Reflection Symmetry: f (−x , z , γ) = f (x , z , γ)

Complex Conjugation: f (x , z , γ) = f (x , z , γ)

Symmetries force evenness and real-nessAnalogous to existing integration rulesFor simplicity we disallow poles on the axesAsymmetric filters lack reflection symmetry

We require cheap computation of:Least-Squares ResidualGradients w.r.t. αi , zi

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 19 / 29

Page 24: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Approximating Π(x)

minγi ,zi 1≤i≤N/4

∫ ∞−∞

∣∣∣∏(x)− f (x , z , γ)∣∣∣2 dx , with

f (x , z , γ) =

N/4∑i=1

γizi − x

+γi

zi − x− γi

zi + x− γi

zi + x

Reflection Symmetry: f (−x , z , γ) = f (x , z , γ)

Complex Conjugation: f (x , z , γ) = f (x , z , γ)

Symmetries force evenness and real-nessAnalogous to existing integration rulesFor simplicity we disallow poles on the axesAsymmetric filters lack reflection symmetry

We require cheap computation of:Least-Squares ResidualGradients w.r.t. αi , zi

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 19 / 29

Page 25: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Calculating Least-Squares Residuals

∫ ∞−∞

w(x)

∣∣∣∣∣∣∏

(x)−N/4∑i=1

γizi − x

+γi

zi − x− γi

zi + x− γi

zi + x

∣∣∣∣∣∣2

dx

An appropriate w(x) simplifies the calculation:

w(x) =

0, if |x | > a

β, if |x | ≤ 11, else

With β ≈ 0.4, and a ≈ 5.Exact 1.0 in [−1, 1] not required⇒ Small β increases sharpness at -1,1’Cut-off’ after a ⇒ Definite integrals

We can provide a (matrix) form for the residual

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 20 / 29

Page 26: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Optimization

We can derive Gradients w.r.t. zi , and αi

Use of symmetries ⇒ Cheaper GradientsFast filter generation via Levenberg-MarquardtDetails in forthcoming publication

Descent methods require a starting positionVery relevant for non-convex optimization

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 21 / 29

Page 27: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Local Minima for 4 Poles per Quadrant

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

Real axis

Filte

rva

lue

The filter is non-convex in the poles ziResulting filter depends on the starting positionMany approaches do not yield good results

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 22 / 29

Page 28: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Local Minima for 4 Poles per Quadrant

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

Real axis

Filte

rva

lue

The filter is non-convex in the poles ziResulting filter depends on the starting positionMany approaches do not yield good results

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 22 / 29

Page 29: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Use Existing Methods as Starting Points

Existing filters already have good residuals

1 2 3 4 5 6 7 8 9 10

100

10−2

10−4

10−6

Poles per Quadrant

Leas

t-Sq

uare

sRes

idua

l

GaussZolotarev

⇒ Good results as starting positionsBoth produce the same results for ≤ 7 poles per quadrantSo far, these are the best residuals we know of

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 23 / 29

Page 30: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Use Existing Methods as Starting Points

Existing filters already have good residuals

1 2 3 4 5 6 7 8 9 10

100

10−2

10−4

10−6

Poles per Quadrant

Leas

t-Sq

uare

sRes

idua

l

GaussZolotarev

LSOP (Gauss)LSOP (Zolotarev)

⇒ Good results as starting positionsBoth produce the same results for ≤ 7 poles per quadrantSo far, these are the best residuals we know of

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 23 / 29

Page 31: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Conclusion

Filters are important for contour-based eigensolversNo single filter type is best

We present Least-Squares based filters:Rich framework for filter generationPotential for custom filtersCompetetive results for unconstrained Least-Squares filtersFast generation of filters

No theoretical insights on generated filters(i.e. worst-case convergence ratio)Systematic comparisons of filters is tricky

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 24 / 29

Page 32: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Future Work

Parallelism and convergence of linear system solves

Further details in forthcoming publication:

More constrained optimization of filters

Systematic comparisons of filters

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 25 / 29

Page 33: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

The End

Thank you for your attentionQuestions?

Financial support from the DeutscheForschungsgemeinschaft (GermanResearch Association) through grantGSC 111 is gratefully acknowledged.

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 26 / 29

Page 34: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Constrained LSOP

Poles near the real axis ⇒ Almost real shift zi of MatrixN/4∑i=1

γiIzi − A

+γi

I zi − A− γi

Izi + A− γi

I zi + A

X = B

The shifted (zi I − A) may become (almost) singular

Larger imaginary part on the poles can prevent this "problem"

minγi ,zi 1≤i≤N/4

F (x), such that

=(zi ) ≥ 0.1, 1 ≤ i ≤ N/4

F (x) =

∫ ∞−∞

w(x)

∣∣∣∣∣∣∏

(x)−N/4∑i=1

γizi − x

+γi

zi − x− γi

zi + x− γi

zi + x

∣∣∣∣∣∣2

dx

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 27 / 29

Page 35: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Constrained LSOP

Poles near the real axis ⇒ Almost real shift zi of MatrixN/4∑i=1

γiIzi − A

+γi

I zi − A− γi

Izi + A− γi

I zi + A

X = B

The shifted (zi I − A) may become (almost) singular

Larger imaginary part on the poles can prevent this "problem"

minγi ,zi 1≤i≤N/4

F (x), such that

=(zi ) ≥ 0.1, 1 ≤ i ≤ N/4

F (x) =

∫ ∞−∞

w(x)

∣∣∣∣∣∣∏

(x)−N/4∑i=1

γizi − x

+γi

zi − x− γi

zi + x− γi

zi + x

∣∣∣∣∣∣2

dx

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 27 / 29

Page 36: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Zolotarev vs constrained LSOP, 4 Poles per Quadrant

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2−0.2

0

0.2

0.4

0.6

0.8

1

1.2Zolotarev

LSOP

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 28 / 29

Page 37: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Zolotarev vs constrained LSOP, 4 Poles per Quadrant

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 210−7

10−6

10−5

10−4

10−3

10−2

10−1

100

ZolotarevLSOP

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 28 / 29

Page 38: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

Zolotarev vs constrained LSOP, 4 Poles per Quadrant

0.2 0.4 0.6 0.8 1

10−3

10−2

10−1

100

Zolotarev PolesLSOP Poles

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 29 / 29

Page 39: Optimizing Least-Squares Rational Filters for Solving ...hpac.rwth-aachen.de/~winkelmann/talks/pmaa16.pdf1 IntroductionandMotivation 2 Least-SquaresFilters 3 ComparisontoStateoftheArt

CAFF timings

100 120 140 160

600

800

1,000

1,200

1,400

1,600

% of target subspace

Tim

e(s)

Zolotarev-3LSOP-3

Zolotarev-4LSOP-4

Zolotarev-8LSOP-8

Jan Winkelmann (AICES) Optimizing Least-Squares Filters July 6, 2016 29 / 29


Recommended