+ All Categories
Home > Documents > Optimum stratification for allocation proportional to strata totals for simple random sampling...

Optimum stratification for allocation proportional to strata totals for simple random sampling...

Date post: 16-Dec-2016
Category:
Upload: ravindra
View: 213 times
Download: 0 times
Share this document with a friend
16
This article was downloaded by: [Tulane University] On: 11 September 2013, At: 05:36 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Communications in Statistics - Theory and Methods Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsta20 Optimum stratification for allocation proportional to strata totals for simple random sampling scheme Surendar S. Yadava a & Ravindra Singh b a Department of Sociology, Michigan State University, East Lansing, Michigan, 48823, U.S.A b Visiting Associate Professor, Washington State University, Pullman, 99164, Washington Published online: 27 Jun 2007. To cite this article: Surendar S. Yadava & Ravindra Singh (1984) Optimum stratification for allocation proportional to strata totals for simple random sampling scheme, Communications in Statistics - Theory and Methods, 13:22, 2793-2806 To link to this article: http://dx.doi.org/10.1080/03610928408828861 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or
Transcript
Page 1: Optimum stratification for allocation proportional to strata totals for simple random sampling scheme

This article was downloaded by: [Tulane University]On: 11 September 2013, At: 05:36Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office:Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Communications in Statistics - Theory andMethodsPublication details, including instructions for authors and subscriptioninformation:http://www.tandfonline.com/loi/lsta20

Optimum stratification for allocationproportional to strata totals for simplerandom sampling schemeSurendar S. Yadava a & Ravindra Singh ba Department of Sociology, Michigan State University, East Lansing,Michigan, 48823, U.S.Ab Visiting Associate Professor, Washington State University, Pullman, 99164,WashingtonPublished online: 27 Jun 2007.

To cite this article: Surendar S. Yadava & Ravindra Singh (1984) Optimum stratification for allocationproportional to strata totals for simple random sampling scheme, Communications in Statistics - Theory andMethods, 13:22, 2793-2806

To link to this article: http://dx.doi.org/10.1080/03610928408828861

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”)contained in the publications on our platform. However, Taylor & Francis, our agents, and ourlicensors make no representations or warranties whatsoever as to the accuracy, completeness,or suitability for any purpose of the Content. Any opinions and views expressed in thispublication are the opinions and views of the authors, and are not the views of or endorsedby Taylor & Francis. The accuracy of the Content should not be relied upon and should beindependently verified with primary sources of information. Taylor and Francis shall not be liablefor any losses, actions, claims, proceedings, demands, costs, expenses, damages, and otherliabilities whatsoever or howsoever caused arising directly or indirectly in connection with, inrelation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantialor systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or

Page 2: Optimum stratification for allocation proportional to strata totals for simple random sampling scheme

distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and usecan be found at http://www.tandfonline.com/page/terms-and-conditions

Dow

nloa

ded

by [

Tul

ane

Uni

vers

ity]

at 0

5:36

11

Sept

embe

r 20

13

Page 3: Optimum stratification for allocation proportional to strata totals for simple random sampling scheme

COMMUN. STATIST.-THEOR. METH., 1 3 ( 2 2 ) , 2793-2806 ( 1984 )

OPTIMUM STRATIFICATION FOR ALLOCATION PROPORTIONAL TO STRATA TOTALS FOR

SIMPLE RANDOM SAMPLING SCHEME

Surendar S. Yadava Ravindra Singh Department of S o c i a l ogy V i s i t i n g Assoc ia te Pro fessor M ich igan S t a t e U n i v e r s i t y Washington S t a t e U n i v e r s i t y Eas t Lansing, M ich igan 48823 Pul lrnan, Washington 99164 U.S.A.

K e y Words and P h r a s e s : m i n i m a l e q u a t i o n s ; strata b o u n d a r i e s ; l i m i t i n g l o w e r bound ; series e x p a n s i o n s .

