+ All Categories
Home > Documents > Orbital Mechanic: 4. Position and Velocity as a Function of Time

Orbital Mechanic: 4. Position and Velocity as a Function of Time

Date post: 13-Jan-2015
Category:
Upload: champs-elysee-roldan
View: 2,739 times
Download: 5 times
Share this document with a friend
Description:
 
Popular Tags:
51
4 Position and Velocity as a Function of Time 4.1 General Relationships In this chapter, we will discuss what is known historically as "Kepler's problem." Succinctly stated, this problem is one of finding the state (position and velocity) of an object in orbit at a specified time t, given the state at some reference time to. For example, let us assume that, at the reference (or initial condition) time, the object is not necessarily at its perifocal point. That is, we will assume the state at to to be available in the following terms: a = semimajor axis e = eccentricity i = inclination f2 -- right ascension of the ascending node co = argument of perifocal point 0 = true anomaly (not zero in the present discussion) To fix ideas firmly, let us review what these terms signify. First, a and e specify the size and shape of the orbit as illustrated in Fig. 4.1. The semiminor axis b is related to the semimajor axis a by the relationship of b=V a -c 2 where c=ae or b = a~/1 - e 2 Second, the orientation of the orbit is specified by i, f2, and co, i.e., inclination, right ascension of the ascending node, and argument of perifocus, respectively, as illustrated in Fig. 4.2. Third, the position of the object is specified by the sixth term, 0, true anomaly, which is measured in the orbit plane from the perifocal axis, as shown in Fig. 4.3. In our discussion, the object is not at perifocus and has a nonzero value for 00. The problem at hand is to find the position 0 corresponding to time t, which may be before or after the reference time of to. Note that the other terms, a - co, do not change over this time. Such an orbit is called a "Keplerian" orbit, where the only influence experienced by the object is the gravitational force of the attracting body represented by a spherical potential field. The strength of a spherical field is a function only of the distance from the center of the attracting body. 35
Transcript
Page 1: Orbital Mechanic: 4. Position and Velocity as a Function of Time

4 Position and Velocity as a Function of Time

4.1 General Relationships In this chapter, we will discuss what is known historically as "Kepler 's problem."

Succinctly stated, this problem is one of finding the state (position and velocity) of an object in orbit at a specified time t, given the state at some reference time to.

For example, let us assume that, at the reference (or initial condition) time, the object is not necessarily at its perifocal point. That is, we will assume the state at to to be available in the following terms:

a = semimajor axis e = eccentricity i = inclination f2 -- right ascension of the ascending node co = argument of perifocal point 0 = true anomaly (not zero in the present discussion)

To fix ideas firmly, let us review what these terms signify. First, a and e specify the size and shape of the orbit as illustrated in Fig. 4.1. The semiminor axis b is related to the semimajor axis a by the relationship of

b=V a -c 2

where

c = a e

o r

b = a~/1 - e 2

Second, the orientation of the orbit is specified by i, f2, and co, i.e., inclination, right ascension of the ascending node, and argument of perifocus, respectively, as illustrated in Fig. 4.2.

Third, the position of the object is specified by the sixth term, 0, true anomaly, which is measured in the orbit plane from the perifocal axis, as shown in Fig. 4.3. In our discussion, the object is not at perifocus and has a nonzero value for 00.

The problem at hand is to find the position 0 corresponding to time t, which may be before or after the reference time of to. Note that the other terms, a - co, do not change over this time. Such an orbit is called a "Keplerian" orbit, where the only influence experienced by the object is the gravitational force of the attracting body represented by a spherical potential field. The strength of a spherical field is a function only of the distance from the center of the attracting body.

35

Page 2: Orbital Mechanic: 4. Position and Velocity as a Function of Time

l

Seaxisminor _ m i - t, i -major axis,

I /2(k-D ynamlc

Fig. 4.1 Size and shape of an orbit.

PoJ [tion

/ Fig. 4.2 Orientation of an orbit.

36 ORBITAL MECHANICS

Perifocus

Fig. 4.3 Position of true anomaly.

Page 3: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 37

Generally speaking, the potential field is not spherical, and the first five terms, a - co, do change as a function of time. There are, however, many problems that can be solved adequately by considering the orbit to be Keplerian. Non-Keplerian influences like the nonspherical potential, atmospheric drag, lunar and planetary effects, and solar pressure are referred to as "perturbative" effects and are discussed more fully in Chapter 8.

Now, let us solve our problem. First, we must relate the initial position 0o to the initial time to. Equations (4.1-4.3) transform 0o, the true anomaly at to, to its equivalent eccentric anomaly, usually symbolized by the letter Eo.

~/1 - e 2 sin 00 sin E0 -- (4.1)

1 + e cos00

e + cos 00 cos E0 -- (4.2)

1 + e cos00

sin E0 Eo = tan -1 \ c o s E o / (4.3)

Kepler's equation then relates the eccentric anomaly E0 to its mean anomaly m0.

M0 = E0 - e sin E0 (4.4)

Finally, the mean anomaly M0 is related to time to by

Mo ---- n(to - T ) (4.5)

where n is the mean motion and T the time at the last previous perifocus passage. We need not determine the exact value of T but merely note its existence for the time being. The mean motion is determined from

2Jr n = - - (4.6)

P

where

P = 2 z r ~ (4.7)

In Eq. (4.7), a is the semimajor axis that was given at the start of this problem, and /z is the product of the universal gravitation constant and the mass of the attracting body. If the attracting body is the Earth,/z has the value of 398,600.8 km3/s2. You may recognize Eq. (4.7) as Kepler's third law, which states that the square of the orbit period P is proportional to the cube of the orbit's semimajor axis a.

Before proceeding, let us look at these equations from a geometrical view. Figure 4.4 illustrates the relationship of 0 and E as expressed in Eqs. (4.1-4.3). For convenience and to demonstrate generality, the subscript zeros have been temporarily removed in the geometrical discussion.

Page 4: Orbital Mechanic: 4. Position and Velocity as a Function of Time

38 ORBITAL MECHANICS

Auxiliary

y ? P

Elliplical Orbit

Perifocus

Fig. 4.4 Relationship of true anomaly and eccentric anomaly. The circle that just fits snugly outside the elliptical orbit is called the "auxiliary

circle." It has nothing to do with reality but is a convenient concept introduced to relate position and time. From Kepler's second law, we readily see that, just as the motion of point P in the elliptical orbit is not uniform (i.e., it moves faster when near the perifocus and slower in the region of apofocus), the motion of its image P ' in the auxiliary circle is also not uniform.

Now, let us consider another auxiliary circle, as shown in Fig. 4.5. A position P" on this circle is described by a variable called the mean anomaly M, which is an angular quantity measured at the center of the circle from some reference direction. As we shall see in a moment, the motion of p1, is uniform, i.e., it revolves at a constant speed that is not like the motion of P and P ' .

. ~ R e f e r e n c e ~ DLrec~/on

Fig. 4.5 Auxiliary circleofmean anomal~

Page 5: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 39

Now, consider yet another auxiliary circle. This one is like the clock we are accustomed to seeing; i.e., it shows the time measured from some commonly agreed on reference time such as T. Al l three auxiliary circles can be viewed as clocks, the time clock, the M clock, and the E clock, each of which is moving at a different rate.

As time moves uniformly in the time clock, P" in the M clock moves by the relationship of M = n ( t - T ) , where n is a constant determined from Eqs. (4.6) and (4.7). Since n is a constant, we see that the motion of M is also uniform. The M and E clocks are related by Kepler 's equation [Eq. (4.4)]. Clearly, the motion of the E clock is not uniform. It is so only if the eccentricity e is zero, making E = M. In this special case, the auxiliary circle of E is, in fact, the orbit.

We can synchronize these clocks by noting that when P in the elliptical orbit is at its perifocus, namely, at time T, P ' in the E clock is at its zero position. Likewise, P " in the M clock is also at its zero position.

Now, let us return to our problem and see how easy (or difficult) it is to find a position 0 in the orbit that corresponds to some arbitrary time t. First, we must advance the time clock to t. The corresponding point in the M clock is found from

M = n ( t - T ) (4.8)

From Eq. (4.5),

Mo = n(to - T )

so that

M = n ( t - to) ÷ Mo (4.9)

and we have eliminated the need for T. Next, we determine E from M through Kepler 's equation, M = E - e sin E.

Here we encounter our first obstacle. When we used this equation in Eq. (4.4), we were solving for M given E. Now, we are solving for E given M. Since the equation is transcendental, we cannot invert it directly to solve for E. Instead, we must resort to a technique such as the Newton-Raphson successive approximation method to solve for the desired quantity.

Assuming for the moment that E is determined, the final step then is to find 0 (true anomaly) from the following equations:

x/1 - e 2 sin E sin 0 -- (4.10)

1 - e c o s E

cos E - e cos 0 = (4.11)

1 - e cos E

sin 0 ~ (4.12) 0 = tan -1 \ c o s 0 /

Now, let us see how Kepler 's equation is solved.

Page 6: Orbital Mechanic: 4. Position and Velocity as a Function of Time

40 ORBITAL MECHANICS

4.2 Solving Kepler's Equation First, we move mean anomaly M in Eq. (4.4) to the right side of the equation

and define a function f ( E ) , of which we seek the roots at f ( E ) = O.

f ( E ) = E - e s i n E - M (4.13)

Recall from the definitions that when E is negative, so is M and, for negative values of E and M, f ( E ) is an odd function, i.e.,

f ( - E ) = - E + e s inE + M = - f ( E )

We further note that, for 0 < E _< Jr,

(4.14)

f(2nzr - E) = (2nzc - E) - e sin(2nzr - E) - (2nzr - M)

where n = 0, 1, 2 . . . . . and

(4 .15)

f(2n~r - E) = - f ( E ) , 0 < E < zr (4.16)

Thus, for any value of E, we need only consider the solution in the interval of 0 < E < Jr and adjust the results by a sign and multiples of 2zr as appropriate.

Now, consider a Taylor's series expansion about E of

f ( E + AE) = f ( E ) + f ' ( E ) A E + f " ( E ) AE 2 + . . . (4.17) 2~

Discarding second-order (AE) 2 terms and higher, we have

f ( E + AE) = f ( E ) + f ' ( E ) A E (4.18)

which we shall interpret as follows: Assuming that we have E as an approximate root to the function f ( E ) , we wish to find an appropriate A E to drive the function at (E + AE) to its root, namely, zero. With this interpretation, Eq. (4.18) becomes

0 = f ( E ) + f ' ( E ) A E (4.19)

and

f(E) A E = - ~ (4 .20)

if(E)

which is the correction term in Newton-Raphson's method of successive approx- imation. In our case,

f ( E ) = E - e s i n E - M (4.21)

and

f ' ( E ) = 1 - e c o s E

and the general procedure can be outlined as follows:

(4.22)

Page 7: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 41

1) Pick a starting value E0, and let it be Ei = Eo. (Typically M is used as the starting value, i.e., E0 = M.)

2) Calculate f (Ei) = Ei - e sin Ei - M. 3) Calculate f ( E i ) = 1 - e cos Ei. 4) Calculate AEi = - [ f ( E i ) / f ' ( E i ) ] . 5) Determine a new E from Ei+l = Ei -[- A E i . 6) Repeat steps 2-5 until IAEi[ < ~, where e is some constant appropriately

small to correspond to the extent of precision desired in the calculation.

Now that we have outlined a general procedure, we may ask: How efficient is this method of iteration? Before answering this question, we note that the literature on the solution of Kepler's equation is extensive] 5 Some of the motivations for seeking alternative methods of computation are

1) Preventing the solution from diverging. 2) Faster convergence (i.e., fewer number of iterations). 3) An algorithm suitable for machine computation.

Basically, the techniques suggested are Newton-Raphson algorithms with suitable starting values for the iteration. These techniques can be found in the references listed at the end of this section.

For expediency, we will not explore these techniques, except to note that all suffer from some computational difficulties or abnormalities, such as the following:

1) Outright divergence. 2) Convergence to fixed points where, after every n iterations, the same set of

values of the eccentric anomaly is repeated. 3) Strange attractor behavior, where successive estimates of E remain in a

bounded region in an almost random fashion without showing any sign of conver- gence or divergence.

