+ All Categories
Home > Documents > Optimizing Unilever’s Capital and Emergency Spare Stock...

Optimizing Unilever’s Capital and Emergency Spare Stock...

Date post: 29-May-2018
Category:
Upload: dangkiet
View: 217 times
Download: 0 times
Share this document with a friend
97
Optimizing Unilever’s Capital and Emergency Spare Stock Sizes By: Kenneth Liang A thesis submitted in partial fulfilment of the requirements for the degree of BACHELOR OF APPLIED SCIENCE Supervisor: Andrew K.S. Jardine Department of Mechanical and Industrial Engineering
Transcript
Page 1: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

 

Optimizing Unilever’s Capital and Emergency Spare Stock Sizes

By: Kenneth Liang

A thesis submitted in partial fulfilment of the requirements for the degree of

BACHELOR OF APPLIED SCIENCE

Supervisor: Andrew K.S. Jardine

Department of Mechanical and Industrial Engineering

Page 2: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

 

Acknowledgments

I would like to first thank Antanio Santos at Unilever Rexdale who provided me all the

information and guidance that I needed to complete my work. Without his discussions and

insights this thesis would not have been possible. I would like to further thank Professor Andrew

Jardine and Dr. Behzad Ghodrati who both supported by thesis. These individuals gave me

encouragement and the direction I needed on how to complete my thesis. Lastly, I would like to

thank Dr. Dragan Banjevic who gave me a copy of the SMS software which was created by the

group C-MORE at the University of Toronto.

Page 3: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

 

Table of Contents Chapter 1 - Introduction ..............................................................................................................1

1.1 Abstract .................................................................................................................................1 1.2 Statement of objectives .........................................................................................................1 1.3 Background Information ........................................................................................................3

Chapter 2 - Literature Review ......................................................................................................5 2.1 Rethinking Pareto Analysis: maintenance applications of logarithmic scatter plots .............5 2.2 Economic Order Quantity ....................................................................................................13 2.3 An inventory control system for spare parts at a refinery ....................................................15

Chapter 3 - Prioritizing Unilever’s Spare Parts Inventory ......................................................18 3.1 Machine Descriptions ...........................................................................................................18 3.2 Standard Pareto Analysis .....................................................................................................21 3.3 Prioritizing Spare Parts with Jack Knife Diagrams ..............................................................24 3.4 Advantages/Disadvantages Pareto Analysis and Jack Knife Diagrams ...............................27 3.5 Using Jack Knife Diagram Matlab Code .............................................................................28

Chapter 4 - Optimizing Unilever’s Stock Sizes .........................................................................30 4.1 Analysis of Unilever’s Fast Moving Spare Parts .................................................................30 4.2 Analysis of Unilever’s Slow Moving Spare Parts ................................................................35

4.2.1 Machine Descriptions ...................................................................................................35 4.2.2 Data for the Palletizer and Trunkline ............................................................................36 4.2.3 Results of Analysis .......................................................................................................38

Chapter 5 - Conclusions ..............................................................................................................42 5.1 Conclusions and Recommendations for optimal stock sizes ...............................................42 5.2 Future work ..........................................................................................................................43

References .....................................................................................................................................44 Appendix .......................................................................................................................................45

Appendix A–Summary of Pareto Analysis for spare parts other than MPU and Bander ..........45 Appendix B–Raw Data for MPU Pareto Analysis .....................................................................58 Appendix C–Raw Data for Bander Pareto Analysis ..................................................................62 Appendix D–Raw Data for MPU Jack-Knife Diagram .............................................................65 Appendix E–Raw Data for Bander Jack-Knife Diagram ...........................................................67 Appendix F–Matlab program for creating Jack-Knife Diagrams ..............................................70 Appendix G–Data for MPU Pin Blade Fastener ........................................................................72 Appendix H–Jack Knife Diagrams and Summary of Stock Size optimization of spare parts ...73 Appendix I–Matlab program for Fitting Probability Distributions ............................................89

Page 4: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

 

List of Tables and Figures Figure 1 – X-Y dispersion plot of mean repair times versus number of failures ...........................10 Figure 2 – Log Scatter Plot of mean repair times versus number of failures ................................11 Figure 3 – Jack Knife Diagram ......................................................................................................12 Figure 4 – Inventory Levels for the EOQ Model [2] .....................................................................13 Figure 5 – Jack Knife Diagram - MPU ..........................................................................................26 Figure 6 – Jack Knife Diagram – Bander ......................................................................................26 Figure 7 – Probability Density Graph for MPU Pin Blade Fastener .............................................34 Figure 8 – Cumulative Density Graph for MPU Pin Blade Fastener ............................................34 Picture 1 – Picture of Line 7 Margarine Processing Unit (MPU) ..................................................19 Picture 2 – Picture of Line 15 Bander Unit ...................................................................................20 Picture 3 – Matlab Variable Console .............................................................................................29 Picture 4 – Matlab Variable Editor ................................................................................................29 Picture 5 – Matlab Command Window .........................................................................................29 Picture 6 – Matlab Variable Console – Lead Time Demand .........................................................32 Picture 7 – Matlab Variable Editor – Lead Time Demand ............................................................32 Picture 8 – Matlab Command Window – Distribution Function ...................................................32 Picture 9 – KS Test Results ...........................................................................................................33 Picture 10 – EOQ Inputs ................................................................................................................33 Picture 11 – EOQ and Re-Order Point Results ..............................................................................33 Picture 12 – Picture of the Line 1 Palletizer ..................................................................................35 Picture 13 – Picture of the Trunkline .............................................................................................36 Table 1 – Unplanned Downtime for Line 2 equipment ...................................................................6 Graph 1 – Pareto Histogram of unplanned Line 2 downtime (2007) ..............................................7 Graph 2 – Pareto Histogram of unplanned MPU downtime (2008) ..............................................22 Graph 3 – Pareto Histogram of unplanned Bander downtime (2008) ...........................................23 Graph 4 – Pareto Histogram of MPU Part Failure Frequency .......................................................27 Graph 5 – Instantaneous Reliability of Palletizer Motors with 0 or 1 inventory spares and a 4 day lead time .........................................................................................................................................39 Graph 6 – Instantaneous Reliability of Trunkline Gearboxes with 0, 1 or 2 inventory spares and a 11 day lead time .............................................................................................................................40 Graph 7 – Instantaneous Reliability of Trunkline Gearboxes with 0 or 1 inventory spares and variable lead time ...........................................................................................................................41

Page 5: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Chapter 1 - Introduction

1.1 Abstract

In today’s trying economic times company’s world-wide face fierce competition and must do

whatever they can to stay afloat during this recent 2009 recession. With companies like General

Motors nearing bankruptcy, tight credit markets and billion dollar corporate bailout packages it is

even more apparent now that inventory management is an important factor for any company’s

balance sheets and controlling costs. The reasons for inventory management are elegantly

capture by Jeffery Liker in his book “The Toyota Way: 14 Management Principles from the

World’s Greatest Manufacturer”. Liker states the following reasons why companies must control

inventory:

1. Reducing inventory frees up working capital that would be normally tied up in spare

parts inventory

2. The greater the inventory the greater the material handling costs

3. Inventory takes up space and deteriorates causing more scrap/rework

This thesis will compare the Pareto Analysis with Jack Knife Diagrams to determine which

method is superior for prioritizing spare parts. The thesis will further optimize Unilever parts

inventory based on the spare parts that are identified in the superior prioritizing method. Lead

time demand modelling technique introduced by Rommert Dekker will be evaluated using real

data provided by Unilever.

1.2 Statement of objectives

Unilever operates a spare parts store with 6,787 stock keeping units (SKU’s) in order to maintain

all the machinery and assets necessary for margarine production. As of Sept 2008, it currently

Page-1 

Page 6: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

has 1.45 million (CAD) dollars in spare parts inventory. Unilever’s ideal goal is to maximize the

availability of parts so that machine downtime is avoided while minimizing their inventory cost.

There is however an inherent flaw in this goal. Increasing the probability that demand for a spare

part is satisfied at any given time also increases inventory and ties up capital. A more realistic

goal then is to find an optimal balance between maximizing availability of parts and minimizing

cost that Unilever is willing to accept. This is the overall goal that the thesis student will attempt

to achieve with the work and methodologies in this thesis. As mentioned above there are

thousands of parts the thesis student must consider. As such the thesis student cannot provide a

concrete target for cost savings and percentage of availability for spare parts. Sub-goals must be

evaluated for each individual part and must match up with the overall goal. For example,

Unilever maintains parts called Votators which are highly critical to Unilever’s operation.

Downtime of this part is very detrimental and can cost Unilever hundreds of thousands of dollars

in lost production. In this case, one would want to optimize for availability of parts rather than

inventory cost minimization. This goal however may be different when looking at other parts.

Unilever sets a minimum and maximum stock amount for each part. These stock quantities for

parts were initially only based on the frequency of Preventive Maintenance (PM) records and

what parts were needed for that PM. The maximum quantity was set in an ad hoc manner

governed by what has been done in the past. Consequently, the intended objective of this thesis is

twofold. First, prioritize the spare parts to determine which parts in Unilever’s inventory have the

most impact on cost minimization and parts availability. Second, optimization stock sizes for the

spare parts that were identified using valid and proven methodologies for inventory management.

Page-2 

Page 7: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

1.3 Background Information

This section of the thesis will provide the reader with a general overview of Unilever Rexdale’s

spare parts store operation. In order to fully understand how demand for spare parts is generated,

a review of the spare parts store at Unilever Rexdale was completed. This review provided the

thesis student with a basic understanding of how the spare parts store operates, what typical tasks

and activities are done and by whom. The review also exposed important factors that the thesis

student will need to address such as variable number of stock keeping units (SKU) and duplicate

spare parts.

Demand for parts is generated when a work order (WO) is issued to a tradesperson such as a

mechanic or electrician. A WO “is an internal request for maintenance or repair of equipment

and machinery” as defined by Rexdale’s Reliability Coordinator, Andrew Vuong. The WO

describes the type of maintenance work that is to be done by a tradesperson. The WO does not

however explain how the work is to be completed. It is up to the tradesperson to decide what

parts are needed, what tools are needed and thus how to complete the WO. Work orders

themselves are issued for any number of reasons. For instance, they are issued to repair machine

breakdowns, future planning such as a summer maintenance shutdown or to complete preventive

maintenance procedures. Demand for WO’s is important as it is directly related to demand for

spare parts. Also, future planning and regular preventive maintenance divulges information on

seasonal trends in demands for spare parts.

Once a WO has been issued to a tradesperson, they must decide what part(s) they will need to

complete the job and properly obtain it from the parts store. The tradesperson must fill out a parts

Page-3 

Page 8: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

removal form before physically removing the part(s) from the store. This step is to ensure that

accurate inventory levels are maintained in the computerized maintenance management system

(CMMS). Reordering of parts is automatically done through the CMMS once the stock size for a

particular part reaches a certain reorder level.

Management of inventory is a difficult task especially if the number of stock keeping units

(SKU) varies between each month. According to Antonio Santos, Unilever’s store manager,

“There are over 14,000 SKU’s in Unilever’s CMMS. Though, roughly 6,700 are active in any

given month”. There are two reasons why parts can become deactivated. First, parts can become

obsolete and no longer used. Second, similar parts may be obtained at a cheaper price from a

different supplier/vendor. In both cases deactivated parts are physically no longer stocked in the

parts store. A solution to the varying SKU sizes is to simply take a snap shot of Unilever’s

inventory for a given month and optimize only those SKU’s. Any new part SKU’s that are added

in the future should then be considered on a case by case basis only if time permits.

Furthermore, Unilever tracks duplicate parts in their CMMS system. A new part has a different

SKU number than compared to the same part if it is repaired or reconditioned. There are two

reasons why reconditioned parts have different SKU numbers. First, these parts have a different

value (in terms of dollars) than parts that are new. Second, parts can be reconditioned by

different suppliers/vendors. A solution for duplicate parts is to treat them as separate entities

since their dollar value, failure rate and life spans are different.

Page-4 

Page 9: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Chapter 2 – Literature Review

2.1 “Rethinking Pareto analysis: maintenance applications of logarithmic scatterplots” [1]

2.1.1 Pareto Analysis

A Pareto Analysis is a statistical technique for prioritization spare parts. From a large population

of spare parts it picks a select few that produce a significant overall effect.

“Italian engineer Vilfredo Pareto (1842-1923) constructed histograms of the distribution

of wealth in Italy and concluded that 80 percent of the country’s wealth was owned by 20

percent of the nation’s population. In maintenance engineering Pareto’s 80:20 rule is

commonly used for identifying those failures responsible for the majority of equipment

maintenance cost or downtime.” [1]

There are seven steps to identifying the important causes using Pareto Analysis [1]:

1. Form a table listing the spare parts, their frequency and their downtime as a percentage.

2. Arrange the spare parts in decreasing order of importance, i.e. the highest downtime first.

3. Add a cumulative downtime percentage column to the table.

4. Plot with causes on the x-axis and cumulative percentage on the y-axis.

5. Join the cumulative points to form a curve.

6. Plot (on the same graph) a bar graph with spare parts on the x-axis and percent frequency

on the y-axis.

7. Draw a line (parallel to the x-axis) at 80% on the y-axis until it hits the cumulative curve.

Then drop the line at the point of intersection with the curve to the x-axis. This point on

the x-axis separates the important spare parts on the left and less important ones on the

right.

Page-5 

Page 10: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Using the methodology from above, Table 1 lists the unplanned downtime for equipment

failures on Unilever’s Line 2 production line. Graph 1 shows the Pareto Histogram for

unplanned downtime of Line 2 in 2007. It is ranked in descending order according to their

downtime contribution. Applying the Pareto’s 80:20 rule to Graph 1, one can see that priority

should be given to the following pieces of equipment: Bander, Sabel, and Elevator/Palletizer.

Table 1: Unplanned Downtime for Line 2 by equipment (2007)

Code Quantity Duration (Min) % Time % Cum

Bander 305 10866 35.506 35.506

Sabel 206 6688 21.854 57.36

Other 62 3213 10.499 67.859

Elevator & Palletizer 117 3105 10.146 78.005

MPU 60 2739 8.9501 86.956

Hamba 41 1456 4.7577 91.713

Trunkline 62 1203 3.931 95.644

Marsh Coder 12 502 1.6404 97.285

Imaje Coder 21 431 1.4084 98.693

Taper 25 400 1.3071 100

Total 911 30603

Page-6 

Page 11: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

36

22

10 109

5 42 1 1

36

57

68

78

8792

96 97 99 100

0

10

20

30

40

50

60

70

80

90

100

5

10

15

20

25

30

35

40

Taper

Percen

tage

Graph 1 ‐ Pareto Histogram of unplanned Line 2 downtime (2007)% Time % Cum

0

Bander Sabel Other Elevator & Palletizer

MPU & Votator

Hamba Trunkline Marsh Coder Imaje Coder

Equipment

Cummulataive percentage

2.1.2 Limitations of Pareto Histograms

Pareto histograms like the example Graph 1 provide a simple technique for identifying which

spare parts contribute the most to inventory costs and machine downtime. However, the

simplistic nature of this analysis also presents several limitations which will be discussed in the

following paragraphs.

Firstly, Pareto histograms for downtime can be prepared in terms of repair cost, equipment

downtime, failure frequency, mean time to repair (MTTR) or any other type of consequence

attributed to part failures. As a result one would need to create a Pareto histogram similar to

Graph 1 for each individual part failure consequence. Each Pareto histogram would then provide

a distinct list of spare part priorities that must be combined in some manner and this is a difficult

task to perform.

Page-7 

Page 12: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Secondly, Pareto histograms graphed based on different consequences such as the ones listed in

the previous paragraph “cannot determine which factors are dominant in contributing to the

downtime or cost associated with part failures”. [1]

Thirdly, when there is a lot of data to analyze as is the case for this thesis (over 6,000 parts), data

is usually stratified into some functional group. For example, Unilever does not look at

downtime information in terms of components or parts but in terms of pieces of equipment as a

whole. The potential problem that this poses is the following:

“Pareto graphs are only prepared for the significant contributors of system downtime,

failures associated with less significant components or functional failures will not be

explored. It is possible that we may miss identifying a component or failure mode that

offers significant potential for reliability improvement” [1]

As the reader will see in the succeeding sections, Jack-Knife diagrams provide a way of

analyzing and prioritizing spare parts while also addressing the limitations that were just

discussed above. In conclusion, it will be useful for the thesis student to look at Jack-Knife

diagrams as a comparison to the outcomes of the Pareto analysis.