ABSTRAC'I

The paper cons iders t h e problem o f f i n d i n g optimum s t r a t a

boundar ies when sample s i z e s t o d i f f e r e n t s t r a t a a r e a l l o c a t e d i n

p r o p o r t i o n t o t h e s t r a t a t o t a l s o f t h e a u x i l i a r y v a r i a b l e . T h i s

v a r i a b l e i s a l s o t r e a t e d as t h e s t r a t i f i c a t i o n v a r i a b l e . Min imal

equa t ions , s o l u t i o n s t o which p r o v i d e t h e optimum boundar ies, have

been ob ta ined . Because o f t h e i m p l i c i t n a t u r e o f these equa t ions

t h e i r e x a c t s o l u t i o n s cannot be ob ta ined . There fo re , methods o f

o b t a i n i n g t h e i r approx imate s o l u t i o n s have been presented. A l i m -

i t i n g express ion f o r t h e v a r i a n c e o f t h e e s t i m a t e o f p o p u l a t i o n

mean, as t h e number o f s t r a t a tend t o become l a r g e , has a l s o been

ob ta ined .

2793

Copyright @ 1984 by Marcel Dekker, Inc.

Dow

nloa

ded

by [

Tul

ane

Uni

vers

ity]

at 0

5:36

11

Sept

embe

r 20

13

Page 4: Optimum stratification for allocation proportional to strata totals for simple random sampling scheme

2794 YADAVA AND SINGH

INTRODUCTION

L e t t h e p o p u l a t i o n under c o n s i d e r a t i o n be d i v i d e d i n t o L s t r a t a

and a s t r a t i f i e d s imp le random sample o f s i z e n be drawn f rom i t ,

t h e sample s i z e i n t h e h - t h s t r a t u m be ing nh so t h a t tnh=n. If y i s

t h e v a r i a b l e under s tudy, an unbiased e s t i m a t e o f p o p u l a t i o n mean i s

g iven by

Where Wh i s t h e p r o p o r t i o n o f u n i t s i n t h e h - t h s t r a t u m and yh i s

t h e s imp le sample mean based on nh u n i t s drawn f rom t h a t s t ra tum.

I f t h e f i n i t e p o p u l a t i o n c o r r e c t i o n s can be i g n o r e d i n each o f

t h e s t r a t a , t h e va r iance o f t h e e s t i m a t o r yst i s g i v e n b y

The var iance i n (1 .2) depends, i n any p a r t i c u l a r case, on t h e

s t r a t a boundar ies and t h e method o f sample a l l o c a t i o n . The problem

o f de te rmin ing optimum s t r a t a boundar ies on t h e s t u d y v a r i a b l e y

and f o r t h e p r o p o r t i o n a l and Neyman a l l o c a t i o n methods was f i r s t

considered by Dalenius (1950) who ob ta ined t h e minimal equat ions

which gave optimum s t r a t a boundar ies as t h e i r s o l u t i o n s . As these

equa t ions were i m p l i c i t i n n a t u r e t h e i r exac t s o l u t i o n s c o u l d n o t

be ob ta ined . Var ious workers have, t h e r e f o r e , appempted t o f i n d

t h e i r approximate s o l u t i o n s (Dal en ius and Gurney, 1951; Aoyama,

1954; Dalenius and Hodges, 1959; Ekman, 1959a, 1959b, 1960; Durb in,

1959; Mahalanobis, 1952; Singh, 1975a; S e t h i , 1963). As t h e

optimum s t r a t i f i c a t i o n on t h e s tudy v a r i a b l e i s n o t f e a s i b l e i n

p r a c t i c e , t h e problem o f such a s t r a t i f i c a t i o n on t h e a u x i l i a r y

v a r i a b l e was cons idered by Taga (1967), Singh and Sukhatme (1969,

1972, 1973), Singh and Parkash (1975) , Singh (1971, 1975b, 1 9 7 5 ~ )

and S e r f 1 i n g (1968) f o r d i f f e r e n t sample a1 l o c a t i o n methods.