Now, let us see how efficient the procedure outlined in the six steps is in solving Kepler's equation. In order to do this, Fig. 4.6 is shown giving the number of iterations required for the algorithm to converge to I AE[ < 10 -12 (rad). In every case, the starting value is E0 = M, and the number of iterations required is noted for each e-M pair of starting values, where e is varied from 0.01 to 0.99 in steps of 0.02 and M from 0 to 180 deg in steps of 2 deg. The results are tabulated in an e-M plane, where the number of iterations is printed at the appropriate grid point so that, as an aggregate, they present the form of a contour plot.

Clearly, the number of iterations increases as e approaches 1 and M approaches 0. This is so, for f ' ( E ) in Eq. (4.22) is approaching 0. The uppercase letters of A appearing in the left-hand side of the top row of the figure denote those cases that require 10 iterations or more. For example, for M = 10 deg and e = 0.99, convergence occurred after 59 iterations! For M = 18 deg and e = 0.99, the process failed to converge after 100 iterations (denoted by the letter X in the figure).

The situation worsens when the e-M plane is extended at the upper left-hand corner, as shown in Fig. 4.7. Here, e is examined from 0.990 to 0.999 in steps of 0.0005 and M from 0 to 60 deg in steps of 1 deg. The preponderance of A and X suggests the need for an alternative method in solving Kepler's equation, particularly in the region of high e and low M.

Page 8: Orbital Mechanic: 4. Position and Velocity as a Function of Time

42 ORBITAL M E C H A N I C S

E C m 7 c E N . . ,

T R I

I T

^

E I . 3 v

I

~ * + ~ " ~ + ~ + ~ P ~ P P P z P 7 P P P P P P P P ~ | + + + i | | | + | | + | | + | | + | | ~ + ~ | | + + ~ + 5 } ~ + + + + ~ | + | ~ + ~ 4 ~ + ~ + + + | 3 ~?~?~??~???~?7~7~77PP7~7??~¢~~+++~+++++++5$$++$$+~3++~4~4~4+

~ P ~ ? ~ 7 ? ~ P ? ? ? 7 7 7 P ? ? ~ ~ 5 ~ + ~ $ ~ + ~ 5 ~ ~ 4 ~ 4 3 ~ ? ? ~ P 7 P ? P ? ~ ? ? P ~ P ~ ? ? 7 ~ ~ 5 $ ~ + $ + ~ + ~ + + + ~ $ ~ 4 ~ 4 4 ~ ] •••P•P7•?•••?P?•?•PP•P••T?P•••••••••••••$••••••••••$•+•5••••+•$+••+•+•+•+$+•••••••••••••4• ~ 7 ? ? P ? P P ~ 7 ~ P P P P ? P P ? P P ? ~ ~ + ~ + + ~ + ~ + + + + ~ + + + ~ + 4 ~ 4 4 ~ 4 ~ ~ + ~ P P ~ P ~ P ~ ? ? P ~ P ~ ? ~ P ? ~ ~ + ~ + ~ + ~ + ~ + ~ + + + + + + + ~ + ~ + ~ + ~ ~ + ~

~ + + ~ P P ~ P P P 7 ~ + ? ? P ~ ~ ~ + ~ + + + + + + + + ~ + ~ + + + ~ + ~ 4 ~ 3 ~ ~ $ ~ P T 7 ~ ? ? ~ P ? ~ ? ~ P ~ P ? P ~ ~ ~ $ ~ $ ~ 4 ~ 4 4 ~ 4 ~ 4 4 ~ 4 ~ 3 ~

~ P P ? P ~ T ~ P F ~ ~ ~ $ + $ ~ t $ + ~ + + ~ + + + ~ + ~ $ ~ + ~ $ ~ ~

~ ~ ~ ~ ~ + ~ $ s ~ 5 5 ] ~ 4 ~ 4 ~ 4 ~ 4 ~ 4 ~ 4 4 ~ ) ~ ~ + ~ ~ ~ ~ + + + + ~ + + ~ + ~ + ~ + + + + + + + S + ~ 4 ~ 4 ~ 4 ~

~45~355~£~$~|6~$GG~$~555~5~5~555~5~5~44~444444444~3~

~ 4 ~ 5 ~ 4 ~ $ ~ ~ c ~ 5 5 $ ~ 5 ~ 5 5 ~ 5 ~ $ ~ 5 ~ ~ 4 4 4 4 4 4 4 ~ 4 ~ 4 4 ~ 4 3 ~ ~ 4 4 4 ~ 5 ~ 5 5 5 ~ 5 ~ £ £ | ~ £ ~ L £ ~ £ ~ $ ~ 5 ~ 5 5 s ~ 5 ~ s ~ $ 5 ~ 5 3 ~ 5 5 ~ 5 ~ 5 ~ 4 4 4 4 4 ~ 4 4 4 4 ~ 4 4 ~ 4 4 4 3 3 ~

~ + ~ + + + + + + + ~ + + + ~ ~ + + + + + + + ~ + ~ + + + + + + + ~ + + S + + + ~ + + ~ 5 ~ + + ~ 4 ~

~ + + ~ + + + ~ $ $ ~ + + ~ + ~ + + ~ + + ~ + + + + + ~ + + + + + + ~ + + ~ + ~ + ~ + ~ + + ~ + ~ 4 ~ 4 4 4 4 ~ $ 1

~ 4 4 ~ 4 + + + + + + ~ + + + + + ~ + + + + + ~ + + + + + + + ~ + + + + + + + + + + ~ + + + + + + + ~ + + + + ~ + + + ~ + + ~ 4 ~ 4 ~ 4 4 4 ~ 4 4 ~ 4 4 4 4 ~ 3 ~

~ 4 ~ + + + ~ + + ~ + ~ + + m + + + + + + ~ + + + + + + + + ~ 5 ~ + + + + + + ~ + ~ + ~ S + + + + ~ + ~ + + ~ + 5 + + ~ 4 4 ~ 4 ~ 4 4 ~ 4 ~ 4 ~ 4 ~

~ 3 ~ 4 ~ + + + m + + + + ~ + + + + + + + ~ + ~ + + ~ + + + + + ~ + + + + + ~ + ~ + ~ + + ~ + ~ + ~ + + ~ 4 ~ ~ ) ~

1 + 4 4 4 4 4 4 4 4 4 4 4 4 4 + + + + + + + + + + + + + + + ~ + + + + + + + + + + + + + ~ + + + + + + + + ~ + + + + + + 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 + 3 + t

~ 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 d 4 + + + + ~ S + + + + + + ~ + + + + + S + 5 + S + + + 3 + + m 5 + 5 + + + S 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 + 4 4 4 4 4 4 3 3 3 + ~ ) ) 4 d 4 4 4 4 4 ` 4 4 4 4 4 4 4 4 4 + 4 4 ~ ~ 5 ~ s ~ 4 4 4 4 4 + ~ 4 + 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 ) + 1 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 d ~ 4 + + + + + ~ + + + + ~ + + + + + + + + 4 4 4 4 4 4 q 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 d 4 4 4 4 4 4 4 4 4 4 4 3 ] 3 + ~ ~ ] $ ` 4 4 4 d 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 ` 4 4 ~ 4 4 4 4 e 4 4 4 4 4 4 4 4 4 + 4 4 4 + + ~ 4 4 4 4 4 4 4 4 4 4 4 ~ d 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 ~ 4 ` 4 4 4 4 4 3 3 ) ] ~ ~ + 3 3 4 4 4 4 4 4 d d 4 4 4 4 + 4 4 4 4 4 4 4 4 4 4 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 d 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 d 4 4 4 4 4 4 4 4 4 4 4 4 + ] 3 ] ~ ~ ] 3 3 4 4 4 4 4 4 4 4 4 4 4 + 4 4 4 4 4 4 4 4 4 4 4 d 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 d 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 ] + 3 + ~ i3++3444444444444444444444444•444444444444444444+44444444444d44444+444444444444444444+3•++• ~ 3 ] 3 ) 4 ~ 4 4 4 4 4 4 4 4 4 4 ~ ` 4 4 4 4 4 4 ` ` d 4 4 4 ~ 4 4 ~ 4 4 4 4 4 4 4 4 4 ` ~ 4 4 ~ 4 4 4 4 4 4 4 4 ~ 4 4 ~ 4 4 4 4 4 4 4 ` 4 ` 4 4 ` 4 4 * 4 4 d 4 + 4 ~ 3 ~ 3 ] 3 ~ I 3 3 3 ) + 4 4 4 4 4 d 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 d 4 4 4 4 4 4 4 4 4 ~ 4 4 ~ 4 4 d 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 + 4 4 4 + ~ 3 3 3 ) 3 ~ i ] 3 ] ] 3 ~ 3 4 4 ~ 4 4 4 4 ~ 4 4 d d 4 ` 4 4 4 4 4 ` 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ d 4 d 4 4 4 4 4 4 4 4 4 4 ` 4 4 4 3 3 ) ) 3 ~ ] ) 3 ~ • ] + + + + 3 ] ] + 4 4 4 4 4 4 4 4 4 4 4 4 • 4 4 4 4 4 4 + 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 d 4 4 4 4 + 4 4 4 4 4 d 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 d 4 4 4 4 + ] + + + + 3 + + + + + t ) 3 3 3 + 3 3 + ] 3 3 2 3 3 4 4 4 4 4 • 4 4 4 4 4 4 + + 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 d 4 4 4 4 4 4 4 ) ] 3 ] + ] ] 3 ] ] 3 + ] + ] ) • 1 ] ) ] 3 ] ] ] ] ] ] ) 3 ~ 3 3 3 3 ) 3 3 3 3 ) 3 3 3 3 ) 3 4 4 4 4 4 4 4 ` ` 4 ` 4 4 4 4 ` 4 4 4 4 4 4 4 4 ` ` 4 4 4 4 3 3 ) 3 ) ~ ) ) 3 ) ] ~ ) ~ 3 | ] 3 3 ] 3 3 3 ~ 3 ] ] 3 ] i ~ ) ) ~ 3 $ ~ 3 $ ) 3 ] 3 3 ~ ) 3 3 3 ) 3 ~ 3 3 ) 3 ) ) ) ] ~ 3 3 3 3 ~ 3 ) ~ $ 3 ] 3 3 3 3 ] 3 3 3 3 ) 3 3 ] ) 3 3 3 3 3 3 3 ] ] 3 3 3 3 ) ) 2 3 3 ) 3 ) 3 ~ 3 3 3 3 ) ) 3 3 ) ) 3 t

i l l f , 911 I l l I }1 l i e

MERN RNOMRLY,M <DEG>

Fig. 4.6 Number of iterations needed to converge by Newton's method using the starting value E0 = M.

E C i g~9

E

T 0 ~$~

I 0.~94

c 1 9 9 3

T I. ~PgZ

Y 0 , 9 9 1

E

n a n a a A a A X $ A A g e ~ A X ~ A A J X X A S A ~ $ g ? 7 ~ ; ? 7 7 7 7 7 7 7 7 7 ? A X 9 9 A A a ~ a ~ K ~ 7 ~ X X ~ A ~ X ~ X ~ S 7 7 ~ ( 7 7 7 7 7 7 7 7 7 7 7

m ~ x ~ n g ~ e ~ n ~ n x ~ $ e a n ~ x ~ n g O e 7 7 ¢ ? ? T 7 7 7 7 7 7 7 7 7

~ m m ~ I m ~ m $ $ ~ 9 ~ X X ~ M m ~ X K ~ g X 9 9 8 7 7 ~ ? ? 7 7 7 P ? T T 7 7 P

= a a I a ~ : 7 $ $ ? X : A G A e ~ a = ~ X a I ~ 8 8 7 7 £ ? 7 7 7 1 7 ~ 7 7 7 7 7 7

? ? ? ? t 7 7 7 7 7 ? 7 7 7 7 T ? 7 7 7 t ? 7 7 T 7 7 7 7 7 ? 7 7 7 7 7 ? 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 ? ? ? 7 ? ? ? 7 ? 7 7 ? 7 7 777T?TT77777T?7 P??TT??7777777~ ????7777777PTP7 7 7 7 7 ? p ? T ? p ? 7 7 7 7

7 7 7 7 7 7 7 7 7 7 P P 7 7 7

?7777777T?T777T ? ? 7 7 7 7 7 T 7 7 ? T ? 7 7 7 7 ? ? 7 ? 7 7 7 7 7 7 7 ? 7 77777?TT?P?7777 PTpP?p?TTP?7777

A~aMmKa~&AAAXAXr4AAAXaXaA~ t$$ |?? ( (TTT??77777?T?7??TT?T?TT77T?7 A A a a a f * a A a X X a a a a a X A a X a A X A f a 9 9 | T T ~ 7 7 ? 7 7 ? T ? 7 ? ? T 7 ? ? ? ? ? ? ? ? T ? T T ? 7 7 7 9 R ~ # O J n ~ X m X A ~ f a R R ~ X ~ a ~ f k ~ ' ~ e | ? ? 6 ~ 7 7 7 7 7 7 ? T T T ? T T ? ? ? ? 7 7 7 ? T T ? r ? ? ?