2.1.3 Jack-Knife Diagram Methodology

Before stating the formal methodology of using Jack-Knife diagrams, it will be useful to define

the terminology that will be used.

Page-8 

Page 13: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

For a particular time interval, the total downtime that is caused by a part (i) is represented by the

following equation:

Downtimei = ni x MTTRi [1]

Downtimei is the downtime that is associated with the ith part. MTTRi and ni are respectively the

mean time to repair and number of failures observed for the ith part over a particular time

interval. For Unilever’s case, MTTR may be replaced by the lead time for obtaining a part from a

supplier if the part is not repaired.

Total downtime for all parts in a particular time interval is defined by the following equation:

D = ∑(Downtimei) for all i [1] (1)

Total number of failures is given by:

N = ∑(ni) for all i [1] (2)

The Jack-Knife diagram method starts by graphing some part failure consequence (MTTR, cost,

downtime, etc) on the Y-axis and number of failures on the X-axis. Figure 1 was obtained from

Peter Knights abstract on Jack-Knife diagrams. The hyperbolae curves seen in the graph are

obtained from Downtimei = ni x MTTRi. “A disadvantage of Figure 1 is that the curves can be

difficult to plot” [1]. To mitigate this problem, the logarithmic of the failure consequence and

Page-9 

Page 14: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

number of failures is obtained instead. In other words the Y-axis and X-axis of Figure 1 is

switched to logarithmic scale to get Figure 2 (page 11). Note that in Figure 2, the hyperbolae

curves become straight lines.

To graphically prioritize the spare parts, Peter Knights uses threshold limits that divide the log

graph into four quadrants as shown in Figure 3 (page 12). These thresholds can be set by

company policy, actual process capabilities or by determining mean values of failure

consequence and failure frequency. Threshold limits to Figure 3 were obtained by the following

equations:

LimitMTTR = ND where D and N are defined in equations (1) and (2) respectively.

Page-10 

Page 15: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Limitn = QN where N is defined in equation (2) and Q is the number of distinct parts.

A part is categorized as chronic if it fails more frequently than the average of all the parts that

fail in a particular time interval. As seen in Figure 3, Peter Knights identifies a third limit that

divides the chronic quadrant into two parts: Chronic A and Chronic B. The reason why Peter

Knights identifies this third limit is due to situations when there are large sets of downtime data,

in other words there are many spare parts to consider and analyze. The authors “experience with

large sets of downtime data has shown that the priority list simply grows too large” [1]. The third

limit, called the availability limit, is used to further narrow down the spare parts priority list.

Chronic A spare parts have a more significant effect on availability of spare parts and inventory

costs then compared to Chronic B parts. The limit is as follows:

Page-11 

Page 16: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

( )

⎟⎟⎟

⎜⎜⎜

≥=

<<=

ni

niMTTR

Limitn where QD Limit

Limit n 0 whereLimitMTTR

ty Availabili

i

With the same logic as the chronic parts, a part is considered acute if the failure consequence (in

the case of Figure 3, MTTR) is exceeds the average consequence for all the parts. Peter Knights

then priorities parts based on what quadrant they fall in on the log scatter plot. Acute and chronic

(upper right hand quadrant in Figure 3) parts contribute significantly to the overall downtime

since their mean failure frequency and mean consequence are both above the average for all

parts. These are the parts that should be on the top of any company’s spare parts priority list as

they have the most impact to machine downtime and inventory costs.

Page-12 

Page 17: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

2.2 “Production and Operations Analysis” [2]

2.2.1 Economic Order Quantity (EOQ)

Once the significant spare parts have been identified and prioritized in some manner, it will be

necessary to optimize the stock sizes for these parts. Ford W. Harris developed the EOQ model

in a paper he published in 1915. “EOQ is the most fundamental inventory model and is the basis

for the analysis of more complex inventory systems”. [2]

The underlying assumptions of the inventory model are the following [2]:

1. The demand rate is known and is a constant per unit time.

2. Order lead time is fixed

3. Ordering cost are constant

4. Purchase price of item is fixed, i.e. no discounts or economies of scale

If “Q” is the size of the order, then the EOQ model works in the following manner. Over time

items are consumed or used up from inventory. An order of Q units is placed for a particular item

once the stock size for that item reaches zero. The order from a vendor or supplier requires a

certain amount of lead time to be processed and received at which point the inventory for the part

is Q. Over time the part is again consumed and the process repeats. The stock levels over time

for the EOQ model can be seen in Figure 4.

Page-13 

Page 18: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

2.2.2 Basic EOQ Model

Before stating the formal methodology of the EOQ model, it will be useful to define all the

relevant symbols.

Let:

1. Q be the order quantity of an item

2. Q* be the optimal order quantity of an item

3. K be the Ordering cost for placing an order

4. c be the Price of the item per unit ordered

5. h be the Holding cost per unit held per unit time

6. λ be the demand rate

7. T be the length of time between orders

Using the above symbols, the ordering cost is [2]:

TcQK + (3)

The holding cost to keep items in inventory is [2]:

2hQ (4)

It follows then that the average cost of an item is the addition of the above two cost formulas [2]:

2hQλc

QkλG(Q)

λQTwhere,

2hQ

TcQKG(Q)

++=

=++

=

The goal is to find an optimal reorder quantity that will minimize the costs associated with

inventory. In order to achieve this goal, the first derivative of G(Q) is taken and set equal to zero.

Page-14 

Page 19: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

One then solves for Q which will equivalent to the optimal reorder quantity (also known as

economic order quantity) Q*.

h2KλQ* = [2]

2.3 “An inventory control system for spare parts at a refinery” [3]

2.3.1 Extension of Basic EOQ Model

A severe limitation of the basic EOQ model is the fact that orders of Q are made when the

inventory for a particular part is reaches zero. Waiting until there is no inventory for a part can

pose a serious detriment to a company if there is still demand for that part after the stock size has

been depleted. This is known as a stock out, when demand for spare parts cannot be met by on

hand inventory. The problem of waiting until the stock size is zero to order new spare parts is

further intensified when the lead time to replace or repair a part is quite long. Not having a spare

part available when there is demand for it means that there is a greater chance of having machine

breakdowns/downtime and in the worst case scenario loss of production for a company. In both

cases this could mean thousands of dollars of lost revenue. The following sections of the thesis

will present an extension to the basic EOQ model that removes the above mentioned limitations.

2.3.2 (s, Q) Inventory Model

In order to overcome the limitations of the basic EOQ model, Parras and Dekker propose using a

(s, Q) inventory policy [3]. In their model, ‘s’ is the re-order point and Q is the economic order

quantity Q* mentioned in section 2.2.2. The inventory parameter ‘s’ has the following property

[3]:

s ≥ 0 and s is an integer

Page-15 

Page 20: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

The reason why ‘s’ is not strictly greater than zero is that there is the possibility of having a short

lead time to repair/replace spare parts and a low probability of having demand after stock outs.

Having zero inventory reduces costs, however the trade off as mentioned in the previous

paragraph is an increase risk of having stock outs. If the re-order point is greater than zero, one

can clearly see the added benefits to this extended model since there is a reduced risk of having

stock outs. Ideally one would want find a balance between minimizing risk or minimizing costs.

The EOQ quantity Q* is rounded off in the following manner [3]:

1. Evaluate: ⎣ ⎦*Q where ⎣ ⎦ is floor (rounding down the nearest integer) m =

2. Set

⎪⎪⎩

⎪⎪⎨

+

⎟⎟⎠

⎞⎜⎜⎝

⎛ +≤≠

=

=

otherwise 1m*Q1m

m*Q and 0m if m

0 m if 1

Q

Difficulty arises in this inventory model when one attempts to evaluate the re-order point ‘s’

from lead time demand (LTD) data of a particular spare part. To clarify, lead time demand data

is the demand that is generated during the time to replace or repair a spare part. Parras and

Dekker model the LTD by fitting the lead time demand data to a particular probability

distribution such as normal or Poisson distributions. As an example, if one assumes that the LTD

data follows a normal distribution and if the average and standard deviation of the observed LTD

data are respectively D and SD. The authors estimate the normal parameters μLTD and σLTD as

follows [3]:

μLTD = LD ⋅

σLTD LSD ⋅=

Page-16 

Page 21: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

The variable L is the lead time of a spare part. The thesis student has made use of the math

software Matlab® and created a Matlab program that evaluates a wider variety of probability

distributions. Including the Normal and Poisson distributions that were discussed by Parras and

Dekker, the program also evaluates Gamma, Weibull, Lognormal, and Exponential distributions.

Further detail of the Matlab program will be discussed in section 4.1 (page 30).

Once the LTD distribution has been obtained, it can be used to determine a re-order point to

achieve fill rate of β as follows [3]:

1. From the cumulative density function, F(x), of the LTD distribution, obtain a list of

possible re-order point values ‘s’ by setting x = s, and also where x are the lead time

demand values

2. Choose ‘s’ that satisfies the following function:

⎟⎟⎠

⎞⎜⎜⎝

⎛−≤

QES(s)1β

∑>

−=sx|x

s)f(x)(xES(s)

1β0 ≤≤

The item fill rate is the ratio of the total number of items shipped divided by the total number of

items ordered [3].

Page-17 

Page 22: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Chapter 3 – Prioritizing Unilever’s Spare Parts Inventory

3.1 Machine Descriptions

As mentioned in the introduction, Unilever operates a spare parts store with over 6,000 stock

keeping units (SKU’s). Maintaining such a large inventory will be challenging to say the least.

There are many factors that the store manager at Unilever Rexdale, Antonio Santos, must

consider in its daily operation. For example, Mr. Santos must consider two sources of demand

for spare parts. One source comes from machine/equipment breakdowns and another coming

from preventive maintenance which he is also partly responsible for planning. Mr. Santos could

solve this parts availability problem by simply having an extremely large stock size for each part.

However, having a bloated inventory would not be in line with Unilever’s strategic goal of

reducing their inventory from 1.45 to 1.3 million dollars (CAD). This is another issue that the

store manger must always keep in mind. As a result, it will be advantageous for Unilever if they

could effortlessly identify all the spare parts that cause the highest downtime, breakdown the

most, or cause the highest repair costs. The following sections will discuss how the Pareto

analysis was implemented to Unilever’s machinery/equipment in an effort to prioritize all of

Unilever’s spare parts.

Due to the tremendous number of equipment that Unilever requires in order to maintain

margarine production, the thesis student will only discuss about the Margarine Processing Unit

(MPU) and Bander machines in detail. For further detail, a summary of the Pareto analysis has

been compiled for the other pieces of equipment/machinery in Unilever’s inventory and can be

found in Appendix A.

Page-18 

Page 23: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Before exploring the Pareto analysis in detail for the MPU and Bander machines, it will be

beneficial for the reader to be able to visualize the machines. The following is a brief description

of the purpose and functional workings of each machine. There are eight production lines at

Unilever Rexdale and each production line has a machine called the margarine processing unit

(MPU Picture 1). The MPU is the heart of margarine production and is the machine that creates

margarine from its constituent ingredients. Depending on the production line, each MPU has 2-4

six feet crystallizing tubes called Votators. A jacket of ammonia runs around each Votator and

liquid margarine passes from one end of the Votator to the other. While this is happening the

ammonia cools the liquid margarine. Within the liquid, water crystals start forming and the

substance overall starts to harden. By the time the substance comes out of the other end of the

Votator, margarine has been made. All that is left afterwards is the package the product.

Picture 1 – Line 7 Margarine Processing Unit (MPU)

Page-19 

Page 24: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

The setup of each production line at Unilever is similar and like the MPU, each production line

also has a machine called the Bander Unit (Picture 2). Due too many complaints from customers

about finding foreign objects in their margarine, legitimate or otherwise, Unilever has resorted to

placing plastic tamper evidence seals around the lid of margarine tubs. Unilever is not

responsible for outside tamper of their products, and thus if customers do not find a tamper

evidence seal on their margarine tubs, they advise not to buy the product. The Bander unit cuts

strips of plastic film and heat seals it around the lid of margarine tubs.

Picture 2 – Line 15 Bander Unit

Page-20 

Page 25: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

3.2 Standard Pareto Analysis

Using the Pareto methodology that was presented in section 2.1.1 (page 13) a table was created

listing all the unplanned downtime for the MPU in 2008. This table can be found in Appendix B.

Note 1: The thesis student gathered data for machine downtime caused by part failures using

Megamation, which is Unilever’s computerized maintenance management system. Only data

from 2008 was considered since Megamation is a new system for Unilever and was introduced in

mid 2007.

Note 2: All MPU units can be considered the same as they use the same spare parts. Also, data

presented in Megamation cannot be segregated by line. Thus, downtime information is

accumulated for all MPU units. As a result, the following Pareto analysis is considering all eight

MPU units together.

Using the raw data that was provided by Megamation, the frequency of part failure and the

downtime percentage was capture in the table found in Appendix B. Downtime percentage for a

particular part is obtained by dividing the duration of downtime for that part by the total

downtime experienced by the machine. Take for instance part No. 8 which is a Cherry Burrell O-

Ring for Votators. Total downtime for all eight MPU units was 58,025 min in 2008. Total

downtime attributed to O-Ring failure (all eight MPU’s) was 3,913 min. It follows that 6.7%

( %7.6100580253913

=× ) of MPU downtime was caused by the O-Ring breaking down or failing.

Using all the data presented in Appendix B and following the rest of Pareto Analysis steps from

section 2.1.1, a Pareto histogram was created for the MPU as seen in Graph 2.

Page-21 

Page 26: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

The goal of a Pareto histogram is to set priority of spare parts by using Pareto’s 80:20 rule. One

can separate the significant parts in the following manner. On the cumulative axis, draw a line

from 80% parallel to the x-axis to the cumulative curve. The next step is to daw another line

from the point on the cumulative curve down to the x-axis. In Graph 2, it can be seen that the

parts with the highest contribution to MPU downtime are the first seventeen parts left of the red

line. (The reader should look at Appendix B to reference the Part Number with its Part Name). If

Unilever wishes to increase the availability of the MPU unit, then management of these

seventeen parts should take priority. If there are stock outs for any of the sixteen parts, this

would simply increase the time to repair the MPU and thus increase its overall downtime.

However, having too much stock for any of these parts would also mean an increase in inventory

costs. Once the significant parts have been identified the next step is to optimize their stock sizes.

Optimizing Unilever’s spare parts inventory will be discussed later in Chapter 4.

Page-22 

Page 27: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

The same methodology that was applied to the MPU unit will be used to create a Pareto

histogram for the Bander Unit. Appendix C shows the downtime data that as retrieved from

Megamation for the Bander. Again, please be aware that the same two notes on page 21 for the

MPU analysis also apply for the Bander.

It can be seen in Graph 3 that the first twenty two parts left of the red line have the highest

contribution to Bander downtime. Consequently, these parts should be given higher priority

when managing inventory. (The reader should look at Appendix C to reference the Part Number

with its Part Name).

Page-23 

Page 28: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

3.3 Prioritizing Spare Parts with Jack-Knife Diagrams

In order to evaluate the strength of the Pareto Analysis done in section 3.2, Jack-Knife Diagrams

were created for the MPU and Bander Machines as well. The thesis student used the Jack-Knife

diagram technique that was presented in section 2.1.3. The thesis student also created a Matlab

program that is able to generate Jack-Knife Diagrams when provided specific data. The program

will be discussed later on in section 3.5. Appendix D shows information on part downtime,

failure frequency and mean time to repair failed parts for the MPU. This information will be used

to create a Jack-Knife diagram for the MPU.

Please note that the information found in Appendix D is the same as Appendix B except for the

added part failure frequency data and its organization. Thus, the same two notes found in section

3.2 also apply to the data in Appendix D as well.