I n s i t u a t i o n s where t h e c o e f f i c i e n t o f v a r i a t i o n does n o t d i f f e r

v e r y much f rom s t r a t u m t o s t ra tum t h e o p t i m a l a l l o c a t i o n o f t h e

Dow

nloa

ded

by [

Tul

ane

Uni

vers

ity]

at 0

5:36

11

Sept

embe

r 20

13

Page 5: Optimum stratification for allocation proportional to strata totals for simple random sampling scheme

OPTIMUM STRATIFICATION 2795

sample t o d i f f e r e n t s t r a t a reduces t o t h e a l l o c a t i o n p r o p o r t i o n a l t o

s t r a t a t o t a l s i . e . , nh a WnYh, h = l , 2, . . . . , L . Th is s i t u a t i o n i s

aga in l i k e l y t o a r i s e when s t r a t i f i c a t i o n i s r e s o t e d t o f o r opera-

t i o n a l convenience (Murthy, 1967). Hansen, Hurwi t z and Madow (1953)

have demonstrated t h a t t h i s procedure o f sample a1 l o c a t i o n i s a l s o

usefu l i n s i t u a t i o n s where a s l i g h t m o d i f i c a t i o n o f t h e s t r a t a

boundar ies does n o t d i s t u r b a p p r e c i a b l y the s t r a t a sampl i n g var iances

However, i n p r a c t i c e t h e a l l o c a t i o n has t o be i n p r o p o r t i o n t o t h e

s t r a t a t o t a l s o f a s u i t a b l y chosen a u x i l i a r y v a r i a b l e x (which w i l l

a l s o be t r e a t e d as s t r a t i f i c a t i o n v a r i a b l e i n t h i s paper) as t h e

va lues o f t h e e s t i m a t i o n v a r i a b l e y w i l l n o t be a v a i l a b l e . The

p resen t paper cons iders t h e problem o f f i n d i n s optimum s t r a t a bound-

a r i e s (OSB) f o r t h i s a l l o c a t i o n method. Min imal equat ions g i v i n g

t h e OSB have been ob ta ined i n s e c t i o n 2. As usual these equat ions

a r e imp1 i c i t i n n a t u r e and cannot be so lved e x a c t l y , h t e methods o f

o b t a i n i n g approx imate ly optimum s t r a t a boundar ies (AOSB) , have been

d e r i v e d i n s e c t i o n 3. A lso , t h e l i m i t i n g lower bound f o r t h e v a r -

i cance o f t h e e s t i m a t e o f p o p u l a t i o n mean, when t h e number o f s t r a t a

L-, has been o b t a i n e d i n s e c t i o n 4. I t i s observed t h a t u n l i k e t h e

s t r a t i f i c a t i o n on t h e s tudy v a r i a b l e , t h e v a r i a n c e i n t h i s case does

n o t reduce t o zero.

MINIMAL EQUATIONS

When t h e a l l o c a t i o n i n d i f f e r e n t s t r a t a i s p r o p o r t i o n a l t o t h e

s t r a t a t o t a l s f o r t h e a u x i l i a r j v a r i a b l e x, we have

nh = ~ w h u h x / u x ; (h=1,2,. . . ,L), . . . . (2 .1 )

where Wh i s t h e p r o p o r t i o n o f p o p u l a t i o n u n i t s i n t h e h - t h s t ra tum,

phx i s t h e mean f o r x i n t h a t s t r a t u m and px denotes t h e whole

p o p u l a t i o n mean f o r t h e v a r i a b l e x.

The v a r i a n c e

sample a l l o c a t i o n

f o r t h e e s t i m a t e o f p o p u l a t i o n mean under t h e

i n (2 .1 ) reduces f rom (1.2) t o

Dow

nloa

ded

by [

Tul

ane

Uni

vers

ity]

at 0

5:36

11

Sept

embe

r 20

13

Page 6: Optimum stratification for allocation proportional to strata totals for simple random sampling scheme

2796 YADAVA AND SINGH

We now assume t h a t t h e f i n i t e p o p u l a t i o n under c o n s i d e r a t i o n

can be t r e a t e d as a s imp le random sample f rom an i n f i n i t e super-

p o p u l a t i o n w i t h t h e same c h a r a c t e r i s t i c s . I n t h e super -popu la t ion ,

l e t t h e e s t i m a t i o n v a r i a b l e y and t h e s t r a t i f i c a t i o n v a r i a b l e x be

r e l a t e d as

where c ( x ) i s a r e a l va lued f u n c t i o n o f x and e i s t h e e r r o r term

such t h a t E(e /x ) = 0 and v (e /x ) = + ( x ) > 0 f o r a l l va lues o f x i n

t h e range (a,b) o f x w i t h (b-a) < m . Under t h i s model we, the re -

f o r e , have ( r e f . Singh and Sukhatme, 1969; page 517)

vhy = 'Ihc

and

2 where phc and oh, a r e t h e expected v a l u e and v a r i a n c e f o r t h e

f u n c t i o n c ( x ) i n t h e h - t h s t ra tum, h=1,2,. . . . ,L.