II 25 ]0 4| II II

MEAN ANOH~LY,H <BEG>

Fig. 4.7 Number of iterations needed to converge by Newton's method in the high- e/low-M region using the starting value of E0 = M.

Page 9: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 43

Recently, Conway, 6 of the University of Illinois, has applied a root-finding method of Laguerre (1834-1886) to the solution of Kepler's equation. Although the method is intended for finding the roots of a polynomial, it works equally as well for Kepler's equation, which is transcendental. Laguerre's iteration method requires the calculation of f ( E ) , f ' ( E ) , and f " ( E ) at each step and has these remarkable properties:

1) It is cubically convergent for simple roots. 2) For algebraic equations with only real roots, it is convergent for every choice

of real initial estimate.

In over 500,000 test solutions, Conway has always found the algorithm to converge to the proper value of eccentric anomaly.

Mathematically, the method consists of solving successively the following equa- tion:

n f ( E i ) Ei+l = Ei - (4.23)

f ' ( E i ) 4-

where

n ( E i ) = [(n - 1){(n - 1 ) [ f ( E i ) ] 2 - n f ( E i ) f t ' ( E i ) } [ (4.24)

Normally, n is the degree of the polynomial. For our purposes here, we may safely use an arbitrary choice of n = 5, making Eqs. (4.23) and (4.24) appear as

5 f ( E i ) Ei+l = Ei - (4.25)

f ' ( E i ) 4- 2~/]4[f ' (Ei)] 2 - 5 f (E~) f"(Ei)l

where

f ( E i ) =- Ei - e s i n E i - M

f ' ( E i ) = 1 - e cos Ei

f " ( E i ) = e sin Ei

(4.26)

(4.27)

(4.28)

Note that, when Eq. (4.25) is calculated, the sign in the denominator should be chosen so that IEi+I - Ell is small as possible.

Figures 4.8 and 4.9 show the comparable results when Laguerre's method is used in place of Newton's method. Again, E0 = M is used as the initial starting value for all cases. Note the remarkable improvement in the number of iterations required, especially in the region where e approaches 1 and M approaches 0. Note also the lack of sensitivity to the starting value. Even with the unsophisticated choice of E0 = M, four iterations at the most are sufficient for Laguerre's method to converge to within 10 -12 rad almost everywhere in the e-M plane. The use of a good starting value would improve the speed of convergence, but this seems unnecessary.

Page 10: Orbital Mechanic: 4. Position and Velocity as a Function of Time

44 ORBITAL MECHANICS

: ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ ] ~ ] 3 ] ~3~5~5444d444444444~4444444~444444444~44444444444~44~4~444444444444444444444443~3~]33 4~5~5~44444~444~44444444444444444444444444e4444444~4444444444444444444444444444~33]3~]~ $44~5254444444444~4444~4444~444444444444444~4444444444444444444444444444444444444~33~ 444444444444444444444~44444444444444444444444~4444444444444444~44~4444444444444]3]33333

I .~ 4444444444444444444444444444444444444444444444444444444444~4444444446444444444444~]~3~33 4~44444444444~4444444444444444444444444444444444444444444444444444~44~44e44444c3]33~]]~ ~4444~444444444q~44444444444444444444444444444444444444444444~4444d4444444444443))]3~]3~: 4444444444444444444444~444444444444444444444444e44444444444~444~4444444~44444444|]~]~3~ 44444444444~44444e~4444~444444444444444~444444444444444444444444444444444444444]~3|3333~

e.4 @44444444~444444444~44~444444~44444~44444444444444444444444444444444444444444~4443]] ]~3 444444444444444444~4444~4444444444444444444444444444444444444444444444444444~444*3~33]~3~3 j4444444444444444444~4444444444444444f444444444444444444444444444444444444444444]]]3~]33~3

E [444444444~44444444444444~4444~44444444444444~44444444444~4444~444444444~4444444]] ]1~333~3 C O,F ~444444444444~44444444444~4444~44~44444444444444444444~4~444444~4444~4444~4e444433333]~3~

j4d44444444~4~444444444444~4444444444444444444444444444~444444444444444444444444~333]33])~ C ~3444444444~4444444444~44~4(4)4444444444444444~444444444444444~44444444~444~44~3~33~]1~2[ E ~444444444~4~44~44444444444444~4444444444444~4444444444444444444~444444444444]~333~3333~

~4444444444444444444444444444~444444444~444444444444~444444444444444~444444444]~]3~333)~ 8,4 ~444444~4~4444444444@444~444444444~4444~4~44e4444444444444~444444444444444444333~33~33~

T ~4444~44444444444444~444444~44]4444444444444444444444444444~444~4444444444444~]~] ]~33]1 ~34~44444444444444444444444444~4444444444444444444444444444444444~4~4444444433~3]3~]3333~1

R ~ ]44444444~4444444444444~4444~4~44444444444~44444444444444444444444~d4444444~3~ ] ]~1 l3]444444444~44444444444444i4444234444444~4444444~44444444444444~44444444~44~33~]~]~)3] ]~

I 1~34444444444444444444444~44~44443444444~444444444444444~4444444444444444444]]3~3~]333~]3 I C 0'$ ~3~4444444444444444444444~44~444~]444444~444444444444444444444~4444444444~3~33~33~333~33 I

~]33444444444~44444444444444444443~444444444444444444444444444444444444~443))~3~23333~ ~ ] 4 4 4 4 4 4 4 4 4 ~ 4 4 ~ 4 E ~ 4 4 ~ 4 4 4 4 4 4 4 ~ 3 4 ~ 4 4 4 4 4 4 4 ~ 4 4 ~ 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ ] ~ J ) ~ ] ~ 3 ~ 3 ~

T ~]33~444~44~6~4444444~4~4~44~44433~4~444~4~4414~44~444~4444~444444~443~3~]~333~]3]3]~35 ~ )4444444444444~444444~44~444 ]33~4444444~4~444444444444444444~4444~333333~3333~33~ y e,4 ~ 3 ~ 3 ) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 ~ 4 ~ 4 4 4 ] ~ ] ) 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 ~ ¢ 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 ~ ] 3 ] ~ 3 ] ~ ] ) ~ ) ~ ) 3 ] ~ ~ 3 3 ~ 4 4 4 4 @ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ] ] 4 4 4 ~ 3 J ~ ] ~ ] ~ E 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 ~ 4 4 4 4 ~ 4 4 ~ 3 3 3 ] ~ ] ~ 3 3 ~ 3 ] 3 ] ~ j 3 ~ ] 3 3 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ ] ~ ] 3 ~ 3 ~ ) ] 4 4 4 4 4 4 4 4 ~ 4 4 ~ d 4 4 4 4 4 4 4 4 4 4 ~ 4 ] ~ ) ~ 3 ] ] ~ ] 3 ] ~ 3 3 ~ ] ~ ] ~ 1~ ]33 ]~ ]~344444444444444444443~33 ]3~3 ]3~333444~444444444444444443333~3~333333~333)~3 I

E 4.3 ~ | ~ 3 ] ] ] ~ ) 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 ~ ) ~ 3 ~ 3 ~ 3 3 3 ~ 3 3 3 ~ 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 ~ 3 ~ 3 3 ~ | 2 ~ ; ) ~ 3 ~ 3 ~ 3 3 3 ~ 3 ~ 1 ~ $ ~ $ ~ 3 3 ~ 3 ~ 3 ( 4 4 4 4 4 4 4 ~ 4 4 4 4 3 ~ 3 3 ) ~ 3 3 ~ 3 ~ 3 ] 3 ] 3 3 ~ 3 ~ 3 ~ ] ] 3 3 3 3 ~ 3 3 ~ 3 3 3 3 3 3 ~ $ 3 ) ~ 3 3 3 ) ~ ] ~ 3 ] ~ 3 ~ 1 ~ 3 3 ~ 3 ~ ) 3 3 3 3 3 ~ J 3 ~ 4 ~ 4 4 3 3 3 ~ 3 ~ 2 ~ 3 ~ 3 | ~ 3 3 3 3 ~ 3 ~ 3 3 ~ 3 3 | 3 ~ 3 ~ ] ) ~ 3 3 ] 3 ) ] ~ ] ~ 3 | 3 ~ 3 ~ 3 ~ 3 ~ 3 ~ 3 ~ 3 ~ ~ 3 3 3 ~ ) 3 3 ~ 3 ~ 3 ~ 3 | ) ] ) ~ 3 ~ 3 ) ~ ) ~ 3 | ) | ~ ] ~ $ ~ ) | ) ~ 3 ~ ) ~ 3 ~ 3 3 ) ~ ) ~ ) 3 $ ~ 3 ~ ) ) ] ; ~ 3 ~ ) ~ 3 3 ~ [ 3 ~ 3 ~ 3 3 ] ~ 3 ~ 3 3 2 3 3 3 3 ~ ] ~ | 3 3 3 ] ~ 3 3 3 ~ 3 3 ] ~ 3 $ 3 ~ ) ] ] 3 ~ 3 ~ 2 | ] 3 ~ | 3 ~ 3 3 ~ ] 3 3 $ 3 3 3 3 3 3 3 ~ 3 ~ 3 ~ ~ 3 ~ 3 ~ 3 3 3 3 $ 3 ~ 3 3 % ~ 3 3 ~ 3 ~ ) ~ ) ) ~ 3 3 3 3 ~ 3 3 ~ $ ~ | 3 ~ 3 ) ~ ) 3 ) ~ 3 ] ) ~ ) ) ~ 3 ) 3 ~ ) ] ~ ) ] ) 3 ~ 3 3 3 3 ~ ] 3 1

|'@ ~ ] 3 ) ~ ) ~ 3 ~ 3 3 3 ~ ] 3 ) ~ 3 3 ~ ] 2 ) 3 3 3 ) 3 3 3 ] J ) ) ~ | ~ 3 ~ 3 ~ ) ~ 3 ) 3 ~ ) 3 | ~ 3 ~ ] ] 3 3 ) ~ ] ) $ ~ ] ) ~ 3 ~ $ ) $ 3 1 ) $ 3 ~ 1 ~ ) ~ 3 ~ ) 3 3 ~ 3 3 ~ ) 3 3 $ ~ 3 ~ ) ~ ) 3 3 | 3 ~ 3 ] 3 ~ 3 ~ 3 ~ $ ~ ] 3 ~ 3 3 ~ 3 ~ $ 3 : ~ 2 ~ ] ~ 3 ~ 3 ~ ) 3 3 ] ~ ) ] ~ l ~ 3 3 ~ 3 ) 3 3 ] 3 3 $ 3 ~ 3 3 3 3 ~ 3 $ 3 ] | ) ] 3 | ] ) 3 3 ~ 3 3 3 ] 3 3 ~ 3 3 3 3 ~ ) 3 $ ~ ) ) ) 3 ~ 2 ] 3 ] 3 3 3 ] ~ 3 ~ ) ) ~ 3 3 3 ) 3 3 3 ) ~ ) | 3 3 3 ~ ~ 3 3 J 3 3 3 ) 3 $ ~ $ 3 ) ~ 3 3 ] ~ 3 ~ ) ~ ] 3 ~ 3 3 ) ) 3 3 ~ 3 3 } ~ 3 3 3 3 3 ~ $ ~ ) ~ | ] 3 3 ~ 3 3 ~ 3 ~ ; 3 ) J ) 3 ~ ) ~ ) ~ ) 3 3 3 3 3 3 ~ ~ 3 3 3 ; ~ 3 ~ ) ~ 3 ~ 3 3 ) ~ | ~ 3 3 ~ | 3 3 ] ) ) ) ~ 3 ) ] 3 ~ ] ) 3 $ 3 ~ 3 ) ~ ) ) 3 ~ ; ; 3 3 ~ 3 3 ~ $ 3 3 3 3 ~ 3 3 ~ | 3 ~ 3 3 3 ] 3 ~ ) ~ ] 3 2 $ ] 3 3 ) ~