Using the data in Appendix D, Total downtime for the MPU caused by part failure is:

D = ∑(Downtimei) = 58,025 min, where i is a specific part

Total number of failures for the MPU is:

N = ∑(ni) = 1,455, where i is a specific part

The limits for the Jack-Knife diagram are:

40ND = LimitMTTR = 54

QN = Limitn =

Page-24 

Page 29: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

The Jack-Knife diagram for the MPU can be seen in Figure 5. As identified in section 2.1.3,

parts that fall within the “Acute & Chronic” quadrant of the graph contribute significantly to the

overall downtime and repair cost. This is due to the fact that their mean failure frequency and

mean consequence (MTTR) are both above the average for all parts. These are the parts that

should be on the top of any company’s spare parts priority list. From Figure 5, the reader can that

the priority list is quite short consisting of only part numbers 8, 12, 23 and 27 (The reader should

look at Appendix D to reference the Part Number with its Part Name). This list is only a fraction

of what was obtained in the Pareto Analysis for the MPU (See Graph 2 pg 22). Graph 2 provided

a spare parts priority list of seventeen parts and part numbers 8, 12, 23 and 27 are also contained

within this list. Part numbers 8 and 23 are also in the top three for Graph 2.

Repeating the Jack-Knife diagram technique for the data in Appendix E, a Jack-Knife diagram

was created for the Bander as seen in Figure 6. From Figure 6, it can be seen that the priority list

consists of only part numbers 17, 31 and 39 (The reader should look at Appendix D to reference

the Part Number with its Part Name). Comparing this list to the one obtain from the Pareto

analysis in Graph 3 (pg 23), we again only have a fraction of the list. Part number 39 is within

the top three of Graph 3.

For further detail, Jack Knife Diagrams have been created for the other pieces of

equipment/machinery in Unilever’s inventory and can be found in Appendix H. The subsequent

section will discuss the advantages and disadvantages of both prioritizing techniques that have

been discussed thus far.

Page-25 

Page 30: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-26 

Page 31: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

3.4 Advantages/Disadvantages of Pareto Analysis and Jack-Knife Diagrams

The main advantage of a Pareto analysis is the fact that it is quite simple to make and it does not

require any advance graphing software. The thesis student created his Pareto histograms using

Microsoft Excel. Another advantage is that Pareto histograms are flexible in the type of data that

can be graphed. For a single machine, Pareto histogram can be created for repair costs, duration

of downtime, failure frequency, mean time to repair or any other type of consequence attributed

to part failures. With its flexibility and simplicity come several drawbacks.

Firstly, the flexibility of Pareto histograms is also a disadvantage as well. If a Pareto histogram is

created for each failure consequence, each histogram would provide a distinct list of spare part

priorities. To combine the priority lists in some manner would be a difficult task to perform.

Compare for instance, Graph 2 (pg 22) and Graph 4. Both are Pareto histograms of the MPU

unit. Graph 2 uses downtime duration data whereas Graph 4 uses failure frequency data. Both

graphs provide different priority lists. The question is how would one combine the two?

Page-27 

Page 32: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Secondly, if one chooses only a single failure consequence to graph Pareto histograms with, how

can one determine which is the dominant consequence?

The questions posed above are difficult to answer and for that reason Jack-Knife diagrams

remove those limitations by graphing two failure consequences at the same time (one on the x-

axis and one on the y-axis). Another advantage of Jack-Knife diagrams is that actual data is

graph rather than percentages as in Pareto histograms. For instance, in Graph 4 there is no way of

telling exactly how many times part number 19 failed. If one looks at Figure 5, it can be seen that

part 19 failed around 100 times.

The disadvantage of Jack-Knife diagrams is that it is slightly more difficult to graph as the axis’s

are in base 10 log. However, as one can see the advantages of using Jack-Knife diagrams greatly

outweigh its disadvantages. In the following chapter on optimizing Unilever’s spare parts stock

sizes, the thesis student has used the priority list obtained from the Jack-Knife diagrams.

3.5 Using Matlab Jack-Knife Diagram Code

In order to aid the thesis student, the thesis student created a Matlab program that can generate

Jack-Knife diagrams when provided specific data. Please see Appendix F for the Matlab code.

In order to use the code, a variable containing appropriate data must be created in the main

Matlab interface. Please see Picture 3.

Page-28 

Page 33: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Picture 3 – Matlab Variable Console

Ensure that the variable contains the following information. There should only be four columns

of data. The first column contains data for the part numbers, the second column contains failure

frequency data, the third column contains downtime duration data and finally the fourth column

contains mean time to repair data. Please refer to Picture 4. Finally execute the program in the

command window as in Picture 5.

Picture 4 – Matlab Variable Editor

Picture 5 – Matlab Command Window

Page-29 

Page 34: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Chapter 4 – Optimizing Unilever’s Stock Sizes

4.1 Analysis of Unilever’s Fast Moving Spares

Chapter 3 identified all the spare parts that Unilever should concentrate on in an effort to manage

inventory. Section 4.1 will discuss how the thesis student used the principles and concepts

presented in section 2.2 and 2.3 to optimize the stock sizes for parts identified in Chapter 3. The

parts identified in Chapter 3 are known as consumable parts (fast moving spare parts) and they

have a short life span ranging from weeks to several months.

In the EOQ model, K is the Ordering cost and h is the Holding cost for parts. However, exactly

what types of costs are included in each? Ordering cost is defined as “the total of expenses

incurred in placing an order. In the economic order quantity model, this is the costs related to the

clerical work of preparing, releasing, monitoring, and receiving orders as applicable” [4].

“Holding cost, on the other hand, is the cost associated with holding one unit of an item in stock

for one period of time. Incorporating elements to cover: Capital costs for stock; Taxes;

Insurance; Storage; Handling; Administration; Shrinkage; Obsolescence; Deterioration” [4].

At Unilever these costs are difficult to obtain as they are not considered in their inventory

management. However, working with the spare parts store manager, Antonio Santos, estimates

for these costs were determined. The Ordering Cost for Unilever Rexdale was estimated to be

$30.78 (CAD) per order. The annual Holding Cost was estimated to be 30% of the cost of the

part. That is, it costs Unilever 30 cents to maintain a dollars worth of inventory for one year.

Page-30 

Page 35: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

In Chapter 3, using the Jack-Knife diagram method, it was identified that part numbers 8, 12, 23

and 27 should have the highest priority. Due to the tremendous number of spare parts, the thesis

student will only discuss about the MPU Pin Blade Fastener (part number 27). A summary table

of the optimal re-order points and stock sizes has been compiled for the other spare parts in

Unilever’s inventory. This table can be found in Appendix H.

Appendix G shows information needed to calculate the EOQ for the MPU Pin Blade Fastener.

Using the information in Appendix G and EOQ formula from section 2.2.2 the economic order

quantity is:

parts 619.5467

1.08734)2(30.78)(6

h2KλQ* ===

It is impossible to order fractional parts, thus Q* is rounded to 620 using the technique presented

in section 2.3.2 on page 16. Q* is the optimal re-order quantity that minimizes the costs

associated with maintaining MPU Pin Blade Fasteners. The next step is to determine the optimal

re-order point. This task is quite difficult as it requires the thesis student to fit a probability

distribution to a set of lead time demand data.

In order to match a probability distribution to the lead time demand (LTD) data, the thesis

student created a Matlab program that generates density graphs and performs a Kolmogorov-

Smirnov test (KS test) of several probability distributions. “The KS test is a statistical technique

that tries to determine if two datasets differ significantly from one another” [6]. The thesis

student used this test to determine if the LTD data differed significantly from data obtained

straight from a particular distribution such as a Normal distribution. The Matlab code determines

Page-31 

Page 36: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

the appropriate lead time demand distribution based on the methodology that was presented in

section 2.3 and can be found in Appendix I.

In order to use the code, a variable containing lead time demand data must be created in the main

Matlab interface. Please see Picture 6. Lead time demand data for the MPU Pin Blade Fasteners

were used and can be found in Appendix G. Ensure that the variable contains lead time demand

data for the spare part in a single column as shown in Picture 7. Finally execute the code as seen

in Picture 8.

Picture 6 – Matlab Variable Console – Lead Time Demand

Picture 7 – Matlab Variable Editor – Lead Time Demand

Picture 8 – Matlab Command Window – Distribution Function

The program will attempt to fit a probability distribution to the lead time demand data that it

receives. The program will generate Figures 7 and 8 (pg 34) which are respectively the LTD

data’s Probability and Cumulative Density graphs for the MPU Pin Blade Fastener. From these

Page-32 

Page 37: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

graphs it can be determined which probability distribution fits bests with the LTD data. As

mentioned before the program also performs a KS test to aid in the analysis. As seen in Picture 9,

the KS test returns the Gamma distribution as the best fit for the MPU Pin Blade Fasteners. After

determining which distribution is appropriate, the program will ask for the Holding Cost,

Ordering Cost and Yearly demand for the spare part as seen in Picture 10. This data can be found

in Appendix G for the MPU Pin Blade Fasteners. This is all the data the program needs to

determine the optimal inventory policy for re-order quantity and re-order point. Picture 11 shows

that the optimal policy for the MPU Pin Blades is to order 620 units when there are 168 spares

remaining in inventory. This type of analysis was done for all of Unilever’s high priority spare

parts. The summary can be found in Appendix H.

Picture 11 – EOQ and Re-Order Point Results

Picture 10 – EOQ InputsPicture 9 – KS Test Results

Page-33 

Page 38: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-34 

Page 39: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

4.2 Analysis of Unilever’s Slow Moving Spares

4.2.1 Machine Descriptions

Section 4.2 will continue the analysis of Unilever’s stock sizes but for slow moving spare parts.

These are parts are highly reliable and have a long life span ranging in several years of operation.

For this study, the thesis student will examine the spare parts provisioning decision for

Gearboxes and Motors which are respectively for the Trunkline and Palletizer machines. Each

production line at Unilever has a machine called the Palletizer as seen in Picture 12. The

Palletizer automatically stacks boxes of margarine onto a wood pallet. The number of boxes that

go on the pallet depend on the production line and the product that is currently being made.

However, it ranges from 24 to 48 boxes per pallet. This machine is completely computer

controlled including the pattern of box stacking.

Picture 12 - Line 1 Palletizer

Page-35 

Page 40: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

After the boxes of margarine have been stacked onto the pallet, it is dropped onto the Trunkline

(see Pictuer 13) which resembles a giant conveyor unit. It is the responsibility of the Trunkline to

move the pallet of margarine from the production area to a waiting tractor trailer in the

shipping/receiving area. The Trunkline is controlled by a series of light sensors that detect the

presence of a pallet. If a pallet is detected, rollers on the Trunkline are activated and the process

of moving the pallet begins.

Picture 13 - Truckline

4.2.2 Data for the Palletizer and Trunkline

The following information was provided to the thesis student by Unilever’s spare parts store

manager, Antonio Santos, and through Unilever’s CMMS system, Megamation.

Page-36 

Page 41: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Palletizer

• Cost of the Motor R60DT80N2Z is 591.40

• There are 8 EuroDrive motors currently in service for each of the Palletizers in service

• There is currently 1 motor in on hand inventory

• The motors have been in operation for 5 years since the inception of the Trunkline

• The lead time to get a gearbox from the supplier, SEW-EuroDrive, is 4 days

• According the supplier, the average service life for their motors is 10-20 years

• The gearboxes operate whenever the Palletizer is operational; 2 production shifts at 8 hrs

= 16 hrs, 6 days a week

• Time units are in weeks

Trunline

• Cost of the Gearbox R76DT90L4 is $1107.07

• There are 61 Trunkline sections each with a gearbox, thus there are 61 EuroDrive

Gearboxes currently in service

• There is 1 gearbox in on hand inventory

• The gearboxes have been in operation for 5 years since the inception of the Trunkline

• If the damage to the gearbox is beyond repair, it is replaced. The lead time to get a

gearbox from the supplier, SEW-EuroDrive, is 1.5 weeks

• Depending on severity, gearboxes for the trunkline can be repaired. Repairing gearboxes

in house takes mechanics on average 3 days

• According the supplier, the average service life for their gearboxes is 15-25 years

Page-37 

Page 42: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

• The gearboxes operate whenever the Trunkline is operational; 2 production shifts at 8 hrs

= 16 hrs, 6 days a week

• Time units are in weeks

4.2.3 Results of Analysis

Given that the above mentioned parts are highly reliable, the decision under analysis is whether

Unilever should stock these spare parts or not. In order to perform the study, the thesis student

used the Spare Management Software (SMS) which was developed by The Centre for

Maintenance Optimization and Reliability Engineering at the University of Toronto. The SMS

software provides the following four optimizing criteria: instantaneous reliability, interval

reliability, cost and availability. The thesis student will only examine the instantaneous reliability

of the stock which is defined as follows:

“Instantaneous Reliability (of stock): this is the probability that a spare is available at any

given moment in time. It is equivalent to the fraction of demand that can be immediately

satisfied from stock at hand” [7].

Using the SMS software and data in section 4.2.2 for the Palletizer, the thesis student was able to

determine the instantaneous reliabilities for 0 and 1 spare Motors. According to the spare part

store manager, Antonio Santos, 95% of the demand for spare parts has to be satisfied by on hand

inventory. In other words, the provisioning criterion is that Unilever has to have an instantaneous

reliability of at least 95%. From Graph 5, it can be observed that the reliability percentage of

stock levels 0 and 1 are very close. The difference in percentage between the two levels is small

ranging from 0.84 to 0.44% when mean time to failure is varied from 10 to 20 years. Also note in

Graph 5 that the instantaneous reliability of 0 spares in inventory is already greater than

Page-38 

Page 43: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Unilever’s target of 95%. This is not a surprising result as there is only 8 motors currently in

service and there is a short lead time to replace failed motors (4 days). Based on these findings, it

would be more economical for Unilever if they did not stock any Palletizer motors as the

reliability target can be achieved without spares. Also, Unilever would be able to save on

holdings costs attributed to managing an inventory of motors.

Again using the data from section 4.2.2, the thesis student was able to generate Graph 6 which

depicts the difference in instantaneous reliability for stock levels of 0, 1 and 2 spare Gearboxes.

The lead time to replace a Gearbox from SEW-EuroDrive is 1.5 weeks or 11 days. From Graph

6, one can see that 0 spares would not achieve Unilever’s reliability target of 95% when mean

time before failure changes between 15 to 25 years. This is not a surprising result as there are

many more Gearboxes in service (61 in service) compared to Palletizer Motors (8 in service).

The demand for Gearboxes would be greater and thus the probability of satisfying this demand

with 0 spares in inventory would decrease. On the same graph, stock levels of 1 and 2 achieve an

Page-39 

Page 44: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

instantaneous reliability that is not only close together but also greater than 99%. As a result, no

further attention will be paid for the case of 0 spare Gearboxes. Due to the fact that the reliability

for 1 and 2 spares are close together, it would be inefficient for Unilever to stock 2 spare

Gearboxes since Unilever’s target can be achieved with fewer inventories.

Furthermore, it was noted in section 4.2.2 that Gearboxes can be repaired in house depending on

the severity of the failure. If repairs can be done in house, then the lead time to repair the part is

3 days. Graph 7 shows instantaneous reliability for stock levels of 1 and 2 spare Gearboxes with

variable lead time. As one would expect, a decrease in lead time to replace or repair a spare part

increases the instantaneous reliability of for that spare. One can see from Graph 7 that the

instantaneous reliability has dramatically increased for the 0 spare scenario when lead time is 3

days. Unilever’s reliability target of 95% is now achievable if the lead time is 3 days. However

this ultimately depends on the severity of the Gearbox failure which is a stochastic variable.

Further analysis is needed to determine how often Gearboxes fail catastrophically requiring the

Page-40 

Page 45: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

spare part to be replaced and how often failures can be repaired in house for the results in Graph

7 to be of use to Unilever. For example, if the analysis shows that the probability of repairing

Gearboxes in house is high, then Unilever should stock 0 spare Gearboxes based on the findings

in Graph 7. Conversely, Unilever should stock 1 spare Gearbox if the probability of catastrophic

Gearbox failures is high.