Also, i f f ( x ) denotes t h e marg inal d e n s i t y f u n c t i o n f o r t h e

s t r a t i f i c a t i o n v a r i a b l e x, then we have

and

where ( X ~ - ~ , X ~ ) a r e t h e l o w e r and upper boundar ies f o r t h e h - t h

s t ra tum.

From (2.2) and (2.4) we g e t t h e express ion f o r t h e expected

v a r i a n c e o f t h e e s t i m a t o r & t i n t h e super -popu la t ion , as

Dow

nloa

ded

by [

Tul

ane

Uni

vers

ity]

at 0

5:36

11

Sept

embe

r 20

13

Page 7: Optimum stratification for allocation proportional to strata totals for simple random sampling scheme

OPTIMUM STR4TIFICATION

For o b t a i n i n g t h e optimum s t r a t a boundar ies (OSB) which c o r r e s -

pond t o t h e minimum of v a r i a n c e i n (2 .6 ) we p a r t i a l l y d i f f e r e n t i a t e

t h e v a r i a n c e f u n c t i o n w i t h r e s p e c t t o xh(h=l,2,. . . . ,L-1) and equate

t h e d e r i v a t i v e s t o zero. T h i s g i v e s us t h e min imal equat ions,

s o l u t i o n s t o which correspond t o t h e OSB.

I n t h e v a r i a n c e express ion of t h e e s t i m a t o r YSt, t h e c o e f f i c i e n t "x - i s c o n s t a n t and, the re fo re , t h e m i n i m i z a t i o n o f V ( G t ) i s n e q u i v a l e n t t o t h e m i n i m i z a t i o n o f

On d i f f e r e n t i a t i n g n (xh) p a r t i a l l y w i t h r e s p e c t t o xh we o b t a i n

aWh aw. Wh q+ (h ) - + Wi $I+ ( i ) 4- = 0 ,.. . (2.7) axh axh

where i = h + l and (h ) = (oh:+uhm ) /vhx.

Now u t i l i z i n g t h e d e f i n i t i o n s o f Wh, uhc, aEc e t c ; i n (2.5) i t

can be e a s i l y v e r i f i e d t h a t we have

aWi w i t h s i m i l a r express ions f o r ( i ) - and W fi)

axh i axh '

Thus f rom (2 .7 ) and (2.8) we g e t t h e min imal equat ions as

Dow

nloa

ded

by [

Tul

ane

Uni

vers

ity]

at 0

5:36

11

Sept

embe

r 20

13

Page 8: Optimum stratification for allocation proportional to strata totals for simple random sampling scheme

YADAVA AND SINGH

The system of equat ions i n (2 .9 ) i s t h e f u n c t i o n o f s t r a t a

parameters which themselves a r e f u n c t i o n s o f t h e s o l u t i o n s of these

equa t ions , Due t o t h e i m p l i c i t n a t u r e o f these equat ions, i t i s

n o t easy t o f i n d t h e i r exac t s o l u t i o n s . I t becomes, t h e r e f o r e ,

necessary t o o b t a i n approx imate s o l u t i o n s .