~ 3 3 ~ 3 3 ~ ) ] 3 3 3 3 ~ 3 3 ~ ; ) 3 ] ~ ) ~ 3 ~ $ 3 ) | 3 ) 3 3 ~ ) 3 3 3 3 ; ; ~ ) ) ~ ] 3 ~ ] 3 ~ 3 ] 3 ~ 3 3 ) 3 3 ~ ) ) ~ $ 3 ) 3 3 ~ ] 3 ~ 3 3 ~ 3 ~ 3 3 1 [ 3 3 3 ) ~ 3 3 3 3 ] ) 3 2 3 3 3 ~ 3 ~ 3 3 ~ 3 ~ 3 3 ~ ) ) ) 3 3 3 3 3 ~ 3 3 3 3 ~ ) 3 ~ 3 ~ 3 3 ~ 3 $ 3 ) 3 3 2 ~ ) $ ) ~ 3 ) ~ 3 ~ $ ~ 3 3 ] ) ~ ) 3 3 3 3 ) ) ~ ~33~$]3) ]3~]33~)3~333~333333~33~33~3~))33~]23~33~3)~3)333~)33J333~3)3)~)~333333]3~33333] )s ~ ] ) 3333~3$3 )333323~ ) ] ] ~2~33 ]3~3 )~33~ ]3 )3~3323 ]3~333 ) |~3~333~$333333~ :~32~ )33 ]3~3333~33~

~e ~e ge t~e :50 J o e

Fig. 4.8 Number of iterations needed to converge by Laguerre's method using the starting value of Eo = M.

E C |

C, E N' T' R, I | C I' T, Y,

A

E V

P S I

Sl I7 '

P S 5

5~P4

I J~3

5P9~'

P J !

I . g }

I ~ S.5 ~5 ~ ' k ' ~ ~ ~ q ~ S ~ 5 4 4 4 4 4 4 4 4 4 J ~ 5 ~ ~ 5 ~ ~ S 2 ~ 5 4 4 4 4 4 4 4 4 4 I ~ " ~ 5 ~ ~ 5 5 ~ ~ ~3 ~5~J ~ 2 4 4 4 4 4 4 4 4 4 ~ "4 ~e. 2 ~'~ SS 2~ ~ q q s ~5~ ~ , 4 4 4 4 4 4 4 4 4 I ~5 S~5 el~ S S 2 S ~ ~J ~5 q~ ~S 4 4 4 4 4 4 4 4 4 I ~ S ~ ~ 2 ~ 22 ~e~ 2~ ~ 2 ~ 2 4 4 4 4 4 4 4 4 4 I ~ q ~ S ~ 5 2 ~IS ~ ~ 4 4 4 4 4 4 4 4 4 I ~ ~2 ~ 5 ~ @ ~ e.~ ~ ~5 ~ 5 5 4 4 4 4 4 4 4 4 4

J 5 ~ ~ 5 5 ~ ~ 5 5 5 ~ ~ 5 4 4 4 4 4 4 4 4 4

I @ 2 ~ 2 ~ 2 2 ~2 q 2 ~ 5 ~ 5 ~ 4 4 4 4 4 4 4 4 4 I 2 @ s ~ s q 5 ~ 2 2 ~ 2 ~ J 2 q ~ 4 4 4 4 4 4 4 4 4 [ ~ ~ q222 '$5 ~*~ ~2~444444444

S ~ S ~ ~ 2 ~ 5 e:S ~ ~5~J~ ~ 4 4 4 4 4 4 4 4 4

• 10 2(I

MERN

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3 0 4 0

RNOHALY,I'4 <OEG>

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 4 4 4 4 4 4

50 60

Fig. 4.9 Number of iterations needed to converge by Laguerre's method in the high-e/low-M region using the starting value of E0 = M.

Page 11: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 45

For those who wish to use a starting value other than E0 = M, the following formula is suggested:

e sin M E0 = M + (4.29)

B ÷ M s i n e

where

B = cos e - - e sin e (4.30)

The computational requirements of this starting value are modest, and the resulting number of iterations needed to solve Kepler's equation is shown in Figs. 4.10 and 4.11.

As a comparison with Figs. 4.8 and 4.9 shows, one iteration less is needed in most instances to arrive at the same accuracy. In some instances, the number of iterations is reduced by two. Gratifyingly, this reduction extends in part to the high-e/low-M region.

It is interesting to note how close the starting value is to the actual value. This closeness can be seen in Figs. 4.12 and 4.13, where the percent error is noted for each starting value in the e-M plane. Specifically, the following percent error is

0 . 5 )

0.0

E C e . ~

c E N e . ~ ,

T R I

I T ye ~

E | . 3 v

3 $ 3 3 ) 3 3 3 3 3 3 3 2 ~ 2 2 2 2 ~ 2 ~ z z 3 3 3 3 ~ 3 3 3 3 ~ 3 ~ 3 3 3 ~ 3 3 ~ 3 3 3 3 ~ 3 3 3 3 3 ~ 3 J 3 ~ 3 3 3 3 ~ 3 3 ~ 3 3 3 3 3 3 3 ~ 3 3 3 ~ 3 3 3 ~ 3 ! 433333~33~332~22zz~z22z~33 ]333~333333~333 ]3333$333333333~333333$333333~3~333333333333333~ 4 3 ~ 3 ~ 3 3 3 3 ~ 2 2 2 2 2 2 2 2 2 2 2 ~ 2 ~ 3 $ 3 3 ~ 3 3 ] ~ 3 3 ~ 3 ~ 3 ] 3 3 3 3 3 ~ 3 3 ~ 3 3 3 3 3 $ ~ 3 ] ~ 3 3 3 ] ~ 3 3 3 3 ~ 3 3 3 ~ 3 ~ 3 ~ 3 3 3 ~ 3 l 3 3 ) 3 3 ~ 3 J 3 ~ 2 ~ Z 2 ~ 2 2 2 z 2 z ~ 3 3 ~ 3 3 3 3 ~ 3 3 3 ~ 3 ~ 3 3 3 ~ 3 3 ] 3 ~ 3 3 3 ~ 3 3 3 ~ 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 ~ 3 ~ 3 3 ~ 3 3 3 l 3 ~ 3 ~ 3 3 3 ~ 3 2 2 2 2 2 2 2 2 2 2 z Z 2 2 2 z 3 3 ~ 3 ~ 3 ~ 3 3 3 3 ~ 3 3 ~ 3 ~ 3 ~ 3 3 3 ~ 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 ~ :

3 3 3 ~ 3 ~ 2 ~ 3 3 3 3 3 ~ 2 2 2 2 ~ 2 2 2 2 2 3 3 3 3 3 ~ 3 3 3 3 3 z 3 3 3 3 3 ~ 3 3 3 3 ~ 3 3 ~ 3 ] 3 ~ 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 ~ 3 3 3 3 3 3 3 3 ~ 3 3 2 2 3 3 3 3 3 3 3 3 ~ 3 2 ~ 2 2 Z ~ 2 2 Z ~ 3 ~ 3 ~ 3 ~ 3 ~ 3 3 3 ~ 3 ~ 3 3 3 3 ] 3 3 3 3 3 3 3 ~ 3 3 ~ J ~ 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 l ~ 3 3 3 3 3 3 3 3 3 ~ 3 ~ 3 ~ Z 2 z ~ 2 ~ Z ~ 2 ~ 3 ~ 3 ~ 3 ~ 3 3 3 ~ 3 3 3 3 3 3 3 ~ 3 3 $ 3 3 3 3 3 3 2 ~ 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 ~ 3 3 3 3 ~ 3 ~ 3 3 3 ) 3 3 : 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 ~ Z Z 2 2 ~ z 2 2 3 3 ~ 3 3 3 3 3 3 3 3 ] 3 3 3 3 3 3 ~ 3 3 3 ) ~ 3 3 3 ~ 3 3 ~ 3 3 3 3 3 3 ~ 3 3 3 ~ 3 3 3 3 3 3 $ 3 ~ 3 ~