Page-41 

Page 46: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Chapter 5 – Conclusions

5.1 Conclusions and Recommendations for optimal stock sizes

Due to Unilever’s large population of spare parts it was necessary to be able to pick a select few

that produce a significant overall effect. For this reason, the thesis student compared and

contrasted a simple Pareto Analysis with the prioritizing features of Jack Knife Diagrams. It was

concluded that Jack Knife Diagrams are superior to Pareto Histograms in prioritizing spare parts

by overcoming many of its limitations. For example, Pareto Histograms generate distinct

prioritization lists for each downtime consequence that is graphed. These lists need to be

combined in some manner which is a difficult task. Jack Knife Diagrams overcome this

constraint by graphing two downtime consequences at one time. This eliminates the need to

combined different prioritization lists. A summary of all of Unilever’s significant spare parts is

shown in Appendix A.

In order to optimize Unilever’s stock sizes for fast moving spares, the thesis student turned to the

work of Rommert Dekker who introduced an extension to the basic EOQ model. Dekkers

technique involved modeling a probability distribution for a set of lead time demand data. The

lead time demand distribution along with the EOQ quantity was needed to determine the re-order

point parameter. Dekker’s technique was implemented on all the significant spares that were

identified in the Jack Knife Diagrams as seen in Appendix A. For each spare identified in

Appendix A, the thesis student provides recommendations for optimal stock quantities and re-

order points in Appendix H.

Page-42 

Page 47: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-43 

The last task for the thesis student involved an analysis of two Unilever’s slow moving spares

using the SMS software which was provided by the group C-MORE at the University of

Toronto. Using the SMS software and the data that was provided by Unilever’s spare parts

manager, it was determined that a stock quantity of zero Palletizer Motors gave an instantaneous

reliability greater than Unilever’s target of 95%. Thus it is recommended that Unilever should

not stock Palletizer Motors. On the other hand, the SMS software showed that Unilever should

stock at least one Trunkline Gearbox to achieve Unilever’s target for reliability. This is assuming

that Gearboxes cannot be repaired in house. However, if the Gearbox failure is not catastrophic

in house repair may be possible. In this case the SMS software recommends Unilever to not

stock Trunkline Gearboxes. In spite of this finding, the severity of Gearbox failure is stochastic

in nature. In order words it cannot be predicted for certain and thus a definite recommendation

for Trunkline Gearboxes cannot be made with the current data.

5.2 Future work

Due to time limitations the thesis student was only able to look at a fraction of Unilever’s

inventory using Jack Knife Diagrams to prioritize spare parts. Future work should involve the

optimization of the rest of Unilever’s inventory starting with all the parts that fall in the Acute

quadrant of the Jack Knife diagram. This should be followed by parts that fall in the Chronic

quadrant and then finally the least significant parts that fall in the lower left hand corner of the

Jack Knife Diagram. Also, an in depth study should be done to determine how often Trunkline

Gearboxes can be repaired in-house. This information will be needed to determine if Unilever

should stock 1 or 0 Trunkline Gearboxes.

Page 48: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

References [1] Peter F. Knights, “Rethinking Pareto Analysis: Maintenance Applications of Logarithmic

Scatterplots”, Journal of Quality in Maintenance Engineering, Vol. 7 No. 4, 2001, MCB University Press

[2] Steven Nahmias, “Production and Operations Analysis”, Fifth Edition, page 195-223,

McGraw-Hill Irwin [3] Eric Parras, Rommert Dekker, “An inventory control system for spare parts at a refinery”,

European Journal of Operational Research, 2006, Elsevier B.V. [4] M.A. Darwish, “Joint determination of order quantity and reorder point of continuous

review model under quantity and freight rate discounts”, Computers and Operations Research, 2007, Elsevier B.V.

[5] Yu Xia et al, “Market-Based Supply Chain Coordination by Matching Suppliers’ Cost

Structures with Buyers’ Order Profiles”, Management Science, Vol. 54 No. 11, 2008 [6] The MathWorks Inc. (2009), Statistics Toolbox: kstest2. Retrieved: March 11, 2009,

http://www.mathworks.com/access/helpdesk/help/toolbox/stats/index.html?/access/helpdesk/help/toolbox/stats/kstest2.html

[7] Dragan Banjevic et al, “Optimization of Spare Parts Inventories Composed of Repairable

or Non-Repairable Parts”, The Centre for Maintenance Optimization and Reliability Engineering, University of Toronto

[8] Koen Cobbaert et al, “Inventory Models for fast Moving Spare Parts subject to Sudden

Death Obsolescence”, Centre for Industrial Management, 1996, Catholic University of Leuven

[9] Leonard Fortuin, “Stocking Strategy for Service Parts - A Case Study”, Journal of

Quality in Maintenance Engineering, Vol. 20 No. 6, 2000, page 656-674, MCB University Press

[10] Martin Davis et al, “A Decision Support System for Spare Parts Management in a Wafer

Fabrication Facility”, IEEE Transactions on Semiconductor Manufacturing, Vol. 14 No. 1, February 2001

[11] Peter F. Knights, “Downtime Priorities, Jack-Knife Diagrams and the Business Cycle”,

Maintenance & Asset Management Vol. 19 No. 4, page 21-28, 2005

Page-44 

Page 49: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Appendix A The following tables are summary lists of all the parts that were deemed significant (Pareto’s 80/20 rule) through a Pareto Analysis of the downtime for particular machine. Pareto Histograms for particular machines/equipment are presented after the tables.

Sabel  Case Packer Part No. 

Downtime Frequency 

Downtime Duration (min)  % Time  % Cum  Part Description 

50  90  9533  13.9% 13.9% SPRING, COMPRESSION, IN‐FEED TRIP MEDIUM DUTY, SABEL SPRNC022D8SS56  198  8988  13.1% 27.0% FRAME SUB‐ASSEMBLY, LOAD ELEVATOR ASS'Y, SABLE LINE 1515  135  5488  8.0% 35.0% COUPLING , 13 X RSB BODY  (HUB) (SAGA CPLG)27  58  4630  6.8% 41.8% VALVE, VACUUM, 1/4" PORT, 24VDC, MAC VALVE 225B‐111CC20  220  4031  5.9% 47.7% COIL, ELECTRICAL, SOLENOID, 24VDC, CYLINDER CYL‐CHECK, ALLENAIR CYALEA524VDC9  32.5  4026  5.9% 53.5% CHAIN, TENSIONER, ROSTA SE‐18 

48  156  4026  5.9% 59.4% WASHER, DISAPPEARING WALL, BRASS, ADA MACHINE3  15  2806  4.1% 63.5% ABSORBER, SHOCK, ENIDINE OEM‐5B 

42  75  2806  4.1% 67.6% CONTROL, METER OUTFLOW, 1/4" NPT, SMC NAS2301FN0211S13  25  1657  2.4% 70.0% MODULE, LOGIC MULTI BEAM, 2 WIRE, BANNER 2LM352  195  1595  2.3% 72.3% SCREW, CAP, BUTTON SOCKET HEAD, 1/4"‐28  NF X 1/2", SABLE COVER SCREWS7  7  1304  1.9% 74.2% SCANNER, FIBER OPTICS PAD, BANNER SBFXBT24S

46  54  1304  1.9% 76.1% CONTROL, METER OUTFLOW, 1/4" NPT, SMC VASM 1/4 OUT6  105  1173  1.7% 77.9% BRACKET, FRAMING FITTING, ANCHORING, SABEL, SABLE DESCENDER LINE 5

45  9  1173  1.7% 79.6% METER OUTFLOW CONTROL,  1/8" NPT, SMC VASM 1/8 OUT  ;  NAS2200‐N01 VALVE24  99  1045  1.5% 81.1% HANDLE, KNOB, 2‐5/16", 18 SS, ADJUSTABLE, ELESA KNOB6801

Palletizer Part No. 

Downtime Frequency 

Downtime Duration (min)  % Time  % Cum  Part Description 

3  144  5790  13.9%  13.9% SPOOL (Steel)  for overhead conv.  (approx: 2" dia x 2" overall lenght ‐ w/ 2 drilled & tapped 1/4 ‐ 20 set screw holes) 

13  187  5573  13.4% 27.4% CAP, BRUSH, CARBON, SABEL, ROTARY SABEL7  103  4640  11.2% 38.5% BUMPER, RUBBER, FB‐2724, MATHEWS PALLITIZERS6  43  3746  9.0% 47.6% HOLDER, PILLOW BLOCK, RAPISTAN 52PB, NTN PP205

11  59  3144  7.6% 55.1% BRUSH, CARBON, SABEL E‐03370, CAROUSEL ROTARY SABEL

Page-45 

Page 50: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

4  93  3059  7.4% 62.5% JOINT, UNIVERSAL, CONVEYOR SYSTEM, RAPISTAN 04956‐00050

8  152  2492  6.0%  68.5% SHEAVE, IDLER, MATHEWS V42B, PALETIZER INFEED ROLLER (V‐42‐B IDLER PULLEY)  (approx: 3" OD x 3/8" ID) 

15  146  2360  5.7% 74.2% BRUSH, CASE MAGAZINE, 0.028" X 1" X 2", SABEL 0.028 X 1 X 2

5  110  2272  5.5%  79.7% CLIP, C, NYLON, WHITE INJECTION MOLDED 1256, RAPISTAN CD‐2015‐0001, YC7054 IT.01 ; DO NOT RE‐STOCK 

Rollers Part No. 

Downtime Frequency 

Downtime Duration (min)  % Time  % Cum  Part Description 

4  54  5874  12.0%  12.0% IDLER PULLEY  ‐ " BEMIS"  (150004‐B) / ROLLER, DISC, 2.875" DIA  (CROWNED)  X 2.7" LONG, SIDE BELT TYPE ASSEMBLY,  

16  31  4889  9.9%  21.9% IDLER ROLLER  (approx: 1.88" dia x 2.73" long ) with ROLLER BEARING (#6004Z)  ON BOTH SIDES AND STUD SHAFT (.75 X 3" LONG) 

31  46  4410  9.0% 30.9% ROLLER, CCC‐550‐104, WATER TREATMENT PLANT25  55  4031  8.2% 39.1% ROLLER, 410 MM OAL, INTERROLL 1.154V50C30‐3.75 

2  40  4026  8.2%  47.3% ROLLER, GUIDE, 1/2" ID X 2" OD (overall thickness: .88) , PLASTIC, FOR SIDE BELT (for DEKKA Tape) 

10  36  3215  6.5%  53.8% HEX AXEL SHAFT FOR ITEM # 674505, 7/16" DIA X 30"LG, 1/4‐20 THRD HOLES AT EACH END 

14  74  3090  6.3%  60.1% TRUNKLINE CONVEYOR DRIVE ROLLERS, 2‐1/2" dia X 52‐5/8" LONG (W/  SPROCKETED 5/8" dia., 4.5" long SHAFT ‐ w/ keyway 3/16" x 2‐1/2" long) 

33  66  2340  4.8% 64.8% ROLLER, CORAZZA D4000232

12  58  1925  3.9%  68.8% 

TRUNKLINE CONVEYOR SPROCKET  ROLLERS, 2‐1/2" dia X 56‐1/2" LONG (TWO RS40/22TEETH SPROCKET WELDED 1/2" DISTANCE FROM ONE END; SECOND SPROCKET WELDED 1‐5/8" FROM SAME END) 

23  9  1702  3.5% 72.2% ROLLER, COMPRESSION, CERTIPAK 150758, TM 2‐18032  6.5  1285  2.6% 74.8% ROLLER, CORAZZA D4041703

13  10  1185  2.4%  77.3% TRUNKLINE CONVEYOR IDLER ROLLERS, 2‐1/2" dia X 52‐5/8" LONG  (W/  SPROCKETED 5/8" dia., 3.75" long SHAFT  ‐ w/ keyway 3/16" x 2‐1/2" long) 

37  9  1085  2.2% 79.5% Roller (Cam roller) for Doser, # D4000655   (for Corazza Doser rotary valve hold down)

Chains Part No. 

Downtime Frequency 

Downtime Duration (min)  % Time  % Cum  Part Description 

67  85  9840  6.4% 6.4% OFFSET LINK, CHAIN 111046

Page-46 

Page 51: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

92  135  6851  4.5% 10.9% RSD40 LAMBDA RIV CHAIN (SELF‐LUBRICATING CHAIN), TSUBAKI19  641  6544  4.3% 15.1% #40 O/L, SS, OFFSET LINK, STAINLESS STEEL65  235  5850  3.8% 18.9% ROLLER CHAIN, RENOLD 111046, 1352 RL S

60  37  5146  3.3%  22.3% 

LINK, CHAIN, TRANSMISSION, CONNECTING, STRAIGHT WITH ATTACHMENT, TSUBAKI C‐2060H A‐2, C2060 B1, 2 HOLE 17/64" BENT LUG ATTACHMENT CURRIE ELEVATOR FLIGHT CHAIN 

31  25  4889  3.2% 25.5% #RS08B‐2 METRIC ROLLER CHAIN 68  60  4889  3.2% 28.6% PLASTIC ROLLER CHAIN   for sprocket‐25B30 (Line 1 Checkweigher)

95  27  4841  3.2%  31.8% 50 LAMBDA CONNECTING LINK (TO BE USED ONLY WITH THE SELF‐LUBRICATING CHAIN), TSUBAKI 

9  55  4410  2.9%  34.7% Stainless Steel Chain, SS16B‐1 RCL, C/W Special WA‐2 Attachments (10mm Holes) Evry 2nd, 4th, 8th, & 10th Repeat (2 link/4link, alternately)  (for Line 5 Hamba carrier chain) 

46  18  4410  2.9% 37.5% #RF2080‐S O/L, OFFSET LINK WITH HOLLOW PIN83  41  4410  2.9% 40.4% #50‐2  CONNECTING LINK 3  32  4031  2.6% 43.0% #RS50‐2 ROLLER CHAIN

40  49  4031  2.6% 45.6% #25 CONNECTING LINK,  TSUBAKI 25 C/L77  67  4031  2.6% 48.3% SPROCKET, 19 HARD TEETH, 1 1/8" BORE, 1/4 KEYWAY, MARTIN, 50BS19HT‐1 1/817  79  4026  2.6% 50.9% #RS60 ROLLER CHAIN54  24  4026  2.6% 53.5% ROLLER CHAIN NO. 40 PROCOAT w/ ATTACHMNETS 3043 ,  (for BANDERS SPC Chains)91  76  4026  2.6% 56.1% #40‐2 C/L, S.S. CONNECTING LINK 

29  68  3090  2.0%  58.1% CHAIN LINK ONLY, TRANSMISSION, CONNECTING, STEEL, LIEFERSCHEIN 034013885 (Connection Joint Straight ‐ Carrier chain Link ONLY, NO attachment for Line 15 Hamba) 

66  27  3090  2.0% 60.2% CONNECTING LINK, 111046/26 CHAIN 62  26  2664  1.7% 61.9% #60‐2 O/L, OFFSET LINK56  25  2644  1.7% 63.6% LINK, CHAIN, TRANSMISSION, OFFSET, 1/2" PITCH, 40‐2 CHAIN, SS, DOUBLE, TSUBAKI 40‐211  46  2340  1.5% 65.1% #RS35 S.S. ROLLER CHAIN48  36  2340  1.5% 66.7% #25 OFFSET LINK, TSUBAKI 25 O/L 

85  41  2340  1.5%  68.2% LINK, CONNECTING, SPRING CLIP TYPE, ANSI 40‐1, FOR MAIN CARRIER CHAIN,FOR BANDING MACHINES 

58  41  2165  1.4% 69.6% #RF2060 C/L, CONNECTING LINK 

97  34  1958  1.3%  70.9% 50 LAMBDA OFFSET LINK (TO BE USED ONLY WITH THE SELF‐LUBRICATING CHAIN), TSUBAKI 

27  21  1925  1.3% 72.1% #05B C/L, METRIC CHAIN CONNECTING LINK64  10  1925  1.3% 73.4% CHAIN, POWER TRANSMISSION, SINGLE STRAND, BARLOTTI SNC D40346401  57  1702  1.1% 74.5% #RS08B‐1 METRIC ROLLER CHAIN 

38  67  1702  1.1% 75.6% #35 OFFSET LINK,  TSUBAKI 35 O/L 75  31  1702  1.1% 76.7% #40 B1 2H CONNECTING LINK

Page-47 

Page 52: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

10  52  1285  0.8%  77.5%  #RS35 ROLLER CHAIN 

47  5  1285  0.8%  78.4% CONNECTING LINK, HOLLOW PIN, TSUBAKI, # C2080HPCL, FOR CHAIN # C2080HP (LINE 5 ‐SABEL DESCENDER) 

84  7  1285  0.8% 79.2% #50‐2 OFFSET CONNECTING LINK. 28  43  1185  0.8% 80.0% #05B O/L, METRIC ROLLER CHAIN OFFSET LINK

Certipak Part No. 