APPROXIMATE SOLUTIONS TO THE MINIMAL EQUATIONS

To f i n d t h e approc imate s o l u t i o n s t o t h e minimal equa t ions i n

(2 .9) we s h a l l assume t h e e x i s t e n c e o f v a r i o u s p a r t i a l d e r i v a t i v e s

o f f u n c t i o n s f ( x ) , $ ( x ) and c ( x ) appear ing i n t h i s paper and then

o b t a i n t h e s e r i e s expansions o f t h i s system o f equat ions about t h e

p o i n t xh, t h e common boundary o f t h e h - t h and ( h + l ) - t h s t r a t a . The

expansions f o r t h e r i g h t and l e f t - h a n d s ides o f t h e equa t ion (2 .9 )

a r e o b t a i n e d by u s i n g t h e r e l a t i o n s (3 .1 ) through ( 3 . 5 ) i n Singh and

Sukhatme (1969) . For t h e expansion o f t h e r i g h t - h a n d s i d e abou t t h e

p o i n t xh, (y ,x) i n t h e above r e l a t i o n s ( 3 . 1 ) t o (3 .5 ) i s rep laced

by (xh,xhtl) w h i l e f o r t h e l e f t - h a n d s i d e we r e p l a c e (y ,x) by

(xh-lyxh)' We f i r s t c o n s i d e r t h e expansion o f t h e r i g h t - h a n d s i d e o f (2 .9 ) .

L e t ki = X ~ + ~ - X ~ . Then we have on s i m p l i f i c a t i o n

k: 2 ( c ( x h ) - ) = - c ' 2 + c ' f ' t 2 c ' c " k . + 1 6c12 f f U + l 0 f f ' c ' c t

1 c 3f

Dow

nloa

ded

by [

Tul

ane

Uni

vers

ity]

at 0

5:36

11

Sept

embe

r 20

13

Page 9: Optimum stratification for allocation proportional to strata totals for simple random sampling scheme

OPTIMUM STRATIFICATION

- f f L , $ ' 3 4 ki +mi ,... ( 3 . 3 )

and

where i n t h e express ions w i t h i n t h e b r a c k e t s on t h e r i g h t - h a n d

s ides o f t h e equa t ions (3 .1 ) t o ( 3 . 4 ) , t h e v a r i o u s f u n c t i o n s and

t h e i r d e r i v a t i v e s a r e eva lua ted a t t h e p o i n t x h '

Now on u s i n g t h e r e l a t i o n s (3 .1 ) t o (3 .4) a long w i t h ( 2 . 9 )

one g e t s on s i m p l i f i c a t i o n t h e s e r i e s expansion o f t h e r i g h t - h a n d

s i d e o f t h e min imal equat ions as

R.H.S. = - x I t ( x h 2 C ' 2 + $ ' x - + ) k . 2 + xh3( f ' c ' 2 + 2 f ' c " ) + x h 2 ( f I $ '

h h 1

and s i m i l a r l y t h e expansion of t h e l e f t - h a n d s i d e o f (2 .9 ) i s seen

t o be

@ h h ) L.H.S. = - 2 2 2 Xh3(f ' c 4 2 f ' c I ' )+xh2( f I,$ '

Xh 1+(xh C ' +I$ 'xh-,$)k h -

Dow

nloa

ded

by [

Tul

ane

Uni

vers

ity]

at 0

5:36

11

Sept

embe

r 20

13

Page 10: Optimum stratification for allocation proportional to strata totals for simple random sampling scheme

YADAVA AND SINGH 2800

Now l e t

and 2 2 Xh 3 ( f y 2 + 2 f l& ' )+x , ( f ' ( ' + f + " - f c l )-xh(3fm1+f '$)+3f+ B3 =

3x;

There fo re , f rom (3.5) t o (3 .8 ) t h e min imal equat ions (2.9)

can be p u t as

th2 B ~ - B ~ - ~ ~ + o ( ~ [ ) = ki2 B ~ + B ~ . ~ ~ + o ( ~ ~ ~ ) ,

which i s e q u i v a l e n t t o

. . . (3.9)

Now proceeding on t h e l i n e s o f Singh and Sukhatme (1969) i t can

be e a s i l y v e r i f i e d t h a t t h e system o f equat ions (2 .9 ) o r equ iv -

a l e n t l y t h e system (3.9) can a l s o be p u t as

which i s aga in e q u i v a l e n t t o

X 3 2 5 3 ~ 2 ( ~ ) dx ( l + O ( k h ) ) = ! '"*' 3 J B 2 ( ~ ) d x 3 ( l + ~ ( k : ) )