i 3 ~ 3 ~ 3 3 3 3 3 3 3 3 2 Z Z 2 2 2 2 ~ 2 2 2 3 3 ~ 3 3 ~ 3 3 ~ 3 $ ~ 3 3 3 3 ~ 3 ~ 3 ~ 3 3 3 3 ~ 3 ~ 3 ~ 3 3 3 ~ 3 3 3 3 3 3 3 ~ 3 ~ 3 3 ~ 3 3 3 ~ 3 3 3 : ~ 3 3 ~ 3 3 3 3 3 3 3 $ 3 3 $ 2 3 ~ 2 ~ Z ~ 2 2 ~ Z 2 | 3 3 3 ~ 3 ~ 3 3 $ 3 ~ 3 ~ 3 ~ 3 3 3 ) | 3 3 3 3 | 3 3 3 3 3 3 3 3 3 ] 3 3 3 3 3 ~ 3 ~ 3 3 3 $ 3 3 3 ~ 3 3 3 3 J 3 3 ] 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 ~ 2 2 ~ 2 2 2 2 2 ~ z ] ~ 3 3 3 ~ 3 ~ | 3 3 3 3 3 3 3 3 3 ~ 3 ~ | ~ 3 3 3 ~ 3 3 3 ~ 3 3 ~ 3 $ ~ 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 ~ ] 3 3 ~ 3 3 3 ~ 3 3 ) ~ ) 3 3 3 ~ 3 3 3 Z 2 ~ 2 ~ 2 ~ 2 2 ~ 3 3 3 3 3 ~ 3 3 3 ~ ] 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 $ ~ 3 ~ 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 ~ 3 3 L 3 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 ~ 3 2 2 ~ 2 2 ~ 2 2 ~ 3 3 3 3 3 3 ~ 3 3 ~ 3 2 ~ ] 2 3 3 ~ 3 3 ~ ] 3 3 3 ] ] ~ 3 3 3 3 3 ~ 3 3 3 3 3 ~ 3 ~ 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 ~ 3 ~ 3 ~ 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 2 ~ 2 2 2 2 ~ 2 ~ 3 3 ~ 3 3 3 3 3 3 ~ 3 ] 3 3 3 3 3 3 3 ~ 3 3 3 3 ~ 3 3 3 3 3 ] 3 3 3 3 3 ~ 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 ~ 3 ~ ] 3 $ 3 ~ 3 3 3 ~ 3 3 3 3 3 3 ~ 3 ] 3 ~ 2 2 2 2 2 2 2 ~ | 3 3 ~ 3 3 3 3 3 3 ~ 3 3 ~ 3 3 3 3 3 ~ 3 3 ~ 3 ~ 3 3 3 3 3 3 3 ~ 3 ~ 3 ~ 3 3 3 ~ 3 3 ~ 3 ~ 3 3 3 3 ~ 3 3 3 3 2 3 3 3 ~ 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ 2 2 2 Z ~ 2 2 ~ 3 3 ~ ] 3 3 ~ 3 3 3 3 3 3 ~ 3 3 ~ ] 3 3 3 3 3 ~ 3 3 ~ 3 3 3 3 3 3 3 3 3 $ 3 3 3 3 3 3 ] 3 ~ 3 3 3 3 3 3 3 3 3 3 ~ ~ 3 3 3 3 3 3 ~ 3 3 3 3 ~ 3 3 3 3 3 $ 3 3 3 2 ~ 2 2 ~ z 2 2 z $ 3 3 3 ~ 3 3 3 3 3 3 3 3 3 ] 3 3 3 ~ 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3 ] 3 3 3 3 3 3 3 3 3 3 ~ 3 3 ~ 3 L ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 ~ 2 2 2 2 2 2 ~ 2 2 3 3 3 3 ~ 3 3 3 3 3 3 ~ 3 3 ~ 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 ~ 3 ~ 3 ~ 3 ] ~ 3 3 ~ 3 3 3 3 ~ 3 1 L 3 3 3 3 3 3 3 3 3 3 3 3 3 $ ~ 3 3 3 3 3 3 ~ 2 ~ 2 2 ~ 2 2 Z 2 ] 3 ~ 3 ] 3 3 3 3 3 3 3 3 3 ~ 1 3 3 3 3 3 ~ 3 3 3 ~ 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 ' ~ 3 3 3 3 ~ ~3333333333~333~333333~2222222~22233~33~333333333~33~3333~3333~33323~333333~3333333333333~ ~ 3 2 3 ~ 3 ~ 3 3 ~ 3 ] ~ 3 3 3 3 3 3 ~ 2 ~ 2 z ~ 2 2 ~ 2 2 ~ 3 3 3 3 ~ 3 ~ 3 ~ 3 3 3 3 3 ~ 3 3 3 ~ 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 $ 3 3 ~ 3 ~ 3 3 3 ~ ~ 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 ~ 3 3 3 $ 2 ~ 2 2 ~ 2 ~ 2 2 ~ 2 ~ 3 3 3 ~ 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 ~ 3 ~ 3 ~ i 3 3 ~ 3 3 3 3 ~ 3 3 3 3 3 ~ 3 3 3 3 ~ 3 3 3 3 ~ 2 2 2 2 2 2 z ~ 2 | ~ 3 3 3 3 3 3 ~ 3 3 3 ~ 3 3 3 $ 3 3 3 3 3 3 3 3 ~ 3 ~ 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 ~ ~ 3 3 ~ 3 3 ~ 3 3 ~ 3 3 ~ 3 3 3 ~ 3 3 ~ 2 ~ 2 ~ 2 2 ~ 2 2 2 ~ 3 $ 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 ~ 3 ~ 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 ~ ~ 3 3 3 ~ 3 3 $ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 ~ 2 2 2 2 2 ~ 3 3 3 3 3 3 3 ~ 3 3 3 3 3 ~ 3 3 ~ 3 3 3 3 3 3 3 3 3 3 ~ 3 ~ 3 3 3 3 ~ 3 ~ 3 3 3 3 3 3 ~ 3 3 ~ 3 3 3 3 ~ ~ 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 2 3 ~ 3 3 2 ~ 2 2 2 2 2 2 2 2 ~ 2 2 ~ z 3 3 ~ 3 3 ~ 3 3 3 3 ~ 3 3 3 3 ] 3 3 3 ~ 3 ~ $ 3 ~ 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 ~ 3 3 ~ 3 3 3 3 ~ [ 3 3 3 3 3 3 ~ 3 3 3 3 3 3 ~ 3 3 3 3 3 ~ 3 3 3 ~ 2 2 2 2 ~ 2 Z 2 2 ~ 2 2 ~ 2 3 ~ 3 ~ 3 3 3 3 3 ~ 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 ~ 3 3 3 3 3 3 3 3 3 ~ 3 3 t ~ 3 ~ 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 ~ 3 3 2 ~ 2 ~ 2 ~ 2 ~ 2 ~ 3 3 ~ 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 $ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 ~ 3 3 ~ 3 ~ 3 ~ ~ 3 3 ~ 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ 3 ~ 2 2 2 ~ z ~ 2 z ~ 2 ~ 3 ~ 3 ~ 3 3 3 3 ~ 3 3 ~ 3 ~ 3 3 3 3 3 3 3 ~ 3 3 3 3 ~ 3 I 3 ~ 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ 5 3 ~ 3 3 ~ 3 3 3 3 ] 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 ~ 2 ~ 2 2 2 2 2 2 2 2 2 ~ 2 2 2 ~ 3 3 3 3 3 ~ 3 ] 3 3 3 ~ 3 3 $ 3 3 3 3 3 3 3 ~ 3 ~ 3 ~ 3 3 3 ~ 3 3 $ 3 ~ 3 3 3 ~ 3 3 3 ~ t 3 3 ~ 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 ] ~ 3 2 2 2 2 ~ 2 2 2 ~ 2 ~ 2 2 3 3 3 ~ 3 3 ~ 3 3 3 3 ~ 3 3 3 3 3 ~ 3 3 3 3 2 3 ~ 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ! ~ 3 3 $ 3 ~ 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 $ 3 3 3 3 2 ~ 2 ~ 2 ~ 2 ~ 2 2 ~ 2 ~ 3 3 3 ~ 3 3 3 3 3 3 3 3 ] 3 ~ 3 3 3 ~ 3 3 3 3 3 3 3 ~ 3 3 3 ~ 3 3 3 ~ 3 3 3 3 ~ 3 3 3 ~ 1 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 ] 3 3 ~ 3 3 3 3 3 Z 2 2 2 ~ 2 2 ~ 2 ~ 2 2 2 2 Z ~ 2 3 ~ 3 3 3 3 ~ 3 3 3 3 3 3 $ 3 3 3 3 3 3 3 3 3 3 ~ 3 3 ~ 3 3 3 ~ 3 3 3 3 3 3 3 3 ~ 3 3 ~ 1 3 3 3 3 3 ~ 3 3 3 3 ~ 3 3 3 ) 3 3 3 3 3 ~ 3 3 3 ~ 3 3 ~ 2 2 2 2 ~ 2 ~ t 2 2 2 2 2 2 ~ 3 3 3 3 3 3 3 3 3 3 3 ~ 3 ~ 3 ~ 3 3 3 3 ~ 3 3 ~ 3 3 3 ~ 3 ~ 3 3 3 3 3 3 3 3 3 3 ~ ~ 3 3 ~ 3 3 ~ $ ~ 3 ~ 3 3 3 ~ 3 3 3 ~ 3 3 ~ 3 3 3 2 2 ~ 2 2 z ~ 2 ~ 2 2 2 ~ 2 2 2 ~ 3 3 3 3 ~ 3 3 3 3 3 ] 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 $ 3 2 3 3 3 3 3 3 3 ~ ~ 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ ] 2 2 Z Z 2 Z 2 ~ z 2 2 Z 2 z ~ 2 2 2 2 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 ~ 3 ~ 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 ~ 3 3 ~ 3 ~ ~ 3 3 3 3 3 3 ~ 3 3 3 ~ 3 3 3 ~ 3 ~ 3 3 3 3 3 3 3 2 3 2 2 ~ 2 2 | 2 ~ 2 2 ~ 2 ~ 2 2 2 2 2 2 ~ 3 3 3 ~ 3 3 3 ~ 3 3 3 3 $ 3 ~ 3 3 ~ 3 3 3 3 ~ 3 3 3 ~ 3 3 ~ 3 3 ] 3 3 3 3 3 ~ I 3 ~ 3 3 3 3 3 3 3 ~ 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 ~ ] ~ $ ~ 3 3 3 3 3 ~ 3 3 3 3 3 3 ~ 3 3 ~ 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 ~ I 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ 2 ~ 2 2 2 2 2 2 2 2 2 2 ~ 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ ~ 3 3 3 3 ~ 3 ~ 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 ~ 3 ~ 3 2 ~ 2 2 2 2 2 2 2 2 2 ~ 2 2 2 2 2 2 ~ 2 2 2 2 z 2 3 3 ~ 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 $ 3 3 ~ 3 3 3 3 3 3 ~ t 1 3 ~ 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ z 2 2 ~ 2 ~ 2 2 2 z z 2 2 2 2 2 2 2 2 ~ 2 2 2 2 2 Z ] 3 3 3 3 ~ 3 3 ~ 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 ~ 3 3 ~ 3 3 3 3 3 3 3 3 ~ 1 ~ 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 2 3 3 3 3 3 3 2 2 z z 2 2 2 2 ~ 2 ~ 2 2 2 ~ 2 2 2 2 2 2 2 2 z . 2 2 2 2 2 2 3 3 ] 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 ~ 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 2 ~ t ~ 3 3 3 ~ 3 ~ 3 3 3 3 3 3 3 3 3 3 ~ 3 ~ 3 3 3 ~ 3 2 2 2 2 2 2 ~ 2 2 ~ 2 2 ~ 2 z 2 2 2 2 2 2 2 2 2 2 2 2 2 z 2 ~ 2 z 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 ~ 3 3 2 1 t ~ 3 ~ 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 ~ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 z Z 2 2 2 2 2 2 2 2 2 ~ Z 2 2 ~ 2 2 2 2 ~ 3 3 3 3 ~ 3 3 3 ~ 3 3 3 3 3 3 3 ~ 3 3 3 3 3 ~ 3 3 3 2 2 ~ ~ 2 $ ~ 2 3 3 3 3 3 3 3 ~ 3 ~ 3 3 3 ~ 3 2 2 ~ 2 2 2 Z 2 2 ~ 2 t ~ z 2 z 2 z 2 2 2 2 2 2 ~ 2 2 2 ~ 2 ~ z 2 ~ 2 2 ~ 2 2 2 Z 2 ~ 2 2 ~ ] 3 3 ~ 3 3 3 3 3 3 ~ 3 3 3 3 3 ~ 3 2 2 2 ~ ~ 2 2 2 2 2 3 3 3 3 3 3 3 2 Z 2 2 2 2 2 2 2 2 2 z ~ 2 2 z 2 2 2 ~ Z 2 2 2 ~ Z 2 ~ 2 ~ 2 ~ 2 2 ~ 2 Z 2 2 2 2 2 2 2 ~ 2 2 2 2 ~ z 2 2 2 2 2 2 2 ~ 2 2 3 2 z 2 Z 2 2 2 2 2 2 2 ~ ~ 2 2 2 ~ 2 ~ 2 2 ~ 2 ~ 2 2 2 2 2 2 ~ 2 2 ~ 2 2 2 2 2 2 ~ 2 ~ 2 2 2 ~ 2 ~ 2 ~ 2 ~ 2 2 Z z ~ z 2 2 2 2 ~ 2 ~ 2 2 2 2 ~ 2 2 2 2 ~ 2 2 ~ 2 2 2 2 2 ~ 2 2 ~ 2 2 2 2 2 ~ ~ 2 2 ~ 2 2 2 2 ~ 2 2 ~ 2 2 2 ~ Z 2 2 Z ~ 2 2 2 ~ 2 2 2 2 ~ 2 2 Z ~ z 2 2 ~ 2 ~ 2 2 ~ 2 2 2 2 2 2 ~ 2 2 2 2 ~ 2 ~ 2 ~ 2 2 ~ 2 2 2 ~ 2 2 ~ 2 2 2 2 2 2 ~ 2 ~ 2 2 ~ I 2 2 2 ~ 2 2 ~ 2 2 2 2 2 2 ~ 2 2 2 2 2 2 ~ 2 2 2 2 ~ 2 ~ 2 2 2 2 ~ 2 ~ 2 Z ~ z 2 ~ 2 2 ~ 2 2 2 ~ 2 ~ 2 ~ 2 2 2 2 2 ~ 2 2 2 2 2 2 ~ 2 2 ~ 2 ~ 2 2 2 2 2 2 2 Z 2 2 2 2 2 2 2 ~

3o 61 9e t2 | 15e toe

HERN RNOMRLY,M (OEG>

Fig. 4.10 Number of interations needed to converge by Laguerre's method using the starting value of Eqs. (4.29) and (4.30).