Downtime Frequency 

Downtime Duration (min)  % Time  % Cum  Part Description 

1  75  4812  11.1% 11.1% CERTIPAK CARTONER TM12  52.5  4812  11.1% 22.2% PLATE, PUSHER MOUNTING, CERTIPAK 15951‐531‐4223  50  4812  11.1% 33.3% LUG, CERTIPAK 25615‐26, CARTONER 2  38  3725  8.6% 41.9% CHAIN, RH FLIGHT ASSEMBLY, CERTIPAK 25533‐14‐2

13  45  3725  8.6% 50.4% CHAIN GUIDE (LONG), CERTIPAK M/C,  24  45  3725  8.6% 59.0% ASSEMBLY, LUG, CERTIPAK 25236‐27, CARTONER3  28.5  2569  5.9% 64.9% CHAIN, LH FLIGHT ASSEMBLY, CERTIPAK 25533‐14‐3

14  57  2569  5.9% 70.9% CHAIN GUIDE, CERTIPAK M/C , 1/4 x 1‐1/2 x 19‐3/425  28.5  2569  5.9% 76.8% ASSEMBLY, FLIGHT, CERTIPAK 25326‐214  21  1446  3.3% 80.1% LUG, CERTIPAK 25500‐13, CARTONER 

Winpak Part No. 

Downtime Frequency 

Downtime Duration (min)  % Time  % Cum  Part Description 

1  11.5  1506  11.8% 11.8% DEPOSITOR VALVE, 6‐LANE , # EK297C007  23  1506  11.8% 23.5% GROMMETS, #CJ288‐A2  21  1250  9.8% 33.3% SLUG, ( to regulate margariine/product weight for Winpak Filler) , # EK307 B00

11  7  1250  9.8% 43.0% CYLINDER , # XY090A , for Tamping Station, Winpak Filler3  42  1130  8.8% 51.9% HEAT SEAL DISCS (heater pad disc) , # DB386‐A (for Winpak Filler)4  21  1130  8.8% 60.7% THERMOCOUPLE, HEAT SEAL5  130  1130  8.8% 69.5% SPRINGS, HEAT SEAL6  84  1130  8.8% 78.3% HEATER CARTRIDGE

Corazza Part No. 

Downtime Frequency 

Downtime Duration (min)  % Time  % Cum  Part Description 

39  237  5909  2.1% 2.1% PIN, CORAZZA D4039285

Page-48 

Page 53: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

54  286  5875  2.1% 4.2% GEAR, SPUR, SPUR, CORAZZA D403443353  73  5846  2.1% 6.2% GEAR, PINION, WITH SPROCKET, CORAZZA D301127785  63  5651  2.0% 8.2% TOOL, CHAIN STRETCHER, CORAZZA D204057145  158  5459  1.9% 10.2% ARM, CORAZZA D308608359  100  5435  1.9% 12.1% LEVER, MOUNTING, CORAZZA D308433226  255  5401  1.9% 14.0% FLANGE, CORAZZA D408433132  95  5264  1.9% 15.8% LOCK, EJECTOR SECTOR, CORAZZA D20915326  11  5239  1.9% 17.7% FINGER, LEFT HAND, CORAZZA D4084777, TAV.7‐7

52  275  5082  1.8% 19.5% PUMP ASSEMBLY , CORAZZA R40000018  115  5071  1.8% 21.3% COUPLING, UNIVERSAL, CORAZZA C1000601, TAV.2‐3 CORAZZA

20  159  5062  1.8%  23.1% FITTING, CURVED, CORAZZA C2000069 ; "SMC" FITTING, # KQ2L06‐01S ‐ ELBOW, TUBE ADAPTER, 6 MM X 1/8" NPT, TUBE X MNPT, 90 DEG 

81  273  5059  1.8% 24.9% RECONDITIONED BLADE, BOTTOM, CORAZZA D3005227, FOR LINE 11 CORAZZA FILLER9  138  5003  1.8% 26.6% JOINT, INTRODUCTION, CORAZZA C1001200, CORAZZA CLUTCH

92  73  4984  1.8% 28.4% BRUSH, 2PCS/SET, CORAZZA CR100003, CORAZZA CLUTCH

75  118  4954  1.8%  30.1% CUTTER , LEFT HAND CUTTING, FOR THE DOUGH CUTTER, CORAZZA D2083323, REQUIRED 4 

77  159  4860  1.7% 31.8% BLOCK, ASSEMBLY, CORAZZA D3083433, FOR THE SHELL WRAP FORMING63  71  4844  1.7% 33.6% ASSEMBLY, TRANSPORT ROLLER CHAIN, CORAZZA R3001913

80  71  4715  1.7%  35.2% OEM BLADE, BOTTOM, CORAZZA D3005227, FOR LINE 11 CORAZZA FILLER (ORDER WHEN NO MORE 958460R‐RECONDITONED) 

74  154  4702  1.7% 36.9% PLATE, SEAL, CORAZZA D4111627 43  168  4621  1.6% 38.5% KNOB, CORAZZA D400084536  86  4327  1.5% 40.0% GEAR, PINION, CORAZZA D3006004 73  173  4318  1.5% 41.6% CUP, VACUUM, NEW STYLE, GEORGE T WHITE VC‐B1521  98  4257  1.5% 43.1% SPROCKET, GEAR, PINION COGGED, CORAZZA D409094015  249  4234  1.5% 44.6% SHAFT, DOSING CELL EJECT END, CORAZZA D40363697  149  4213  1.5% 46.1% FINGER, RIGHT HAND, CORAZZA D4084778, TAV.7‐7

10  139  4202  1.5% 47.5% FOLDER, FIXED, CORAZZA D3084775 14  116  4187  1.5% 49.0% SHAFT, DOSING CELL EJECT, CORAZZA D308660023  178  4173  1.5% 50.5% CUP, SUCTION, RUBBER, BELLI‐ITALIA D4000437, CORAZZA50  210  4149  1.5% 52.0% STOP, RUBBER, PLUG, CORAZZA D400243134  10  4095  1.4% 53.4% PULLEY, COGGED, CORAZZA D3041296 11  153  4083  1.4% 54.9% SHAFT, CORAZZA, (#D3005959), C/W KEYS SHAPE TYPE "B" (#C1002167)46  261  4079  1.4% 56.3% ARM, CORAZZA D308608256  125  3992  1.4% 57.7% PIN, MOUNTING, CORAZZA D4000453 

Page-49 

Page 54: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-50 

42  224  3957  1.4%  59.1%  PAD, CORAZZA D4000667 

51  189  3903  1.4%  60.5%  BAR, WEAR, CORAZZA D2084330 

40  292  3880  1.4%  61.9%  PIN, MODEL #: FB 450, CORAZZA D4000902 

62  43  3861  1.4%  63.2%  FOLDER, ROTATING, CORAZZA D3084783 

83  269  3822  1.4%  64.6%  BUSHING, STEEL, CORAZZA C1000173, TYPE BM3 

71  147  3733  1.3%  65.9%  CARTON SUPPORT FINGERS, RIGHT HAND, ADA MACHINE 

30  297  3707  1.3%  67.2%  SEGMENT, CORAZZA,  (SECTOR)  PN# D1084568 

78  81  3694  1.3%  68.5% OEM BLADE, TOP, CORAZZA D3005228, FOR LINE 11 CORAZZA FILLER (ORDER WHEN NO MORE 958455R ‐ RECONDITIONED) 

18  129  3647  1.3%  69.8%  LOCK, CELL SECTOR, SHORTER CURVE, CORAZZA D2084316 

65  162  3556  1.3%  71.0%  SPRING, CORAZZA D4000349 

17  18  3483  1.2%  72.3%  LOCK, CELL SECTOR, LONGER CURVED, CORAZZA D2084317 

69  178  3382  1.2%  73.5%  BRUSH, EPY CURRENT DRIVE, CORAZZA, FOR LINE 11 FILLER CORAZZA 

41  178  3351  1.2%  74.7%  KNOB, CONTROL, CORAZZA D4053465 

25  278  3060  1.1%  75.7%  JOINT, UNIVERSAL, DOUBLE, CORAZZA C1001481 

44  150  2980  1.1%  76.8%  FILTER, OIL, 100 MM DIA X 50 MM LG, CORAZZA C1000791, INSIDE SUMP PUMP 

13  278  2888  1.0%  77.8%  SHAFT, CELL MOUNTING, CORAZZA D3083328 

47  253  2875  1.0%  78.8%  SHAFT, ENCODER, 0.5‐12VDC, OMRON E6F‐AB3C‐C2, CORAZZA 

58  166  2802  1.0%  79.8%  PIN, MOUNTING, CORAZZA D4000452 

Page 55: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-51 

Page 56: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-52 

Page 57: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-53 

Page 58: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-54 

Page 59: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-55 

Page 60: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-56 

Page 61: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-57 

Page 62: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Appendix B The following tables show the raw data that was used to create Pareto Histograms for the Margarine Processing Unit (MPU) based on downtime duration and downtime frequency as the consequences. Pareto Histograms for MPU based on both consequences are presented after the tables.

Raw Data for MPU Pareto Analysis (Downtime Duration) Part No. 

Downtime Duration (min)  % Time  % Cum  Part Description 

8  3913  6.7%  6.7% ITEM E, (5of10) O‐RING, CHERRY BURRELL 700006B23, N70235, FOR VOTATORS

16  3755  6.5%  13.2% ITEM F, (6of10) INSERT, SEAL BODY, GRAPHITE, FOR VOTATORS, CHERRY BURRELL 110892‐A4, CHERRY BURRELL 11089A4 

23  3576  6.2%  19.4% BLADE, MUTATOR, CHERRY BURRELL 900099, 112132‐E, FOR MPU 11 , A2 / A321  3562  6.1%  25.5% RING, SUPPORT, FOR WATER CHAMBER, SCHRODER, LINE 15 VOTATORS12  3388  5.8%  31.4% ITEM I, (9of10) HEAD, SEAL, INSERT,  VOTATORS 

6  3367  5.8%  37.2% ITEM G, (7of10) O‐RING, CHERRY BURRELL 700006A32, N75226, FOR VOTATORS NEW #N75226 FOR BUNA; V‐70226 ‐ FOR VITON; E‐70226 ‐ FOR EPDM 

26  3073  5.3%  42.5% PIN, BLADE FASTENER, CHERRY BURRELL 14869, SMALL VOTATOR M123A20  2838  4.9%  47.3% SEAL, SHAFT, CHERRY BURRELL 700030A88, LINE 21 FOR VOTATORS22  2563  4.4%  51.8% BLADE, MUTATOR, CHERRY BURRELL 900129, 121088, FOR MPU 11, A1

27  2533  4.4%  56.1% PIN, BLADE FASTENER, CHERRY BURRELL 14868, LARGE VOTATOR M123A (NOT IN USE ‐ FOR OLD MPU‐01 VOTATOR? 

4  2529  4.4%  60.5% NUT, LOCK, CHERRY BURRELL 700004A02 ( approx: 68mm ID x 92mmOD)5  2064  3.6%  64.0% NUT, 3/4", SS, VOTATOR1  1992  3.4%  67.5% BEARING, CHERRY BURRELL 1137497  1962  3.4%  70.9% O‐RING, CHERRY BURRELL 70001A12

15  1918  3.3%  74.2% ITEM D, (4of10) SEAL, U‐CUP BODY, CHERRY BURRELL 7000014A05, FOR VOTATORS (Able O‐ring equivalent: HC187‐02.75ON700 ‐ 2‐3/4" X 3‐1/8" X 3/16") 

11  1859  3.2%  77.4% SEAL, PIN DRIVE, CHERRY BURRELL 119036, VOTATOR FOR MPU 518  1703  2.9%  80.3% STUD, COVER, VOTATOR13  1584  2.7%  83.0% NUT, LOCK, SHAFT, CHERRY BURRELL 119275‐A 24  1532  2.6%  85.7% PIN, BASE MUTATOR, CHERRY BURRELL 110368‐A, VOTATOR25  1342  2.3%  88.0% PIN, HEAD MUTATOR, CHERRY BURRELL 112004‐A, VOTATOR2  1340  2.3%  90.3% SHAFT, DRIVE, VOTATOR STUD SHAFT FEMALE SPLINE, CHERRY BURRELL 920430, 34438, 801383

Page-58 

Page 63: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

14  1271  2.2%  92.5% FABRICATE (LOCAL ‐ ADA) NUT, LOCK, SHAFT, CHERRY BURRELL 119275‐A  (do not re‐order ‐more expensive than Orig) 

3  1143  2.0%  94.5% ITEM J, (10of10) SEAL, LIPSEAL, CHERRY BURRELL 700030A42, FOR VOTATORS9  994  1.7%  96.2% PIN, BASE, SPECIAL CHAMFER TOPS, VOTATOR 

10  891  1.5%  97.7% ITEM B, (2of10) RING, SEAL BACKING, CHERRY BURRELL 110203‐C119  721  1.2%  98.9% ITEM #2, DISK  25  Stainless Steel  (approx: 45mm OD x 25 mm ID x 4 mmthick) S14237717  612  1.1%  100.0% STUD, VOTATOR COVER,  M24 X 77 , # S101922 

58025  1 

Raw Data for MPU Pareto Analysis (Downtime Frequency) Part No. 

Downtime Frequency 

% Frequency  % Cum  Part Description 

19  98  6.7%  6.7% ITEM #2, DISK  25  Stainless Steel  (approx: 45mm OD x 25 mm ID x 4 mmthick) S14237724  97  6.7%  13.4% PIN, BASE MUTATOR, CHERRY BURRELL 110368‐A, VOTATOR

6  86  5.9%  19.3% ITEM G, (7of10) O‐RING, CHERRY BURRELL 700006A32, N75226, FOR VOTATORS NEW #N75226 FOR BUNA; V‐70226 ‐ FOR VITON; E‐70226 ‐ FOR EPDM 

12  84  5.8%  25.1% ITEM I, (9of10) HEAD, SEAL, INSERT,  VOTATORS 25  83  5.7%  30.8% PIN, HEAD MUTATOR, CHERRY BURRELL 112004‐A, VOTATOR7  79  5.4%  36.2% O‐RING, CHERRY BURRELL 70001A12

22  78  5.4%  41.6% BLADE, MUTATOR, CHERRY BURRELL 900129, 121088, FOR MPU 11, A12  77  5.3%  46.9% SHAFT, DRIVE, VOTATOR STUD SHAFT FEMALE SPLINE, CHERRY BURRELL 920430, 34438, 801383

17  73  5.0%  51.9% STUD, VOTATOR COVER,  M24 X 77 , # S101922 4  67  4.6%  56.5% NUT, LOCK, CHERRY BURRELL 700004A02 ( approx: 68mm ID x 92mmOD)

18  67  4.6%  61.1% STUD, COVER, VOTATOR23  66  4.5%  65.6% BLADE, MUTATOR, CHERRY BURRELL 900099, 112132‐E, FOR MPU 11 , A2 / A3

15  65  4.5%  70.1% ITEM D, (4of10) SEAL, U‐CUP BODY, CHERRY BURRELL 7000014A05, FOR VOTATORS (Able O‐ring equivalent: HC187‐02.75ON700 ‐ 2‐3/4" X 3‐1/8" X 3/16") 

9  65  4.5%  74.6% PIN, BASE, SPECIAL CHAMFER TOPS, VOTATOR 

27  57  3.9%  78.5% PIN, BLADE FASTENER, CHERRY BURRELL 14868, LARGE VOTATOR M123A (NOT IN USE ‐ FOR OLD MPU‐01 VOTATOR? 