Xh- 1 h

( i = h + l , h = l , 2,. . . ,L-1) ,. . .(3.10)

There fo re , i f we have a l a r g e number o f s t r a t a so t h a t t h e

s t r a t a w i d t h s { k h l a r e smal l and t h e i r h i g h e r powers i n t h e

expansion can be neglected, then t h e systems o f equat ions i n (3 .10)

can be approximated by

Dow

nloa

ded

by [

Tul

ane

Uni

vers

ity]

at 0

5:36

11

Sept

embe

r 20

13

Page 11: Optimum stratification for allocation proportional to strata totals for simple random sampling scheme

OPTIMJM STRATIFICATION

fxh 3JB2(x) dx = cons tan t (say c ) , ...( 3.11) X h - l

where b

c = la3JB2(x ) dx/L,. . . (3 .12)

I t may be noted here t h a t i n a r r i v i n g a t (3 .11) f rom (3 .10) 5

t h e terms o f o r d e r o(m ) , m = sup. (kh ) , have been neg lec ted on (a,b)

b o t h s ides o f (3 .10) .

For de te rmin ing approx imate s o l u t i o n s t o t h e min imal equat ions

i n ( 2 . 9 ) i n p r a c t i c e , one shou ld e v a l u a t e t h e va lue o f c o n s t a n t c

from (3.12) and then determine x l , t h e upper boundary o f t h e

f i r s t s t ra tum, from t h e r e l a t i o n (3.11) which w i l l now reduce t o

X1 / a 3 J B 2 ( ~ ) dx = c,. . . (3 .13)

Once xl i s determined from (3 .13) , r e l a t i o n (3.11) can be used

a g a i n w i t h h = 2 t o de te rmine x2and so on. T h i s process w i l l

t hen f i n a l l y p r o v i d e us t h e approx imate ly optimum s t r a t a

boundar ies (AOSB) f o r t h e a l l o c a t i o n method b e i n g considered.

Thus, we g e t t h e f o l l o w i n g theorem:

THEOREM 3.1: I f t h e f u n c t i o n

i s bounded and possesses f i r s t two d e r i v a t i v e s f o r a l l x i n (a,b),

then f o r a g i v e n va lue o f L t a k i n g equal i n t e r v a l s on t h e c u m u ~ ? t i v e

o f 3JB2(x) y i e l d s approx imate ly optimum s t r a t a boundar ies.

L I M I T EXPRESSION FOR THE VARIANCE V ( G t )

The express ion f o r t h e v a r i a n c e V(Yst) t h a t we s h a l l o b t a i n

i n t h i s s e c t i o n i s p a r t i c u l a r l y i m p o r t a n t i n approx imate ly

otimum s t r a t i f i c a t i o n on t h e a u x i l i a r y v a r i a b l e . T h i s express ion

g i v e s an i n s i g h t i n t o t h e manner i n which t h e v a r i a n c e o f t h e

e s t i m a t e Fst i s reduced w i t h t h e i n c r e a s e i n t h e number o f s t r a t a

Dow

nloa

ded

by [

Tul

ane

Uni

vers

ity]

at 0

5:36

11

Sept

embe

r 20

13

Page 12: Optimum stratification for allocation proportional to strata totals for simple random sampling scheme

2802 YADAVA AND SINGH

U n l i k e s t r a t i f i c a t i o n on t h e s tudy v a r i a b l e t h e va r iance v(<,),

i n t h i s case, does n o t tend t o zero as L*. For t h i s purpose we p rove t h e f o l l o w i n g lemma:

LEMMA 4 .1 : - I f (xn,xhtl) a r e t h e boundar ies o f t h e i - t h s t ra tum

and ki = xhtl - xh, then

where B2(x) i s as d e f i n e d i n ( 3 . 7 ) .