Page 12: Orbital Mechanic: 4. Position and Velocity as a Function of Time

46 ORBITAL MECHANICS

E C O , ~ P 9 9 '

C , E N ' T ' R,, I @

C i ° T , Y ,

I 4

14

;l 4 9 ~ 7 ;14

i 4 9 ~ l i ' 14

, I 4 $9@ 1 4

| 4

9 9 4 L 4

I! 4 9 9 3 !14

!! 4

~ P 2 i l 4

14

• 9 1 i 4

14

1 , 9 9 i l q

@

4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ; ~ 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3

4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3

3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3

3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 : 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 ; ~ 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 ~ 3 ~

1@ 2 8 3@ 4@ " 8 $@

MERN RNOMQLY,M <0E(3> Fig. 4.11 Number of interations needed to converge by Laguerre's method in the high-e/low-M region using the starting value of Eqs. (4.29) and (4.30)

~ A ~ # q 2 ~ l l l L t l l i n l l i 4 # l l l l l l l l l l ~ l l l l l l i l l l l l l l l

l l i Z l l l l l l l l l l l I . I l l l l l l l J i l l J l l I

l l l l l l l l l l l l l l l 1 4 r l l l l l l l l l l l l i 1 4 3 1 1 1 L I 1 1 1 1 1 1

I l l t t l l l l l l l l l l l

I , I I l l ~ l l l l l l l l l l l ! 11141 /11111111 ~ m i l ~ l J l l l l l l l l

E 111114331211111 1.7 ~ l l l l ~ 4 l ? 2 l l l l l

l i l l T ~ t l l 2 Z l l l l C l * ~ l i l 4 1 l l 2 1 1 1 l

i l l l l l ~ 4 l l l l l l l E , l i l l i i ~ l l l l / l l I

1 1 ~ l l l l O # S i l l Z l l l l l l l A I ? 1 4 1 1 l l l l l

T i l l i l # l ~ t l l l l l l R I n a i t / l ~ 4 l ) / l l l

@ t l i l i 7 1 ~ l l l l l l l I t A I l l i # l ~ l l l l l l l C l + @ l l l y l # t ~ l l ] l Z l I

e l l * t i l ~ 1 3 3 1 l l l I @ l t l l # i ~ 4 1 1 1 Z l Z l T 011 t0# I~41311211

@ i l l # l l $ 4 4 2 ~ l Z l l y 1-4 G A I l l I ~ 4 1 1 l Z l Z l

I I I l i i 5 4 4 1 3 1 1 2 Z I e t # l i ~ 4 4 ~ l l l l l l

A @ l / i $ ~ 4 q l l 3 1 Z Z l l E , . l 1 1 1 ~ 3 + 4 1 I I Z l l l l l

0 1 ~ 1 4 1 1 3 1 1 l l l l i v e ~ 4 l l l l l l l l l l l

1 4 4 ~ 3 3 l ) I l l l l 1 1 1 O ( ) 3 ~ Z l / l l l l l l l i l 3 1 1 l l l l l l i l i l l

i , l I l l l l l l l Z l i l i l l l 0 l l l l l l i i t l l i l l i 1 l l l Z l l i l i i l l i i l O l l i i i i l l t l l i l l i e i l i l l i l l l l l l l l l

1.1 t i l l l l l l i i l l l i i l l l l i l l l l l l l l l l i l I I I I l l l l l l l l l l l l

i i i l l l l i l l l l l l l l l l l l l l l l l l l l l 111 I I I I I I I I I l l l l l l l l l l l l l l l l i i i I l l l l l l l l l l l l l l l l l l l l l l l l l I I I I I I I I I I I t l l l l l l l l l l l l l l l l l I l l I l l l l l l l l l i l l l l l l l l l l l l l i l i l l i l l l i l i l l i l l l l t l l i l l t l l l l l I I I I l l l i l i l i l l l l l i l l l l i l l l l i l l l I I I I l l l l l l l l l l l l i i l l l l l i l l l i i l l l i l l i l l l l i i l i l l l i l l l i l i l i i l l i l l l i l l l l l l l l l l l i i l i l l l l l l l l l i l l l l i i l l l l i i l i l i l l i l i l l i l l l l l l l l l l l I l i l l i l i l i l l i i l l l l l l l l i l i l l l l l l

l i l i l l l l l l l i l l i l l l i l l l l l l l l i l l l l l l i l l l l i l i i l i i l i l l l i l i l l l l l i l l i l i l l i L i i l l i l l l l i l i i l l l l l l i i l l i i l i l l l l l l I I I l i L I l l l i i l l l L i l l l l l l i l l i l l i l i l l i i l i l l l l l i l l l l l l i l l l l l l l l i l l l i l l i l I l l i l l l i l l i l l l l l l l l t l l l l l l i l l l l l l i l i l i l i l i l l i l l l l i l l l l l l l l l l l l l l l t l l I l l l i l i l l l l l l i l i i l i l i l l i l l i l l i l i l i I I I I I I I I l l l i i l l l i l l i l i i l i i l l l l l l i i l i l l i l i i l i l i l i l i i l l i l l l i l t i l i l l l i i I l l i l l l l i l i l l l l l i l i l l l l l l l l l l l i i l l i l l l l i l i l l l l l l l l l l l l l l l l i l i l l i i l l l I I I I I I I I I I I I I I I I I V l l l l I I I I I I I I I I I I l l l l i l l I l l i l l l l l I l l i l l l l l l I i l l l l l l l I l J l l l l l l l I I I I I I I I I I l l l l l l l l l I I I l l l l t l l l l l l l l l l l I l l l l i l l l I l l l i l l l l l l l l l i l l l l I I 11111111 i l l l l r l l l l I I I I I I I I I I I I I 1 1 t 1 1 1 1 l i l l l l l l l l i l l l l I l l l l l l l l l l l l l l l l i i 11111111 I I I I 1 1 1 1 1 1 I l l l l l l l l l I I I I 1 1 1 1 1 1 I I I I I I 1 1 1 1 I l l l l l i l l l i l l l l l l l l l I I I l i l l l l l I I I I I I I I I I I I I I I I l i l l I I I I I I I I I I I J l l l l l l l l I l l l l l l l l l I l l l I I I I I I I I I l l l l l I I I I I I I I i l i l l l l l i l l l l l l l I I I I l l l l l l l l l l l l l l l I I I I i i i i i i I l l l l l l l l I I I I I i I I I l i l l l l l l l l I I I I i i i i i 1 1 1 1 1 1 1 1 1 1 J i l l

l:lllt:lli:l lltlt:llt:il l t l l l l l l l l l l i l l l i l l l l l l l i l l i l l l l l l i l i l l l l l l l l l l l

I I I I I I I I I i i i l l l l l l l l l l l l I I I I I I I I I I I I I I I I I I I 1 1 1 1 1 i I i i I l l l l l l l I l l l l t l i l l l i I l l l l l l l l l i l I11111111111 I l i l l l l l l l l l I I i i i i i i i i i i

IIII:::IILIL

* l Z Z l Z Z l l l Z ~ l ~ z Z Z Z l l i Z Z l i i Z l l L l l ~ l i l l l i ~ Z : Z l ~ l l i l l i l Z Z n l ~ Z l Z ~ I I I I I l l l Z l l l l Z Z l I I I Z l l l Z l l l I Z l l l I l l l Z Z l l l l l Z l l l l Z l l l l l l Z l l l Z l Z l i I l i l l l Z l l l l l l l l l l l l l I l l l l l l l l l l l I l i l l l l l l l l Z 2 1 1 l l l l l l l l l l l l l l l l i I l i i l l l i l l l l l l l l l l l l l l l l l l l l l l I l i i l l l l l l i l l l l l l l l l l l l l l l l l l l I l l l l l l l l l Z l l l l l l l l l l l l l l l l l l l i i l l l i Z l Z Z l l t l Z Z l l l l l l l Z l l l l l l I I I I l i l l l l l l l l l l l l l l l l l l i l l l i l l i l i l l l * l l i l l l l l l l l l l l l l l l l l i l i l l l l l l l l l Z l l l l l l l l l 2 1 1 2 1 1 1 1 1 1 i l i l l i i l i l l l l Z l l l l l l 2 1 1 2 l l Z i l l i l l l l i i l i l l l l l l l l l l l l l l l l l l l l i i i l i l i l l l i l l l l l l l l l l l l l l l l l l l l I l l i l l l l l l l l l l l l l l l Z l l l l l l l i l l I l l i l l i l l l l l l l l l l l l l l l l l l i l l l i i l i l l l l l l l i l l i l l l l l l l l l l l i l l l l i l i l l l i l l i I l l l i l l l l i l i l i l i l l I l l l i l l l i i l i l l l l l i l l l l l i l l l l l l l l l l i l i i I I I I I l l l i l l l l i l l l l I l l l l l l l l i I I I l i l l l l l l i l l l l l l l i l l l l l l i i i i l l l i l i l l i i l l l l i i i l i l l l l l l i I I I I l l l i l i l l l l l i l l I I I I I I I l i l i i l i l l l l l l i i l l l i l l l l i i l l i l l l i l l l l l l l l l l l l l i l l l I I I I I I I I l i I I I I I I I I I I I l l l l l l l i l t l l l l l l l i l l l l l l l l l l l l l i l i l I I I I I l i i l l I l l i l l l l l i l i i l i l l i i l l l l l l l l l I l i l l l l l l l l l l i l i l i I l l l l l l l l i l l l i l l l l i l l l l l l i l l

I I L l l l l l I I I I I I I I 11111111 I l l l l l l l I I I I 1 1 1 1 I I I I I I I I I1111111 I t l l l l l l I l l l l l l l I I I I I I t l i l t l l l l l I I I I l l t t l l l l l l l l l I l l l l l l l e 11111111£ l i l l l l l l l I I I I I I I I I l i l l l l l l l l i l l l l l l l l l l l l l l l 0 I l l l l l l l l I l i l l l l l e I l i i l l l l l i l l l l l l l l t l l l l l l l O l i i l l i l l l I l l l l l l l $ I l t l l t l l l i l l i l l l l l I l l l l l l l l f l l l l l l l l I l l i l t l l l

I I I l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l t l l l l l l l l l l l l l l l l l l l l t l l l l l l l l l l l l l l l l l l l I I I I L I I I l l l l l l l l l l l l l l l l l l l l l l l i l l l l l l l l m I l l l l i l l l l l l l l l l l l l l l l l L I I I I I l l l l l l l l l l l l I I I I I I I I I I I I t l l l l l l l l l l l l l l l l l l l l l l l l l l l l I l l i l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l I I I l l l l l l l l l l l l l l l l l l L I l l l l l l l l l l l l l l l I l l l l l l l l l l l l l l l t l l l l L I I I I I I I I I I l l l l l l l l l i l l t l l l l l l l l l l l l L I I I I I I l i l l l l l l l l l i l l l l l l l i l l l l l l l i l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l I I I l l l l l l l l l l l l l l l l l l i l l l l l l l l l l l l l l l l l l | I t l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l I I I I I I l i l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ~ i l l l l i l i l l l l l l l l l l l l l l l l l l l i l l l l l t l l l t l l l t l l l i l l l l i l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l I I I I I I I I l l l l l i l l l l l l l l l l l l L I I I t l l l l l l l l l l

e l l l l l l l l l l l l l l l l l l l l i l l l l l l l l l I I I I I I I I I I I l l l l l l l l l l l l l l l l | l l l l i l l l l l l l l l l l l l l l l l l l l l l l ! 8 1 1 1 1 1 1 1 i l l l l l i l l l l l l l l l l l l l l l l i l l l l l l l l l l l l l l l l l l l l l i t l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

Fig. 4.12

Je ~l ~e l i e ise leo

MEAN ANOMALY,M ~DEG)

Percent of starting values, as calculated by Eqs. (4.29) and (4.30).

Page 13: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 47

E

F N I ];~;?