8  55  3.8%  82.3% ITEM E, (5of10) O‐RING, CHERRY BURRELL 700006B23, N70235, FOR VOTATORS

16  45  3.1%  85.4% ITEM F, (6of10) INSERT, SEAL BODY, GRAPHITE, FOR VOTATORS, CHERRY BURRELL 110892‐A4, CHERRY BURRELL 11089A4 

13  36  2.5%  87.8% NUT, LOCK, SHAFT, CHERRY BURRELL 119275‐A 10  35  2.4%  90.2% ITEM B, (2of10) RING, SEAL BACKING, CHERRY BURRELL 110203‐C120  29  2.0%  92.2% SEAL, SHAFT, CHERRY BURRELL 700030A88, LINE 21 FOR VOTATORS

Page-59 

Page 64: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

26  25  1.7%  94.0% PIN, BLADE FASTENER, CHERRY BURRELL 14869, SMALL VOTATOR M123A

14  23  1.6%  95.5% FABRICATE (LOCAL ‐ ADA) NUT, LOCK, SHAFT, CHERRY BURRELL 119275‐A  (do not re‐order ‐more expensive than Orig) 

5  22  1.5%  97.0% NUT, 3/4", SS, VOTATOR11  18  1.2%  98.3% SEAL, PIN DRIVE, CHERRY BURRELL 119036, VOTATOR FOR MPU 53  15  1.0%  99.3% ITEM J, (10of10) SEAL, LIPSEAL, CHERRY BURRELL 700030A42, FOR VOTATORS

21  5  0.3%  99.7% RING, SUPPORT, FOR WATER CHAMBER, SCHRODER, LINE 15 VOTATORS1  5  0.3%  100.0% BEARING, CHERRY BURRELL 113749

1455  1 

Page-60 

Page 65: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-61 

Page 66: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Appendix C The following table shows the raw data that was used to create a Pareto Histogram for the Bander based on downtime duration as the consequences. Pareto Histograms for Bander are presented after the tables.

Raw Data for Bander Pareto Analysis (Downtime Duration) Part No. 

Downtime Duration (min) 

% Time  % Cum  Part Description 

34  9141  12.3%  12.3%  2" DOUBLE SPLIT STAINLESS COLLARS

10  4889  6.6%  18.9% SMC CYLINDER, PLUNGER ASS'Y, AXON BANDER, 3" STROKE, 5/16" ROD, 1/4‐28 THRD‐MALE , 1/8 NPT PORTS, NO CUSHIONS 

39  4889  6.6%  25.4%  LABEL OIP OVERLAY FOR HMI DISPLAY MAPLE SYSTEMS (MODEL #: OIT‐3160‐B00) #12012  4646  6.2%  31.7%  PERFORATION WHEEL (wheel vertical perf support) , # 5269 (for Bander) (Roller with Bearing # GBC R8RS)

31  4646  6.2%  37.9%  FILTER, AIR SUCTION, WITH ONE‐TOUCH FITTINGS, SMC, #ZFB201‐0725  3451  4.6%  42.6%  HEATER ELEMENT 220VAC TUBULAR (SIDE)1  3226  4.3%  46.9%  BANDER FEED ROLER DRIVE BELT , GATES POWER GRIP 250XL037

30  3226  4.3%  51.3%  CONTROL,FLOW, NAS SERIES, SMC, WITH ONE‐TOUCH FITTING, #NAS205IF‐0719  2340  3.1%  54.4%  BAR , #  50252‐6.88 ,6.88" Roller Bullet , (subpart for  797459) (‐1 pc rqd)48  2340  3.1%  57.5%  SHAFT, 5/8" DIA  x  7" LG. ;  WITH DRIVE TAB ON ONE END,  BANDER SCROLL DRIVE ASS'Y29  2315  3.1%  60.7%  CONTROL,FLOW, NAS SERIES, SMC, WITH ONE‐TOUCH FITTING, #NAS200IF‐0717  1702  2.3%  63.0%  SHAFT/PIN , # 50251 , 1/8" X 5/8" Roller Bullet , (subpart for  797459) (‐4 pcs rqd)46  1702  2.3%  65.2%  BRONZE SPACER WASHERS, 1" X 5/8" X  1/16"3  1649  2.2%  67.5%  BRACKET  PERF WHEEL MOUNT, # 5270

32  1649  2.2%  69.7%  BEARING, BANDER HEAD FILM DRIVE‐ROLLER ASS'Y33  1594  2.1%  71.8%  VALVE, SOLENOID, 24VDC, SMC, #VQZ2151‐5YZW FOR BANDING MACHINES18  1285  1.7%  73.5%  SUPPORT SHAFT , # 50253  (subpart for  797459) (‐2 pcs rqd) 47  1285  1.7%  75.3%  SHAFT, 5/8" DIA  X 7" LG. 3/16" KEYWAY ‐ KEYED ALL THE WAY , BANDER SCROLL DRIVE ASS'Y23  1085  1.5%  76.7%  ROLLER BULLET ASSEMBLY, 215mm, #6036‐215 (BANDER 1lb)9  984  1.3%  78.1%  SMC CYLINDER, #NCGBA20‐0100 (for Bander UPSTREAM film band gripper assy‐ AXON#2407

38  984  1.3%  79.4%  DISPLAY, HMI, MAPLE SYSTEMS, WITH 2x20 BACKLIT LCD, MODEL #: OIT‐3160‐B00, #114728  962  1.3%  80.7%  DRIVER STEPPER P70360‐SDN , # 17671  ‐ FOR BANDER HEAD FILM FEED5  954  1.3%  82.0%  PERFORATION CYLINDER (1/4" Stroke) , # 2047 (for Bander)  ("BIMBA" Cylinder # FT‐090.25 ‐3R)4  915  1.2%  83.2%  V‐PERFORATION KNIFE (Blade vertical perf wheel) , # 5271  (for Bander) (Gear with Bearing # R8RS)

Page-62 

Page 67: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-63 

15  865  1.2%  84.3% (subpart for  797464): ROLLER BEARING SUPORT SHAFT ASSEMBLY FOR 1 LB BULLET (INCLUDES 4 BEARING #3571; 4 SHAFT#50251 ; 2 SUPPORT SHAFT#50253 & 1 BAR#50252‐6.88) ‐ Assemble in‐house ; parts ordered separately 

44  865  1.2%  85.5%  LINEAR BEARING SPACER FOR DOWN STREAM GRIPPER ASS'Y 

14  821  1.1%  86.6% Gearbox, HP‐2.3, Ratio:20, #SBKHF726L205B7T1 for Bander conveyor (SPC Chain) drive (GEARBOX UNILEVER #301‐G‐040334D) 

43  821  1.1%  87.7%  THOMSON SHAFT, 3/8 x 12" lg. DOWNSTREAM BAND GRIPPER ASS'Y16  805  1.1%  88.8%  BEARING,  # 3571 , Bearing Bullet Plate,  (subpart for  797459)  (‐4 pcs rqd)45  805  1.1%  89.9%  KNIFE, CYLINDER (For Bandaid) #2017 (SMC  #281770 001 20 , PN:US10437)20  785  1.1%  90.9%  BULLET ROD 11"  ROLLER BULLET , # 50254‐11‐03 (for Banders)49  785  1.1%  92.0%  SHAFT, 5/8" DIA  x  4 3/4" LG. ;  WITH DRIVE TAB ON ONE END,  BANDER SCROLL DRIVE ASS'Y22  615  0.8%  92.8%  LOCKNUT WITH NYLON INSERT, #8‐32 UNC X 1/2" LGTH, 18‐8 STAINLESS STEEL51  615  0.8%  93.7%  SHOULDER BOLT, S.S.,  5/16" X 7/8" LG., BANDER KNIFE ASS'Y24  590  0.8%  94.4%  ROLLER BULLET ASSEMBLY, 262mm, #6036‐262 (BANDER 2lb)8  530  0.7%  95.2%  SMC CYLINDER, Bander downstream film band gripper assy , # 2406

37  530  0.7%  95.9%  COLLAR, SHAFT, QUICK‐CONNECT ONE‐PIECE, 1" BORE SIZE, JERGENS (PN: 101‐040215), #6168K317  440  0.6%  96.5%  ROLLER BEARING, # 3150 (for Bander) (#SCE470H)

36  440  0.6%  97.1% NYLON BUSHING SPACER, LINEAR BEARING SPACER FOR DOWNSTREAM BAND GRIPPER ASS'Y,  .386" ID x  .604 OD x  1.906" LGTH. 

6  375  0.5%  97.6%  UNWIND CYLINDER (SMC  3")  # 2161 (for Bander) 35  375  0.5%  98.1%  SMC CYLINDER CLEVIS, DOWNSTREAM BAND GRIPPER  CYLINDER11  344  0.5%  98.5%  OMRON , CLASS 2  POWER SUPPLY , S8VS‐06024 , INPUT 50/60Hz AC 100‐240V 1.7A , OUTPUT DC24V 2.5A40  344  0.5%  99.0%  THOMSON SHAFT, 3/8" DIA, 4 1/16" LG. , UPSTREAM BAND GRIPPER ASS'Y26  203  0.3%  99.3%  HEATER ELEMENT 220V TUBULAR TOP21  185  0.2%  99.5%  SCREWS.BUTTON HEAD HEX SOCKET CAP, #8‐32 UNC X 1/2" LGTH, 18‐8 STAINLESS STEEL50  185  0.2%  99.8%  BRONZE SPACER WASHER, 1" X  5/8" X  1/8" THICK, CHAIN IDLER SPOCKETS  ASS'Y ON BANDERS12  50  0.1%  99.8%  ETHERNET INTERFACE , AB ,  CAT # 1761‐NET‐ENI , SER C , FRN 3.01 , FOR CLASS 1 DIVISION 2 41  50  0.1%  99.9%  THOMSON SHAFT, 3/8" x  4 5/8" lg.,, KNIFE ASS'Y13  30  0.0%  99.9%  ALLEN‐BRADLEY , MICRO LOGIX 1500 , BASE UNIT , CAT # 1764‐28BXB SER # B REV # A , AXON CORP PART # 128842  30  0.0%  100.0%  THOMSON SHAFT, 3/8" x  8 1/16" lg., PLUNGER ASS'Y 27  20  0.0%  100.0%  STEPPER MOTOR, AXON BANDER, POWERPAC MODEL K31HRLG‐LDK‐NS‐02

74362  1 

Page 68: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-64 

Page 69: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Appendix D The following table shows the raw data that was used to create a Jack Knife Diagram for the MPU. A Jack Knife Diagram for the MPU is presented after the table.

Raw Data for MPU Jack Knife Diagram Part No. 

Downtime Frequency 

Downtime Duration (min)  MTTR  Part Description 

1  5  1992  398.4 BEARING, CHERRY BURRELL 1137492  77  1340  17.4025974 SHAFT, DRIVE, VOTATOR STUD SHAFT FEMALE SPLINE, CHERRY BURRELL 920430, 34438, 8013833  15  1143  76.2 ITEM J, (10of10) SEAL, LIPSEAL, CHERRY BURRELL 700030A42, FOR VOTATORS4  67  2529  37.7462687 NUT, LOCK, CHERRY BURRELL 700004A02 ( approx: 68mm ID x 92mmOD)5  22  2064  93.8181818 NUT, 3/4", SS, VOTATOR

6  86  3367  39.1511628 ITEM G, (7of10) O‐RING, CHERRY BURRELL 700006A32, N75226, FOR VOTATORS NEW #N75226 FOR BUNA; V‐70226 ‐ FOR VITON; E‐70226 ‐ FOR EPDM 

7  79  1962  24.835443 O‐RING, CHERRY BURRELL 70001A128  55  3913  71.1454545 ITEM E, (5of10) O‐RING, CHERRY BURRELL 700006B23, N70235, FOR VOTATORS9  65  994  15.2923077 PIN, BASE, SPECIAL CHAMFER TOPS, VOTATOR 

10  35  891  25.4571429 ITEM B, (2of10) RING, SEAL BACKING, CHERRY BURRELL 110203‐C111  18  1859  103.277778 SEAL, PIN DRIVE, CHERRY BURRELL 119036, VOTATOR FOR MPU 512  84  3388  40.3333333 ITEM I, (9of10) HEAD, SEAL, INSERT,  VOTATORS 13  36  1584  44 NUT, LOCK, SHAFT, CHERRY BURRELL 119275‐A 

14  23  1271  55.2608696 FABRICATE (LOCAL ‐ ADA) NUT, LOCK, SHAFT, CHERRY BURRELL 119275‐A  (do not re‐order ‐more expensive than Orig) 

15  65  1918  29.5076923 ITEM D, (4of10) SEAL, U‐CUP BODY, CHERRY BURRELL 7000014A05, FOR VOTATORS (Able O‐ring equivalent: HC187‐02.75ON700 ‐ 2‐3/4" X 3‐1/8" X 3/16") 

16  45  3755  83.4444444 ITEM F, (6of10) INSERT, SEAL BODY, GRAPHITE, FOR VOTATORS, CHERRY BURRELL 110892‐A4, CHERRY BURRELL 11089A4 

17  73  612  8.38356164 STUD, VOTATOR COVER,  M24 X 77 , # S101922 18  67  1703  25.4179104 STUD, COVER, VOTATOR19  98  721  7.35714286 ITEM #2, DISK  25  Stainless Steel  (approx: 45mm OD x 25 mm ID x 4 mmthick) S14237720  29  2838  97.862069 SEAL, SHAFT, CHERRY BURRELL 700030A88, LINE 21 FOR VOTATORS21  5  3562  712.4 RING, SUPPORT, FOR WATER CHAMBER, SCHRODER, LINE 15 VOTATORS22  78  2563  32.8589744 BLADE, MUTATOR, CHERRY BURRELL 900129, 121088, FOR MPU 11, A1

Page-65 

Page 70: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

23  66  3576  54.1818182 BLADE, MUTATOR, CHERRY BURRELL 900099, 112132‐E, FOR MPU 11 , A2 / A324  97  1532  15.7938144 PIN, BASE MUTATOR, CHERRY BURRELL 110368‐A, VOTATOR25  83  1342  16.1686747 PIN, HEAD MUTATOR, CHERRY BURRELL 112004‐A, VOTATOR26  25  3073  122.92 PIN, BLADE FASTENER, CHERRY BURRELL 14869, SMALL VOTATOR M123A

27  57  2533  44.4385965 PIN, BLADE FASTENER, CHERRY BURRELL 14868, LARGE VOTATOR M123A (NOT IN USE ‐ FOR OLD MPU‐01 VOTATOR? 

1455  58025  2293.05524

100 101 102100

101

102

103Figure 5: Jack Knife Diagram - MPU (2008)

Frequency of Failure

Mea

n Ti

me

to R

epai

r (m

in) 1

2 2425

Acute

Chronic A

Chronic B

Acute &Chronic

3

4

5

6

7

8

9

10

11

121314

15

16

17

18

19

20

21

22

23

26

27

54

40

Page-66 

Page 71: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Appendix E The following table shows the raw data that was used to create a Jack Knife Diagram for the Bander. A Jack Knife Diagram for the Bander is presented after the table.

Raw Data for Bander Jack Knife Diagram Part No. 