PROOF:- Using t h e s e r i e s expansions i n powers o f i n t e r v a l w i d t h

ki f o r Wi, vim and f rom t h e r e l a t i o n s (3 .1 ) t o (3 .5) o f Singh

and Sukhatme (1969) one ge ts on simp1 i f i c a t i o n

S i m i l a r l y t h e express ion f o r t h e second term on t h e l e f t - h a n d

s i d e o f (4 .1 ) i n powers o f i n t e r v a l w i d t h ki can be o b t a i n e d by

making use o f T a y l o r ' s theorem. Thus, we have

Dow

nloa

ded

by [

Tul

ane

Uni

vers

ity]

at 0

5:36

11

Sept

embe

r 20

13

Page 13: Optimum stratification for allocation proportional to strata totals for simple random sampling scheme

OPTIMUM STRATIFICATION 2 803

A f t e r s u b t r a c t i n g t h e e x p r e s s i o n s f o r v a r i o u s d e r i v a t i v e s

and on s i m p l i f y i n g , one f i n a l l y g e t s

On s u b t r a c t i n g (4 .3 ) f r o m (4 .2) we g e t

k . " + f1m)+3 fm~ 1 + o(ki4) 2fxh 3 D

ownl

oade

d by

[T

ulan

e U

nive

rsity

] at

05:

36 1

1 Se

ptem

ber

2013

Page 14: Optimum stratification for allocation proportional to strata totals for simple random sampling scheme

2804 YADAVA AND S I N G H

T h i s completes t h e proof of t h e lemma.

When t h e a r e o b t a i n e d f rom t h e Cum ~ ~ ( x ) r u l e , then

we have,

Therefore from Lemma 4 . 1 and r e l a t i o n ( 4 3) . t h e expression

f o r t h e v a r i a n c e V(Yst) can be appro xi mat el^ Pu t as

where

and

u x b 3 6 = ( l a 3JB2(x)dx)

i t can be e a s i l y seen t h a t i n o b t a i n i n g t h e express ion ( 4 a 6 ) 4

for t h e var iance of t h e e s t i m a t o r ht. t h e terms o f order

have been neg lec ted i n t h e second term On t h e r i g h t - h a n d side.

From (4.5) i t can be c l e a r l y observed t h a t t h e v a r i a n c e of the

extimator i n case of optimum s t r a t i f i c a t i o n on t h e a u x i l i a r y

v a r i a b l e x, does n o t reduce t o Zero as La.

T h i s g ives t h e f o l l o w i n g theorum f o r t h e case of sample

a l l o c a t i o n p r o p o t i o n a l t o s t r a t a t o t a l s .

Dow

nloa

ded

by [

Tul

ane

Uni

vers

ity]

at 0

5:36

11

Sept

embe

r 20

13

Page 15: Optimum stratification for allocation proportional to strata totals for simple random sampling scheme

OPTIMUM STRATIFICATION 2805

THEOREM 4.1:- For t h e AOSB o b t a i n e d form t h e cum 3JB2(x) r u l e , we

have

Tim v(Yst) = y /n, L-xo

where i s as d e f i n e d i n (4 .7 ) .

Th is o b s e r v a t i o n i s c o n t r a r y t o t h e one i n case o f s t r a t i f i c a t i o n

on t h e s t u d y v a r i a b l e where t h e v a r i a n c e V(Yst) tends t o zero as

L* . The r e l a t i o n (4.6) g i v e s t h e e x a c t manner i n which t h e

va r iance v(Yst) w i l l approach y / n as t h e v a l u e o f L i s inc reased .

BIBLIOGRAPHY

Aoyama, H., (1954). A s t u d y o f s t r a t i f i e d random sampl ing. Ann. I n s t . S t a t . Math., 6, 1-36.

Da len ius , T., (1950) . The problem o f optimum s t r a t i f i c a t i o n - I . Skand. A k t . , 33, 203-213.

Dalenius, T. and M.. Gurney, (1951) . The problem o f optimum s t r a t i f i c d t i o n - 1 1 , Skand. Akt . , 34, 133-148.

De len ius , T. and J.L. Hodges, (1959) . Minimum v a r i a n c e s t r a t i f i c a - t i o n , Jour . Amer. S t a t . Assoc., 54, 88-101.

Durb in, J., (1959) . Review o f SAMPLING I N SWEDEN, Jour . Roy. S t a t . SOC. ( A ) , 122-246-248.