T I l l ~ i

T . , , ,

Y • l I I

.% 0 . $ $

E

Fig. 4.13

A A A A A ? ~ A ] 2 2 ~ A A A A A ? ~ 4 3 Z Z 2 A A A A I T ~ 4 ) 2 Z 2

J A A A A A ? ~ 4 3 2 2 2 A A A A A T ~ 4 3 2 Z Z A A & A A T ~ 4 3 Z Z Z

) A ~ A A A 7 5 4 3 2 Z 2 D A A A A A ? ~ 4 3 2 ~ 2 ) A A A A A ? ~ 4 3 2 Z 2 | A A A ~ A ? 3 4 3 2 2 2 1 | A A A A A 7 5 4 3 2 2 2 ) 4 A A m 9 7 5 4 1 2 2 2

l ~ 4 R R $ ? ~ 4 3 2 2 Z I

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I | 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 I I 1 1 1 1 1 1 1 1 1 I I I 1 | 1 1 I l l l i l l l l l l I I 1 1 1 i l 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I I I I I

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I I I l l l l l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I I I I I

1 1 1 1 1 1 1 1 1 1 I I i l 1 1 1 1 I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1

11 I I I 1 I I I I I I I I I I I I I I I I I 11 I I I I I t

I i i l 11"11 1 1 1 1 1 1 1 I I I 1 I I I 1 1 1 1 1 1 1 I I I I I I I 1 1 1 1 1 1 1 I I I I I I I I I 1 1 1 1 1 I I I 1 I 11 1 1 1 1 1 1 1

I I I 1 1 I I I I 1 1 1 1 1 1 I I I I I I I 1 1 1 1 1 1 1 I I I I I I 1 1 1 1 1 1 1 1 I I I I I I I I I I I I I1 1 1 1 1 1 1 1 1 1 1 1 I I 1 1 1 1 1 1 1 1 1 1 1 I I I I I I I 1 1 1 1 1 1 I I I 1 1 1 1 1 1 1 1 1 1 i l I 1 1 1 1 1 1 1 1 1 1

I I I 1 1 1 1 1 1 1 1 1 1 1 I I I I I 1 1 1 1 1 1 1 1 1 1

,I, t I I l ~ I I I [

:',:f I l l [

sl 1 r I I I I I I I I I ! 11 I I I I

I A A A A t ? ~ ( ) 2 2 ! I I I I I I I I I I I I I I I l i l l I I I | 1 l l l l l l l l i | l l l l l i A A I A ) ? ~ 4 ) Z 2 1 I l l l l i l l l l l I 1 1 1 1 1 1 1 I I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

f l ~ A ~ 7 ~ q ) ~ 2 Z I I I l l l l l l l l 1 1 1 1 1 1 1 1 111 I1 I l l l l l l l l l l l l l l

e I ~ Z0 ) | 40 ~e 60

MEAN ANOMALY,M <OEG>

Percent error of starting values in the high-e~ow-M region, as calculated by Eqs. (4.29) and (4.30).

rounded up to the nearest integer and presented so that, as an aggregate, a contour of like percent error is readily visible from the figure.

E0 - E Percent error -- - - × 100 (4.31)

E

where E0 is the starting value calculated from Eqs. (4.29) and (4.30) and E is the actual eccentric anomaly correct to within 10 -12 rad.

With the exception of the high-e/low-M region, where the percent errors are 10% or greater (denoted by the letters A in the figures), the errors are less than 1% in magnitude in most instances.

Given that the starting values of Eqs. (4.29) and (4.30) are very close to the actual eccentric anomaly values, we may ask if their application to Newton's original method will eliminate the divergence problem encountered earlier. The results of this application are shown in Figs. 4.14 and 4.15. The divergence problem has been eliminated, but a fair number of iterations are still required in the extremely high-e and low-M region.

By way of comparison, the accuracy requirements of the solved-for eccentric anomaly are relaxed to 10 -5 tad (approx. 0.0006 deg). Figures 4.16a-4.16c show the number of iterations needed to converge to this accuracy. The superiority of the combined Laguerre/initial starting value method is clearly demonstrated in these and the previous figures.

So far, the comparisons between Newton's and Laguerre's methods have been based on the number of iterations required to converge to a specified tolerance. That is, we have been concerned primarily with the issue of convergence. We have viewed a smaller number of iterations as a sign of faster convergence, meaning that, as the desired value is approached more efficiently, we expect diverging to be minimized. A smaller number of iterations, however, does not necessarily imply a smaller (or shorter) computation time, as we shall see in the computing time chart of Fig. 4.17.

Page 14: Orbital Mechanic: 4. Position and Velocity as a Function of Time

48 ORBITAL MECHANICS

~ 4 4 4 4 4 ~ ] ~ 3 ~ z 3 ~ 3 ~ 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 ` 4 ~ 4 4 q 4 4 4 4 ~ 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ ~ 4 ~ 4 ~ 4 3 ~ ] ~ 3 3 ~ 3 3 3 ~ 3 ~ 3 4 4 4 4 4 4 4 ~ 4 4 4 4 ~ 4 ~ 4 4 4 4 ~ 4 4 4 4 ~ 4 ~ 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 ~ + + ~ 4 ~ 4 3 3 ~ 3 + Z Z ~ Z + + ~ + 3 + ~ + 3 + 3 + ~ 4 4 ~ 4 ~ 4 4 ~ 4 ~ 4 ~ 4 ~ 4 4 4 ~ 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 ~ 4 4 ~ 4 ~ 4 4 ~ 4 4 4 4 + 3 ~ 3 ~ 4 4 4 4 4 4 3 3 3 3 3 3 ~ 3 ~ 2 3 3 3 3 3 3 3 3 ~ 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 ~ ~ 4 4 4 4 4 4 4 4 3 ] ~ 3 3 3 3 ~ 2 ~ 3 3 3 3 3 ~ 3 ] ~ 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 3 ~

e ~ 4 4 ~ 4 4 4 3 3 ~ 3 ~ 3 ~ 3 3 3 3 3 ~ Z 3 3 3 ~ 3 ~ 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 ~ 4~3333443]333~33332~33~33333~334444444444444444444444444~4444444444444444444444444443333 444444444443~33~Z~3~33~3~3~3~4444444444444444444444444444444444444444444444~44444333 3 44444~444444333333~3~23333~3~33 ]344444444444444444444444444444444444~444444444444444~33 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 3 ) ~ Z 3 ~ 3 3 3 3 3 3 3 3 ~ 3 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 3 3 3 ~ 3

e+o+ ~44444444~44~3~333~33~33~33~4444444~444444444~4444444444444444444444444444444433333 : d444444444~44333~33~3~3333]~3~33~34444444444444444444444444444444444444~4444444444433333~

~444444444444443~333333~3333~3 ]~ ]~344444444444444444444444444444444444444444444444433333 ~4444444~4~44444~3~3 ]333~23~33~33~444444444444444444444444444444444444~444444444443~333

e ~ 7 ~ 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 ~ ] 3 3 ~ 3 ~ 3 ~ 3 3 3 3 3 ~ 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 3 ~ 3 ~ 3 4444444444444444~3333333~3333~333]~34444444444444444444444~44444444444444444444444~33~3 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 3 ~ 3 3 3 ~ 3 3 ~ 3 3 ~ 3 3 3 3 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 3 3 3

E 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ] 3 ~ 3 l 3 ~ ] ~ 3 ~ 3 ] ] ] 3 3 ~ 3 3 3 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 ~ 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 3 ~ 3 3 ~ ] ~4444444444~44444333333332233333~333333344~44444444444444444444~44444444444~4444444333333~

N j + £ 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 3 ~ ) 3 3 3 ~ 3 ~ 3 3 3 ~ 3 3 3 3 ~ 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 3 ~ 3 3 3 ~ T 4 4 4 ~ 4 4 4 4 4 ~ 4 4 4 4 4 4 4 3 3 ~ 3 ~ 3 ~ 3 ~ ] 3 ~ ] 3 ) 3 3 3 4 4 4 4 4 ~ d 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 3 ~ 3 3 ~

4444444444444444443333~3333~2]~3333333]33~34444444444444444444444444444444444444444333333~ R 4 4 4 4 ~ 4 4 4 4 4 4 4 4 ~ 4 ~ 4 4 4 3 ) 3 ~ 3 ~ 3 3 ~ 3 ~ ] ) 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 ~ 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 ~ 3 ~ 3 ]

444444444444444444~33~333~33~Z333~3~333~3~4444~44444444~444444644444~444444444433~33 ]3~ I 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 3 ~ 3 3 ~ ) 3 3 ~ 3 ~ 3 ~ 3 3 ~ 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 3 ~ 3 3 ~

3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 3 ~ 3 ~ 3 ~ 3 ~ 3 ] 3 3 3 ~ 3 ~ 3 3 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 ~ 3 3 3 3 3 ~ s 3444~44444444444444 ]3 ]333~33~23333~3333)333333444444444444444444444444444444444~33333~3~ ] 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 ~ ~ 3 ~ ] ~ 4 4 4 4 ~ 4 4 4 4 4 4 4 4 ~ 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 3 ~ 3 ~

T ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 3 ] ~ 3 ~ 3 3 3 3 ~ 2 3 ~ 3 ~ 3 ~ 3 3 3 ~ 3 3 3 4 4 ~ 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 ~ 3 3 ~ 3 3 3 3 3 ~ y 1,4 ~ 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 ~ 3 Z ~ 3 ~ 3 ~ 3 3 ~ ] 3 3 3 ~ 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 3 3 3 3 3 3 3 3 3 ] ]

~ 3 ] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 ~ 3 ~ 3 3 3 ~ 2 Z ~ 3 2 3 ~ 3 3 3 ~ 3 3 3 ~ 3 ] 3 3 3 ~ 4 4 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 4 4 4 4 4 4 4 ] 3 3 3 ~ 3 3 3 3 ~ 3 j ~ 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 ~ 3 3 3 3 ~ 3 3 ~ ] 3 ~ 3 ~ 3 3 3 ~ 3 3 3 3 3 ] 3 3 3 3 ~ 4 4 4 4 4 4 4 4 4 ~ 4 4 4 4 ~ 4 4 4 4 3 ~ 3 3 3 3 3 ~ 3 3 3 3 [ ~ 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 ~ 3 3 3 ~ 3 3 3 3 3 3 ~ 3 ~ 3 3 ~ 3 3 3 3 3 ~ ] ] ~ 3 3 ~ 3 3 ~ 3 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 ~ 3 3 ] 3 3 3 3 ] 3 ] 3 3 ~ ; 33~44444444444444433333~3~333333322~33333~33~33333333333~33344444444443333333333333333 I

E 0+3 ~333344~44444444~433333)3~333333333~23333333333333333333333333~33)3~3)333333~3333333333331 ~ 3 3 3 3 3 4 ~ 4 ~ 4 4 4 4 ~ 4 4 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ) 2 2 ~ 3 3 3 ~ 3 3 3 3 ~ 3 3 3 ~ 3 3 ~ 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 ~ 3 ] 3 3 3 ~ 3 3 3 3 3 3 ~ 3 3 3 3 3 3 1

V ~3~333334~44~443333~333333333333333)~2ZZ3333)3333333333~3333333333333333~33)333~3~333~3333~ ~ 3 ~ 3 ~ 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ 2 2 2 3 3 3 3 3 3 $ 3 3 3 3 3 3 3 3 3 ~ 3 3 ~ 3 3 3 ~ 3 ~ 3 ~ 3 3 ) 3 ~ 3 ~ 3 3 3 ~ 3 3 ~ 3 3 3 3 3 3 ~ •3333333333•33333333333333333333333•3222•••2••33333•3)33333333•3•3•33••333•3333•3332333333t ~3333333~33~3333 )~3333~33333~333~3~2~2Z333~3333333333333~33333~33333333333~3 )333333333~

S.2 ~33333333333333~33333333333333333)~333~22Z3~3~3~333333~333333333~33333333333333~3333$3333~ ~3~33333333~33~3333333333)3333]33~3333~22~233333~333333333333333333333333~3~3333~333333333~ ~33~3~333~3)3333333333333333)~3333~3322ZZ22~3)3333333333~3~333333333~333333333~3333333333~ •33•333333•3333333333333333333333333•]3•2•22•3333333333••333)33333333333333••3333•33333333• ~3333333333J333~33333333333333333333~33222222~3333333333333~3)333)333J33333333333~3333333~

8 . 1 ~3333333333333~3333)3333333~3~33333~333~2222~2~3333333~333333)3333333J~3333333333333333$33t &3333~33)33333333333333333333333333)3322222~2~223333333333~333333333333333333333333333333~ ~333333333333~3333333333333333~333333~2Z2~2~2~2~2~2~333333333333333$3333333~333~33333333331 L 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 ~ Z Z ~ 2 Z ~ 2 ~ 2 ~ 2 2 2 2 2 ~ 2 3 3 3 3 3 ~ 3 3 3 3 3 3 3 3 ) ~ 3 3 3 3 3 ) 3 ~ 3 3 3 3 3 3 3 J 2 2 ~

3O ~e se ~e i~+ l e e

Fig. 4.14 Number of iterations needed to converge by Newton's method using the starting value of Eqs. (4.29) and (4.30).