Downtime Frequency 

Downtime Duration (min)  MTTR  Part Description 

1  216  3226  14.9351852 BANDER FEED ROLER DRIVE BELT , GATES POWER GRIP 250XL0372  27  4646  172.074074 PERFORATION WHEEL (wheel vertical perf support) , # 5269 (for Bander) (Roller with Bearing # GBC R8RS)3  188  1649  8.7712766 BRACKET  PERF WHEEL MOUNT, # 52704  14  915  65.3571429 V‐PERFORATION KNIFE (Blade vertical perf wheel) , # 5271  (for Bander) (Gear with Bearing # R8RS)5  33  954  28.9090909 PERFORATION CYLINDER (1/4" Stroke) , # 2047 (for Bander)  ("BIMBA" Cylinder # FT‐090.25 ‐3R)6  4  375  93.75 UNWIND CYLINDER (SMC  3")  # 2161 (for Bander)  7  37  440  11.8918919 ROLLER BEARING, # 3150 (for Bander) (#SCE470H) 8  3  530  176.666667 SMC CYLINDER, Bander downstream film band gripper assy , # 24069  120  984  8.2 SMC CYLINDER, #NCGBA20‐0100 (for Bander UPSTREAM film band gripper assy‐ AXON#2407

10  11  4889  444.454545 SMC CYLINDER, PLUNGER ASS'Y, AXON BANDER, 3" STROKE, 5/16" ROD, 1/4‐28 THRD‐MALE , 1/8 NPT PORTS, NO CUSHIONS 

11  14  344  24.5714286 OMRON , CLASS 2  POWER SUPPLY , S8VS‐06024 , INPUT 50/60Hz AC 100‐240V 1.7A , OUTPUT DC24V 2.5A12  1  50  50 ETHERNET INTERFACE , AB ,  CAT # 1761‐NET‐ENI , SER C , FRN 3.01 , FOR CLASS 1 DIVISION 2 

13  2  30  15 ALLEN‐BRADLEY , MICRO LOGIX 1500 , BASE UNIT , CAT # 1764‐28BXB SER # B REV # A , AXON CORP PART # 1288 

14  41  821  20.0243902 Gearbox, HP‐2.3, Ratio:20, #SBKHF726L205B7T1 for Bander conveyor (SPC Chain) drive (GEARBOX UNILEVER #301‐G‐040334D) 

15  36  865  24.0277778 

(subpart for  797464): ROLLER BEARING SUPORT SHAFT ASSEMBLY FOR 1 LB BULLET (INCLUDES 4 BEARING #3571; 4 SHAFT#50251 ; 2 SUPPORT SHAFT#50253 & 1 BAR#50252‐6.88) ‐ Assemble in‐house ; parts ordered separately 

16  16  805  50.3125 BEARING,  # 3571 , Bearing Bullet Plate,  (subpart for  797459)  (‐4 pcs rqd)17  83  1702  20.5060241 SHAFT/PIN , # 50251 , 1/8" X 5/8" Roller Bullet , (subpart for  797459) (‐4 pcs rqd)18  6  1285  214.166667 SUPPORT SHAFT , # 50253  (subpart for  797459) (‐2 pcs rqd)19  252  2340  9.28571429 BAR , #  50252‐6.88 ,6.88" Roller Bullet , (subpart for  797459) (‐1 pc rqd)20  3  785  261.666667 BULLET ROD 11"  ROLLER BULLET , # 50254‐11‐03 (for Banders)

Page-67 

Page 72: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

21  96  185  1.92708333 SCREWS.BUTTON HEAD HEX SOCKET CAP, #8‐32 UNC X 1/2" LGTH, 18‐8 STAINLESS STEEL22  6  615  102.5 LOCKNUT WITH NYLON INSERT, #8‐32 UNC X 1/2" LGTH, 18‐8 STAINLESS STEEL23  70  1085  15.5 ROLLER BULLET ASSEMBLY, 215mm, #6036‐215 (BANDER 1lb)24  11  590  53.6363636 ROLLER BULLET ASSEMBLY, 262mm, #6036‐262 (BANDER 2lb)25  236  3451  14.6228814 HEATER ELEMENT 220VAC TUBULAR (SIDE)26  6  203  33.8333333 HEATER ELEMENT 220V TUBULAR TOP27  3  20  6.66666667 STEPPER MOTOR, AXON BANDER, POWERPAC MODEL K31HRLG‐LDK‐NS‐0228  31  962  31.0322581 DRIVER STEPPER P70360‐SDN , # 17671  ‐ FOR BANDER HEAD FILM FEED29  352  2315  6.57670455 CONTROL,FLOW, NAS SERIES, SMC, WITH ONE‐TOUCH FITTING, #NAS200IF‐0730  5  3226  645.2 CONTROL,FLOW, NAS SERIES, SMC, WITH ONE‐TOUCH FITTING, #NAS205IF‐0731  139  4646  33.4244604 FILTER, AIR SUCTION, WITH ONE‐TOUCH FITTINGS, SMC, #ZFB201‐0732  99  1649  16.6565657 BEARING, BANDER HEAD FILM DRIVE‐ROLLER ASS'Y 33  87  1594  18.3218391 VALVE, SOLENOID, 24VDC, SMC, #VQZ2151‐5YZW FOR BANDING MACHINES34  58  9141  157.603448 2" DOUBLE SPLIT STAINLESS COLLARS35  48  375  7.8125 SMC CYLINDER CLEVIS, DOWNSTREAM BAND GRIPPER  CYLINDER

36  11  440  40 NYLON BUSHING SPACER, LINEAR BEARING SPACER FOR DOWNSTREAM BAND GRIPPER ASS'Y,  .386" ID x  .604 OD x  1.906" LGTH. 

37  450  530  1.17777778 COLLAR, SHAFT, QUICK‐CONNECT ONE‐PIECE, 1" BORE SIZE, JERGENS (PN: 101‐040215), #6168K3138  15  984  65.6 DISPLAY, HMI, MAPLE SYSTEMS, WITH 2x20 BACKLIT LCD, MODEL #: OIT‐3160‐B00, #114739  94  4889  52.0106383 LABEL OIP OVERLAY FOR HMI DISPLAY MAPLE SYSTEMS (MODEL #: OIT‐3160‐B00) #120140  7  344  49.1428571 THOMSON SHAFT, 3/8" DIA, 4 1/16" LG. , UPSTREAM BAND GRIPPER ASS'Y41  42  50  1.19047619 THOMSON SHAFT, 3/8" x  4 5/8" lg.,, KNIFE ASS'Y 42  3  30  10 THOMSON SHAFT, 3/8" x  8 1/16" lg., PLUNGER ASS'Y 43  82  821  10.0121951 THOMSON SHAFT, 3/8 x 12" lg. DOWNSTREAM BAND GRIPPER ASS'Y44  19  865  45.5263158 LINEAR BEARING SPACER FOR DOWN STREAM GRIPPER ASS'Y45  74  805  10.8783784 KNIFE, CYLINDER (For Bandaid) #2017 (SMC  #281770 001 20 , PN:US10437)46  7  1702  243.142857 BRONZE SPACER WASHERS, 1" X 5/8" X  1/16" 47  130  1285  9.88461538 SHAFT, 5/8" DIA  X 7" LG. 3/16" KEYWAY ‐ KEYED ALL THE WAY , BANDER SCROLL DRIVE ASS'Y48  32  2340  73.125 SHAFT, 5/8" DIA  x  7" LG. ;  WITH DRIVE TAB ON ONE END,  BANDER SCROLL DRIVE ASS'Y49  176  785  4.46022727 SHAFT, 5/8" DIA  x  4 3/4" LG. ;  WITH DRIVE TAB ON ONE END,  BANDER SCROLL DRIVE ASS'Y50  3  185  61.6666667 BRONZE SPACER WASHER, 1" X  5/8" X  1/8" THICK, CHAIN IDLER SPOCKETS  ASS'Y ON BANDERS51  180  615  3.41666667 SHOULDER BOLT, S.S.,  5/16" X 7/8" LG., BANDER KNIFE ASS'Y

Page-68 

Page 73: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

100 101 102 103100

101

102

103Figure 6: Jack Knife Diagram - Bander (2008)

Frequency of Failure

Mea

n Ti

me

to R

epai

r (m

in)

1

2

3

4

5

6

7

8

9

10

11

12

1314

15

16

17

18

19

20

37

Acute

Chronic A

Chronic B

Acute & Chronic

21

22

23

24

25

26

27

28

29

30

31

3233

34

35

36

383940

41

42 43

44

45

46

47

48

49

50

51

72

20

Page-69 

Page 74: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Appendix F The following is the Matlab code that the thesis student created to generate Jack Knife Diagrams %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Matlab Jack Knife Digram Function % Function written by Kenneth Liang 993101905 % NOTE: This program requires a .mat file containing parts information. % This file should include a parts description, frequency of % downtime, duration of downtime for part, and consequence (MTTR). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function JackKnifeDiagram(data) %Data file should contain four columns representing part description, %frequency of part failure, duration of downtime and consequnce (MTTR) Type = data(:,1); %cell2mat converts cell array to a matrix array Frequency = data(:,2); Duration = data(:,3); MTTR = data(:,4); Q = length(Type); %Total number of parts in a particular category N = sum(Frequency); %Total number of times parts failed D = sum(Duration); %Total duration of downtime caused by all parts LimitX = N/Q; %X axis limit LimitY = D/N; %Y axis limit %Creating Jack Knife Diagram loglog(Frequency,MTTR,'.');grid; %loglog(row, col) hold on; %Labelling Graph Title and Axis title('\bfJack Knife Diagram - Packaging Spare Parts','FontSize',16); xlabel('\bfFrequency of Failure','FontSize',16); ylabel('\bfMTTR (min)','FontSize',16); %Labelling points (i.e. the part description) text(Frequency + 0.3, MTTR + 0.3, int2str(Type),'FontSize',8); %Quadrant Labels text(100, 150, '\bfAcute','FontSize',12,'Color',[1,0,0]); text(600, 12, '\bfChronic A','FontSize',12,'Color',[1,0,0]); text(600, 5, '\bfChronic B','FontSize',12,'Color',[1,0,0]); text(300, 50, '\bfAcute & Chronic','FontSize',12,'Color',[1,0,0]); %Limit lines for frequency and consequence (i.e. MTTR) %Need to specify the end points of line (i.e. [x1;x2],[y1;y2]) line([LimitX;LimitX],[1;10000],'LineWidth',1.5); line([1;1000],[LimitY;LimitY],'LineWidth',1.5); %Limit line for Chronic A and B line([LimitX;1000],[LimitY;log(D/Q)],'LineWidth',1.5);

Page-70 

Page 75: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-71 

display(log(D/Q)); %Limit Labels text(LimitX, 1, num2str(round(LimitX)),'FontSize',10,'Color',[1,0,0]); text(1, LimitY+1.5, num2str(round(LimitY)),'FontSize',10,'Color',[1,0,0]); hold off; end

Page 76: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Appendix G The following table shows the raw data that was used to optimize MPU Pin Blade Fastener part.

Part No. SKU # Description

Mfg. Name Class OHQ

Cost Per Unit

27  596915 PIN, BLADE FASTENER, CHERRY BURRELL 14868, LARGE VOTATOR M123A (NOT IN USE - FOR OLD MPU-01 VOTATOR?

CHERRY BURRELL

MUTATOR-BLADES 172.00 3.5900

Distribution Reorder Quantity

Reorder point

Holding Cost

Ordering Cost

Yearly Demand

Gamma  620  168  1.077 30.78 6734 Demand for Blade Fasteners (# of parts) during Lead Time (1 Week) (2008 Data) 

Week 1 147  Week 14 94  Week 27 136  Week 40 121 

Week 2 110  Week 15 95  Week 28 91  Week 41 111 

Week 3 149  Week 16 90  Week 29 137  Week 42 148 

Week 4 109  Week 17 119  Week 30 145  Week 43 102 

Week 5 127  Week 18 137  Week 31 159  Week 44 147 

Week 6 167  Week 19 163  Week 32 160  Week 45 168 

Week 7 98  Week 20 169  Week 33 157  Week 46 111 

Week 8 102  Week 21 115  Week 34 165  Week 47 109 

Week 9 163  Week 22 158  Week 35 121  Week 48 106 

Week 10 130  Week 23 172  Week 36 172  Week 49 133 

Week 11 98  Week 24 91  Week 37 133  Week 50 172 

Week 12 122  Week 25 128  Week 38 114  Week 51 123 

Week 13 100  Week 26 112  Week 39 104  Week 52 124 

Page-72 

Page 77: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Appendix H The following tables are summary lists showing the optimal re-order point and re-order quantity for all the parts that were deemed significant by the Jack Knife Diagrams. These parts are found in the Acute and Chronic quadrant of the Jack Knife Diagram. Jack Knife Diagrams for each machine/equipment is also presented after each table.

Optimal Inventory Parameters for Corazza Part No.  Part Description 

Probability Distribution 

Optimal Reorder Quantity 

Optimal Reorder Point 

11  SHAFT, CORAZZA, (#D3005959), C/W KEYS SHAPE TYPE "B" (#C1002167)  Normal  13  1 

20 FITTING, CURVED, CORAZZA C2000069 ; "SMC" FITTING, # KQ2L06‐01S ‐ ELBOW, TUBE ADAPTER, 6 MM X 1/8" NPT, TUBE X MNPT, 90 DEG  Weibull  164  0 

23  CUP, SUCTION, RUBBER, BELLI‐ITALIA D4000437, CORAZZA  Gamma  1421  139 26  FLANGE, CORAZZA D4084331  Normal  8  2 39   PIN, CORAZZA D4039285  Weibull  24  1 43  KNOB, CORAZZA D4000845  Normal  42  0 45  ARM, CORAZZA D3086083  Normal  29  2 51  BAR, WEAR, CORAZZA D2084330  Normal  9  1 54  GEAR, SPUR, SPUR, CORAZZA D4034433  Gamma  19  2 65  SPRING, CORAZZA D4000349  Weibull  71  0 73  CUP, VACUUM, NEW STYLE, GEORGE T WHITE VC‐B15  Gamma  548  111 74  PLATE, SEAL, CORAZZA D4111627  Normal  25  0 77  BLOCK, ASSEMBLY, CORAZZA D3083433, FOR THE SHELL WRAP FORMING  Weibull  29  0 

Page-73 

Page 78: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-74 

Page 79: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Optimal Inventory Parameters for Certipak Part No.  Part Description 

Probability Distribution 

Optimal Reorder Quantity 

Optimal Reorder Point 

1  CERTIPAK CARTONER TM  Gamma  34  6 2  CHAIN, RH FLIGHT ASSEMBLY, CERTIPAK 25533‐14‐2  Lognormal  11  1 3  CHAIN, LH FLIGHT ASSEMBLY, CERTIPAK 25533‐14‐3  Lognormal  11  1 

12  PLATE, PUSHER MOUNTING, CERTIPAK 15951‐531‐42  Normal  16  0 13  CHAIN GUIDE (LONG), CERTIPAK M/C,   Lognormal  15  0 23  LUG, CERTIPAK 25615‐26, CARTONER  Weibull  44  1 24  ASSEMBLY, LUG, CERTIPAK 25236‐27, CARTONER  Normal  33  0 25  ASSEMBLY, FLIGHT, CERTIPAK 25326‐21  Lognormal  27  0 

Page-75 

Page 80: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-76 

Page 81: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Optimal Inventory Parameters for Palletizer Part No.  Part Description 

Probability Distribution 

Optimal Reorder Quantity 

Optimal Reorder Point 

3 SPOOL (Steel)  for overhead conv.  (approx: 2" dia x 2" overall lenght ‐ w/ 2 drilled & tapped 1/4 ‐ 20 set screw holes)  Weibull  50  2 

13  CAP, BRUSH, CARBON, SABEL, ROTARY SABEL  Normal  28  0 

Page-77 

Page 82: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-78 

Page 83: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Optimal Inventory Parameters for Chains Part No.  Part Description 

Probability Distribution 

Optimal Reorder Quantity 

Optimal Reorder Point 

Stainless Steel Chain, SS16B‐1 RCL, C/W Special WA‐2 Attachments (10mm Holes) Evry 2nd, 4th, 8th, & 10th Repeat (2 link/4link, alternately)  (for Line 5 Hamba carrier chain)  Normal  22  0 

17  #RS60 ROLLER CHAIN  Gamma  267  53 

29 

CHAIN LINK ONLY, TRANSMISSION, CONNECTING, STEEL, LIEFERSCHEIN 034013885 (Connection Joint Straight ‐ Carrier chain Link ONLY, NO attachment for Line 15 Hamba)  Weibull  237  11 

40  #25 CONNECTING LINK,  TSUBAKI 25 C/L  Gamma  349  8 67  OFFSET LINK, CHAIN 111046  Normal  63  0 68  PLASTIC ROLLER CHAIN   for sprocket‐25B30 (Line 1 Checkweigher)  Gamma  58  9 