Ekman, G., (1959a). Approximate express ions f o r t h e c o n d i t i o n a l mean and v a r i a n c e o v e r smal l i n t e r v a l s o f a cont inuous d i s t r i b u t i o n . Ann. Math. S t a t . , 30, 1131-1134.

Ekman, G . , ( l 9 5 9 b ) . A l i m i t theorem i n connec t ion w i t h s t r a t i f i e d samp l ing - I . Skand. Akt . , 42, 208-213.

Ekman, G . , (1960) . A l i m i t theorem i n connec t ion w i t h s t r a t i f i e d sampling-11. Skand. Ak t . , 43, 1-16.

Hansen, M.L., W.N. H u r w i t z and W.G. Madow, (1953) . Sam l e Surve Methods and Theory, Vol . I and 11. New York: John ? l e y and Sons, I n c .

--R---Y Mahalanobis, P .C . , (1952) . Some aspects o f t h e des ign o f sample

surveys, Sankhya, 12, 1-17.

Dow

nloa

ded

by [

Tul

ane

Uni

vers

ity]

at 0

5:36

11

Sept

embe

r 20

13

Page 16: Optimum stratification for allocation proportional to strata totals for simple random sampling scheme

2806 YADAVA AND S I N G H

Murthy, M.N., (1967) . Sampling Theory and Methods. C a l c u t t a : S t a t i s t i c a l P u b l i s h i n g S o c i e t y .

Ser f1 i n g , R. J., (1968) . Approx imate ly optimum s t r a t i f i c a t i o n , Jour . Amer. S t a t . Assoc., 63, 1298-1309.

S e t h i , V . K . , (1963) . A n o t e on optimum s t r a t i f i c a t i o n o f popula- t i o n f o r e s t i m a t i n g t h e p o p u l a t i o n means. Aus t . Jour . S t a t . , 5, 20-23.

Singh, R., (1971) . Approx imate ly optimum s t r a t i f i c a t i o n on t h e a u ~ i l i a r y v a r i a b l e . Jour . Amer. S t a t . Assoc., 66, 829-833.

Singh, R., (1975a) . On optimum s t r a t i f i c a t i o n f o r p r o p o r t i o n a l a l l o c a t i o n . Sankhya(c), 37, 109-115.

Singh, R., (1975b) . An a1 t e r n a t i v e method o f s t r a t i f i c a t i o n on t h e a u x i l i a r y v a r i a b l e . Sankhya(c), 37, 100-108.

Singh, R., ( 1 9 7 5 ~ ) . A n o t e on optimum s t r a t i f i c a t i o n i n sampl i n g w i t h v a r y i n g p r o b a b i l i t i e s . Aust . J o u r . S t a t . , 27, 12-21.

Singh, R. and 0. Parkash, (1975) . Optimum s t r a t i f i c a t i o n f o r equal a l l o c a t i o n . Ann. I n s t . S t a t . M a , 27, 273-280.

Singh, R . and B . V . Sukhatme, (1969) . Optimum s t r a t i f i c a t i o n , I n s t . S t a t . Math., 21, 515-528.

Singh, R . and B . V . Sukhatme, (1972) . Optinium s t r a t i f i c a t i o n i n sampling w i t h v a r y i n g p r o b a b i l i t i e s . Ann. I n s t . S t a t . Math., 24, 485-494.

Singh, R. and B.V. Sukhatme, (1973) . Optimum s t r a t i f i c a t i o n w i t h r a t i o and r e g r e s s i o n methods o f e s t i m a t i o n . Ann. I n s t . S t a t . Math., 25, 627-633.

Taga, Y . , (1967). On optimum s t r a t i f i c a t i o n f o r t h e o b j e c t i v e v a r i a b l e based on concomitant v a r i a b l e . Ann. I n s t . S t a t . Math., 19, 101-130.

R e c e i v e d A p r i l , 1 9 8 4 ; R e v i s e d May, 1384 and R e t y p e d A u g u s t , 1 9 8 4 .

Recommended by S. Zacks, S t a t e L J n i v e r s i t y o f New York a t B i n g h a m t o n , NY

Dow

nloa

ded

by [

Tul

ane

Uni

vers

ity]

at 0

5:36

11

Sept

embe

r 20

13


Recommended