77 SPROCKET, 19 HARD TEETH, 1 1/8" BORE, 1/4 KEYWAY, MARTIN, 50BS19HT‐1 1/8  Normal  28  0 

91  #40‐2 C/L, S.S. CONNECTING LINK  Normal  190  21 92  RSD40 LAMBDA RIV CHAIN (SELF‐LUBRICATING CHAIN), TSUBAKI  Weibull  179  61 

Page-79 

Page 84: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-80 

Page 85: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Optimal Inventory Parameters for Rollers Part No.  Part Description 

Probability Distribution 

Optimal Reorder Quantity 

Optimal Reorder Point 

2 ROLLER, GUIDE, 1/2" ID X 2" OD (overall thickness: .88) , PLASTIC, FOR SIDE BELT (for DEKKA Tape)  Lognormal  93  12 

4 IDLER PULLEY  ‐ " BEMIS"  (150004‐B) / ROLLER, DISC, 2.875" DIA  (CROWNED)  X 2.7" LONG, SIDE BELT TYPE ASSEMBLY,   Normal  15  4 

10 HEX AXEL SHAFT FOR ITEM # 674505, 7/16" DIA X 30"LG, 1/4‐20 THRD HOLES AT EACH END  Gamma  48  30 

16 IDLER ROLLER  (approx: 1.88" dia x 2.73" long ) with ROLLER BEARING (#6004Z)  ON BOTH SIDES AND STUD SHAFT (.75 X 3" LONG)  Normal  15  2 

25  ROLLER, 410 MM OAL, INTERROLL 1.154V50C30‐3.75   Normal  36  0 31  ROLLER, CCC‐550‐104, WATER TREATMENT PLANT  Lognormal  25  2 

Page-81 

Page 86: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-82 

Page 87: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Optimal Inventory Parameters for Belts Part No.  Part Description 

Probability Distribution 

Optimal Reorder Quantity 

Optimal Reorder Point 

9 BELT, CONVEYOR, 15" WD X 12' LG, UPPER CASE, FEED TO PALLETIZER ON THE BULK LINE, CONNECT BELTING TR‐15NF‐CB15X12'  Normal  5  1 

17 BELT, V, 400J16, 40.5000" OC, 1.5000" WD, 0.1560" THK, POLY‐V 16 RIB, JASON  Normal  75  9 

29  BELT, V, A62, 64.3000" OC, 0.5000" WD, 0.3440" THK, GATES  Weibull  61  4 40  BELT, TIMING, 2450‐14M‐40, 2450 MM, 14 MM, 40 MM, GATES  Gamma  73  4 67  BELT, V, 3L240, 24.0000" OC, 0.3750" WD, 0.2190" THK, GATES, TRUFLEX  Gamma  94  4 68  BELT, V, 3L250, 25.0000" OC, 0.3750" WD, 0.2190" THK, GATES  Normal  100  0 77  BELT, V, 3V630, 63.0000" OC, 0.3750" WD, 0.3130" THK, GATES, TRUFLEX  Weibull  58  0 91  BELT, V, 4L320, 32.0000" OC, 0.5000" WD, 0.2810" THK, GATES, TRUFLEX  Gamma  106  4 92  BELT, V, 4L330, 33.0000" OC, 0.5000" WD, 0.2810" THK, GATES, TRUFLEX  Weibull  109  0 

Page-83 

Page 88: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-84 

Page 89: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Optimal Inventory Parameters for Sabel Case Packer Part No.  Part Description 

Probability Distribution 

Optimal Reorder Quantity 

Optimal Reorder Point 

15  COUPLING , 13 X RSB BODY  (HUB) (SAGA CPLG)  Gamma  19  2 27  VALVE, VACUUM, 1/4" PORT, 24VDC, MAC VALVE 225B‐111CC  Lognormal  16  0 42  CONTROL, METER OUTFLOW, 1/4" NPT, SMC NAS2301FN0211S  Lognormal  34  0 50  SPRING, COMPRESSION, IN‐FEED TRIP MEDIUM DUTY, SABEL SPRNC022D8SS  Gamma  666  80 56  FRAME SUB‐ASSEMBLY, LOAD ELEVATOR ASS'Y, SABLE LINE 15  Normal  14  2 

Page-85 

Page 90: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-86 

Page 91: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Optimal Inventory Parameters for Hamba Filler Part No.  Part Description 

Probability Distribution 

Optimal Reorder Quantity 

Optimal Reorder Point 

15  SENSOR, UNIT‐OPTIC, HAMBA AMMS‐10‐1, 4002/6003  Normal  11  1 

24 13MM, STAINLESS STEEL HEAVY DUTY WASHERS,  25MM OD X 13MM ID X 4MM THICK  Gamma  127  31 

35 8 MM SHOULDER BOLTS AND SPACERS, HAMBA LIDDER, L‐ 5 , L‐ 15,   (M8 X 12  Socket Shoulder Screw  A2 SS)  Gamma  269  75 

52  CONTACTOR, ALLEN‐BRADLEY 100‐C23UZJ01  Normal  22  1 

82 PACKING, FLAT,  70.0 MM X 51.50 MM X 2.0 MM, FILLER HEAD VALVE ROD ASSEMBLY, HAMBA 34031122, 234  Weibull  108  11 

84 FLAT PACKING, 50.5 MM X 70 MM X 2 MM, HAMBA 155‐01‐200‐016‐0 (previous ref# 130 00 006 038 1)(for AP  Weibull  104  10 

90 BUSHING, HAMBA 34100169, HAMBA 234 DOSING CAM FOLLOWER ASSEMBLY  Weibull  59  0 

105 STARTER, ELECTRIC MOTOR, MANUAL PROTECTOR, 600V 4.4A 3PH 50/60HZ 3P, ALLEN‐BRADLEY 140‐MN‐0040‐C  Gamma  76  24 

112 SWITCH, PUSHBUTTON, 1NO, BLACK, BOOTLESS FLUSH HEAD MOMENTARY NON‐ILLUMINATED, ALLEN‐BRADLEY 800H‐AR  Normal  45  0 

127 RELAY, CONTROL MINIATURE SQUARE BASE, 24VDC, 3A, 4PDT, 14 BLADE, ALLEN‐BRADLEY 700‐HC14Z24  Lognormal  38  0 

144 POS. 08 ‐ GASKET, FLAT PACKING, HAMBA 657‐00‐245‐153‐0 (FPM)  60.5 X 80.0 X 2.00  Normal  17  0 

174 CAM, 1 LB. LINE 5, HAMBA, KOL BEN, 598 715, 34224425, 65700207840, LR .454  Normal  23  0 

Page-87 

Page 92: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-88 

Page 93: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Appendix I The following is the Matlab code that the thesis student created to determine the optimal re-order point and re-order quantity. function distribution_function(x) %DISTRIBUTION_FUNCTION Create plot of datasets and fits % % Created By: Kenneth Liang % Student Number: 993101905 % Thesis: Optimizing Unilever's Captical/Emergency Spare Parts Inventory % % Purpose: This Matlab code fits a particular distribution to a set of % data supplied by the user. The main purpose is to identify the Lead % Time Demand Distribution (LTD) which is necessary to identify the % reorder point for inventory spare parts. % % Number of datasets: 1 % Number of fits: 5 (Normal, Weibull, Log Normal, Exponential, Gamma) % Force all inputs to be column vectors x = x(:); % Set up figure to receive datasets and fits f_ = clf; figure(f_); set(f_,'Units','Pixels','Position',[1 61 1440 709.45]); legh_ = []; legt_ = {}; % handles and text for legend ax_ = newplot; set(ax_,'Box','on'); hold on; % --- Plot data originally in dataset "My Data" t_ = ~isnan(x); Data_ = x(t_); [F_,X_] = ecdf(Data_,'Function','cdf'... ); % compute empirical cdf Bin_.rule = 1; [C_,E_] = dfswitchyard('dfhistbins',Data_,[],[],Bin_,F_,X_); [N_,C_] = ecdfhist(F_,X_,'edges',E_); % empirical pdf from cdf h_ = bar(C_,N_,'hist'); set(h_,'FaceColor','none','EdgeColor',[0.333333 0 0.666667],... 'LineStyle','-', 'LineWidth',1); title('\bf Probabiliy Density Graph','FontSize',16); xlabel('Lead Time Demand Data','FontSize',16); ylabel('Probability Density (PDF)','FontSize',16) legh_(end+1) = h_; legt_{end+1} = 'Lead Time Demand Data'; % Nudge axis limits beyond data limits xlim_ = get(ax_,'XLim'); if all(isfinite(xlim_)) xlim_ = xlim_ + [-1 1] * 0.01 * diff(xlim_); set(ax_,'XLim',xlim_)

Page-89

Page 94: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

end x_ = linspace(xlim_(1),xlim_(2),100); % --- Create fit "Normal" % Fit this distribution to get parameter values t_ = ~isnan(x); Data_ = x(t_); % To use parameter estimates from the original fit: pargs_ = cell(1,2); [pargs_{:}] = normfit(Data_, 0.05); p_ = [pargs_{:}]; y_ = normpdf(x_,p_(1), p_(2)); h_ = plot(x_,y_,'Color',[1 0 0],... 'LineStyle','-', 'LineWidth',2,... 'Marker','none', 'MarkerSize',6); legh_(end+1) = h_; legt_{end+1} = 'Normal'; % --- Create fit "Weibull" % Fit this distribution to get parameter values t_ = ~isnan(x); Data_ = x(t_); % To use parameter estimates from the original fit: p_ = wblfit(Data_, 0.05); y_ = wblpdf(x_,p_(1), p_(2)); h_ = plot(x_,y_,'Color',[0 0 1],... 'LineStyle','-', 'LineWidth',2,... 'Marker','none', 'MarkerSize',6); legh_(end+1) = h_; legt_{end+1} = 'Weibull'; % --- Create fit "Lognormal" % Fit this distribution to get parameter values t_ = ~isnan(x); Data_ = x(t_); % To use parameter estimates from the original fit: p_ = lognfit(Data_, 0.05); y_ = lognpdf(x_,p_(1), p_(2)); h_ = plot(x_,y_,'Color',[0.666667 0.333333 0],... 'LineStyle','-', 'LineWidth',2,... 'Marker' none', 'MarkerSize',6); ,'legh_(end+1) = h_; legt_{end+1} = 'Lognormal'; % --- Create fit "Exponential" % Fit this distribution to get parameter values t_ = ~isnan(x); Data_ = x(t_); % To use parameter estimates from the original fit: p_ = expfit(Data_, 0.05);

Page-90

Page 95: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

y_ = exppdf(x_,p_(1)); h_ = plot(x_,y_,'Color',[0.333333 0.333333 0.333333],... 'LineStyle','-', 'LineWidth',2,... 'Marker','none', 'MarkerSize',6); legh_(end+1) = h_; legt_{end+1} = 'Exponential'; % --- Create fit "Gamma" % Fit this distribution to get parameter values t_ = ~isnan(x); Data_ = x(t_); % To use parameter estimates from the original fit: p_ = gamfit(Data_, 0.05); y_ = gampdf(x_,p_(1), p_(2)); h_ = plot(x_,y_,'Color',[1 0 1],... 'LineStyle','-', 'LineWidth',2,... 'Marker','none', 'MarkerSize',6); legh_(end+1) = h_; legt_{end+1} = 'Gamma'; hold off; leginfo_ = {'Orientation', 'vertical', 'Location', 'NorthEast'}; h_ = legend(ax_,legh_,legt_,leginfo_{:}); % create legend set(h_,'Interpreter','none'); %Generate random numbers that are obtained straight from a particular %distribution such as Normal rndNorm_Data = round(normrnd(Normal_mu,Normal_sigma,200,1)); rndWeibull_Data = round(wblrnd(Weibull_scale,Weibull_shape,200,1)); rndLogNorm_Data = round(lognrnd(LogNorm_mu,LogNorm_sigma,200,1)); rndExponential_Data = round(exprnd(Exponential_Rate,200,1)); rndGamma_Data = round(gamrnd(Gamma_shape,Gamma_scale,200,1)); %Using a KS statistical test to determined whether the lead time demand %data matches with numbers obtained from a particular distribution. If they %match, then the actual lead time demand data must come from that %probability distribution. a = kstest2(x,rndNorm_Data); b = kstest2(x,rndWeibull_Data); c = kstest2(x,rndLogNorm_Data); d = kstest2(x,rndExponential_Data); e = kstest2(x,rndGamma_Data); %KS test works as follows. If the KS test returns zero, then the lead time %demand data comes from that particular probability distribution. If the KS %test returns one, then it DOES NOT come from that probability %distribution. if (e == 0) Output = 'Lead Time Demand Data for Spare Part fits a Gamma Distribution'; elseif (e == 1) Output = 'Lead Time Demand Data for Spare Part does not fit a Gamma Distribution'; end

Page-91

Page 96: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

if (a == 1) Output1 = [Output, sprintf('\nLead Time Demand Data for Spare Part does not fit a Normal Distribution')]; elseif (a == 0) Output1 = [Output, sprintf('\nLead Time Demand Data for Spare Part fits a Normal Distribution')]; end %Output KS test message msgbox(Output4,'Which Distribution Fits Data best'); %Ask the user for Economic Order Quantity Data prompt = {'Enter Distribution you think fits best:','Enter the Holding Cost for Spare Part:','Enter the Average Ordering Cost:','Enter the Yearly Demand for Spare Part:'}; dlg_title = 'Inputs for EOQ and Reorder Point Calculation'; num_lines = 1; answer = inputdlg(prompt,dlg_title,num_lines); %Error Checking to see if the user entered the correct data in order to %determine the EOQ quantity. errorCheck =0; while (errorCheck ~=1) %Tests to see if the user entered a distribution if (strcmpi(answer(1),'normal')==1 || strcmpi(answer(1),'weibull')==1 || strcmpi(answer(1),'exponential')==1 || strcmpi(answer(1),'lognormal')==1 || strcmpi(answer(1),'gamma')==1)&& isempty(answer(1))~=1; %Tests to see if the user entered an appropriate holding cost if(isnumeric(str2double(answer(2)))==1 && isempty(answer(2))~=1 && str2double(answer(2))>=0) %Tests to see if the user entered an appropriate ordering cost if(isnumeric(str2double(answer(3)))==1 && isempty(answer(3))~=1 && str2double(answer(3))>=0) %Tests to see if the user entered an appropriate yearly %demand if(isnumeric(str2double(answer(4)))==1 && isempty(answer(4))~=1 && str2double(answer(4))>=0) errorCheck=1; else answer = inputdlg(prompt,dlg_title,num_lines); end else answer = inputdlg(prompt,dlg_title,num_lines); end else answer = inputdlg(prompt,dlg_title,num_lines); end

Page-92

Page 97: Optimizing Unilever’s Capital and Emergency Spare Stock ...s3.amazonaws.com/zanran_storage/€¦ · Optimizing Unilever’s Capital and . Emergency Spare Stock Sizes . By: Kenneth

Page-93

else answer = inputdlg(prompt,dlg_title,num_lines); end end %EOQ quantity Q = sqrt((2*str2double(answer(3))*str2double(answer(4)))/str2double(answer(2))); %Dekker's Rounding technique FloorQ = floor(Q); if FloorQ == 0 Q = 1; elseif FloorQ ~= 0 && ((Q/FloorQ) <= ((FloorQ+1)/Q)) Q = FloorQ; else Q = FloorQ + 1; end %Determine the re-order point using Dekker's technique if strcmpi(answer(1),'normal')==1 k=0; %k = the variable s (list of possible reorder points) in the formula while(normcdf(k,Normal_mu,Normal_sigma)~=1) k = k + 1; end l=0; %l = the variable x in the formula while(normpdf(l,Normal_mu,Normal_sigma)>0) l = l + 1; end Sum=0; for m=0:1:k for n=m:1:l Sum = Sum + (n-m) * normpdf(n,Normal_mu,Normal_sigma); end if ((1 - Sum/Q) > 0.90) %Fill Rate is 90% according to Antonio Santos break end Sum=0; end %End Normal end display(['You should put in a new order for ' num2str(Q) ' part(s) when there is ' num2str(m) ' spare(s) remaining in inventory']);


Recommended