E

8 . ~ 9 8

E N i . $~7

T l, , s ,

R • . 5~5~ 'q

I C

T i . ~$5,

Y o . , , ,

| - ~ $

E v

Fig. 4.15

7 6 ~ 5 5 5 ~ 5 4 4 4 4 4 4 4 4 4 4 4 ? $ 6 ~ 5 5 ~ 4 4 4 4 4 4 4 4 4 4 4 ? C ~ 5 5 ~ 4 4 4 4 4 4 4 4 4 4 4 7 ~ 6 5 ~ 4 4 4 4 4 4 4 4 4 4 4 7 6 ~ 5 5 4 4 4 4 4 4 4 4 4 4 4 7 6 6 ~ 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 7 6 6 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 7 6 G ~ 5 S 4 4 4 4 4 4 4 4 4 4 4 T £ £ 5 5 S ~ 5 4 ~ 4 4 4 4 4 4 4 4 4 ? £ £ S ~ S ~ 4 4 4 4 4 4 4 4 4 4 4 ~ £ £ ~ 5 5 5 4 4 4 4 4 4 4 4 4 4 4 7 £ £ ~ 5 ~ 4 4 4 4 4 4 4 4 4 4 4 7 £ £ 5 5 5 ~ 4 4 4 4 4 4 4 4 4 4 4 ? £ £ ~ S S ~ $ 4 4 4 4 4 4 4 4 4 4 4 ? £ £ ~ 4 4 4 4 4 4 4 4 4 4 4 ~ £ £ ~ 4 4 4 4 4 4 4 4 4 4 4 ? £ £ S S ~ S ~ 4 4 4 4 4 4 4 4 4 4 4 ? E £ ~ 4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3 2 2 Z Z 2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 Z Z Z 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 2 2 2 3 1 3 3 3 3 3 1 3 3 3 3 1 3 3 1 3 3 3 3 1 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ] 3 3 3 3 2 2 2 2 2 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 Z t 2 Z Z 3 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 3 3 2 2 1 2 2 Z 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 Z 2 2 3 3 Z Z 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 Z 2 2 2 Z Z 3 Z Z 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ] 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 Z Z 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 : 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 :

? 6G 5~ ~5 $4 44 44 4 4 4 4 44 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 22 ,33~13~1,J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 :

O 18 211 311 411 $1 65

MEBN BNDMBLY,H < hE8 )

Number of iterations needed to converge by Newton's method in the high-e/low-M region using the starting value of Eqs. (4.29) and (4.30).

Page 15: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 49

~ 4 4 e 4 4 4 ~ 4 4 4 4 ~ 4 3 3 3 3 3 ] ~ J ~ 3 3 ~ J ~ | 3 3 3 3 ~ 3 ] 3 ~ 3 3 3 ~ ] ~ ) 3 ] 3 ~ 3 ] ) ~ 3 ] ] ~ 3 ~ ] | ~ ] 3 3 3 ~ 3 3 3 3 3 2 2 2 ~ ~ 4 ~ 4 4 4 4 4 4 4 4 4 4 4 3 ~ 3 3 3 ~ 3 3 3 3 ~ 3 | 3 3 ~ 3 3 3 3 ~ 3 ~ 3 ~ ] | 3 ] ] ~ 3 3 3 3 ~ 3 3 3 3 ~ 3 ~ 3 ~ 3 3 3 3 3 3 ~ 3 3 3 ~ ] 3 3 3 3 3 3 ~ 3 3 ~ 3 3 3 3 2 2 : ~ 4 4 q 4 4 4 4 4 4 4 4 4 4 3 1 ~ 3 3 3 ] ~ 2 ] 3 ] ] ; ~ 3 ~ 3 3 ] ~ 2 ~ 3 ] ] 3 3 3 3 3 3 ] ) 3 3 ~ ] ] ~ 3 3 2 ~ 3 ~ ] 3 3 3 3 ~ 3 3 3 3 3 3 3 3 3 ~ 3 3 3 ~ 3 3 ] ~ z z 1 ~ 4 4 4 4 4 4 4 4 4 4 4 4 4 3 $ 3 ~ 3 3 ] ~ 3 ~ 2 ] 3 3 3 3 3 ] ] 3 3 3 3 3 3 $ ] 3 3 ~ ] ] 3 3 ] ~ 3 ] ~ 3 3 ~ ] ] ] ] 3 3 ~ 3 3 3 ) 3 3 3 ~ | 3 3 ] 3 3 3 | 3 3 3 3 ] 3 3 ~ 2 2 : ~ 4 4 4 4 4 4 4 ~ 4 4 4 4 4 ~ 3 3 3 3 3 3 3 3 3 3 3 ] 3 3 3 3 ~ 3 ~ 3 3 3 3 ~ 3 3 3 ~ 3 $ 3 ~ ; 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ 3 $ 3 $ 3 3 3 ~ 3 3 ] ] $ 3 ~ 3 ] ~ 3 z ~ 2 ~

~ . 9 ~ 3 4 4 4 ~ e 4 4 4 4 4 4 4 3 3 ~ 3 ~ 3 3 ~ 3 3 ~ 3 3 3 3 3 3 ] ~ 3 2 ] ) 3 ~ 3 3 3 3 3 3 J ~ 3 ~ J 3 $ 3 3 ] 3 3 3 3 ~ 3 3 3 3 $ 3 ~ 3 ] ~ 3 ] ~ ] 3 ] ~ 3 3 3 ~ 2 | z : ~ 3 4 ~ 4 4 4 4 4 4 4 4 4 4 ~ 3 3 3 ~ 3 ] 3 ~ ) 3 ~ 3 3 3 ~ ) ~ 3 3 3 3 3 ] ~ 3 ] ] 3 3 ~ 3 ~ 3 3 3 ~ ] | 3 3 ] ~ 3 ~ 3 ~ 3 ~ 3 3 3 3 3 3 3 ~ 3 3 3 ~ 3 3 ~ ) 3 ~ ~ 3 ~ 4 4 4 ~ 4 4 4 4 4 4 4 3 3 ~ 3 3 3 ] 3 3 ~ 3 ] 3 ~ ) ] ~ 3 ~ 3 3 3 ~ 3 ~ 3 3 ~ 3 3 3 3 3 ~ ] ~ 3 3 3 ~ ] 3 ] | ~ 3 ~ ] ~ 3 3 3 3 ~ $ ] ] ~ 3 3 3 ~ 3 3 ~ z l : 3 ) 4 4 ~ 4 4 4 4 4 ~ J 3 3 ~ 3 3 3 3 ~ 3 ~ 3 3 2 3 3 ~ 3 3 3 3 3 ] 3 ~ 3 3 3 ~ 3 3 3 ] 3 3 3 3 3 ~ 3 ~ 3 $ ~ | ] ~ 3 ~ 3 3 ~ 3 ~ 3 3 ~ 3 ~ 3 3 3 $ 3 3 ~ 3 3 3 ~ 3 ~ 2 ~ j 3 3 ~ 4 ~ 4 3 3 ~ 3 3 ~ 3 3 3 3 3 3 ~ 3 ~ 3 3 3 ~ 3 3 3 3 ~ 3 ] 3 3 3 3 3 ~ 3 3 3 3 3 ~ 3 3 3 ~ 3 3 3 3 3 $ ~ 3 3 3 3 3 ~ 3 3 3 3 3 3 3 ~ 3 ] 3 3 3 ~ 3 3 3 3 3 3 3 3 3 2 z 2 ~

~ | ~ 3 3 3 3 ~ 3 3 3 3 3 3 ~ 3 ~ 3 3 3 3 3 3 ] 3 3 3 ~ 3 3 ~ 3 3 $ ~ 3 3 3 ~ 3 ] ~ 3 3 ~ 3 3 ~ 3 ~ 3 3 ~ 3 2 ~ 3 ~ 3 ) 3 3 $ 3 3 3 3 ~ 3 3 ~ 3 3 ] 3 3 ] ~ 3 3 3 $ ~ 3 ~ 2 ~ 2 1 ~ 3 3 ~ ] 3 3 ~ ] 3 3 3 3 3 ~ 3 3 3 ~ 3 3 ~ 3 ~ 3 ~ 3 3 ~ 3 $ 3 ~ 3 ] 3 3 3 3 3 3 ~ 3 ~ 3 3 ~ 3 3 3 ~ 3 3 3 3 3 3 ~ ] 3 3 $ 3 ~ 3 3 ~ 3 3 ~ 3 ~ 3 ] 3 3 3 | ~ 3 3 3 3 2 2 ~ : ~ 3 3 3 3 ] 3 ~ 3 3 3 3 ~ 3 3 ~ 3 3 3 3 3 3 3 3 3 3 3 ~ ] 3 3 3 3 3 ~ 3 3 3 ~ ] 3 3 3 3 3 ] ~ 3 3 3 3 ] 3 ~ 3 3 3 3 3 3 3 3 ~ ] ] 3 3 3 ~ 3 ~ 3 3 3 3 3 ~ 3 3 3 ~ 3 2 ~

E ~ 3 ~ 3 ~ | 3 ~ ~ 3 ~ $ ~ 3 3 ~ 3 3 ~ ] ~ 3 ~ 3 ~ ] 3 ~ 3 ~ 3 ~ $ 3 3 ~ 3 ~ 2 ~ 1,7 ~ 3 ~ $ ~ ~ J ~ 3 ~ $ ~ 3 3 ~ 3 ~ 2 ~ 3 ~ 3 3 ~ 3 3 ~ 3 ~ 3 ~ 3 ~ $ $ 3 ~ $ 2 ~ 2 ~

~ 3 3 3 3 ~ 3 ~ 3 ~ 3 3 3 3 3 3 3 3 3 ~ 3 3 ~ 3 ~ 3 3 3 ] $ 3 3 3 3 3 ~ 3 J 3 ~ 3 3 3 ] 3 ] 3 ~ 2 3 ~ 3 ~ 3 3 ~ 3 3 2 3 3 3 3 ~ 3 3 ~ 3 3 3 3 3 3 3 ~ 3 3 ~ 2 ~ ~ 3 ~ 3 ~ | ~ 3 3 ~ 3 3 3 ] ~ $ ~ ] ~ 3 3 ~ $ ~ $ ~ $ 3 ~ 3 3 3 3 ~ 2 ~ 3 ~ ] ~ 3 ~ ] ~ ~ 3 ~ 3 ~ 3 ~ 3 3 ~ 3 ~ 3 ~ 3 ~ ~ 3 ~ 3 ~ 3 3 ~ 3 3 ~ | ~ ~ 3 3 3 $ 3 ~ 3 $ 3 $ 3 3 3 3 3 ~ 3 3 ~ 3 3 3 3 ~ $ ~ 3 ~ 3 ~ 3 ~ 3 ~ 3 3 ~ 3 ~ 3 3 3 ~ 3 ~ $ ] ~ 3 ~ | 3 ~ $ | 3 3 ~ 3 ; ~ 3 3 ~ 3 3 ~ 3 3 ~ 3 ~ ~ 3 ~ 3 ~ 3 ~ 3 ~ 3 ~ 3 ~ ] $ ~ 3 ~ 3 ~ ] ~ 3 ~ 3 ~ ] ~ 3 3 ~ 3 3 3 ~ 3 ~ 3 ~ 2 2 2 ~

~ . S ~ 3 3 3 3 3 3 3 3 3 3 ] 3 3 ~ 3 3 3 ~ 3 3 3 3 ~ 3 3 ~ 3 3 ~ 3 ~ ] 3 ~ 3 3 3 3 3 ~ 3 3 3 ] ~ 3 3 3 ~ 3 ~ 3 3 ~ 3 ~ 3 ~ 3 3 ~ 2 ~ 3 3 3 3 3 ] 3 ~ 3 3 3 ~ 2 1 T t ~ 3 ~ 3 ~ 3 3 ~ 3 $ ~ 3 ~ 3 ~ 3 ~ 3 3 ~ 3 ~ 3 3 ~ 3 ~ 3 ~ 3 ~ 3 ~ 3 ~ 2 ~

~ ] ~ 3 ~ 3 ~ 3 ~ | ~ 3 ~ 3 ~ ] ~ 3 ~ $ ~ 3 ~ 3 ~ 3 ~ 3 ~ 3 ~ 1 [ 3 3 ~ 3 ~ 3 ) 3 | 3 3 ~ 3 3 3 ~ 3 ~ 3 ~ 3 3 ~ 3 3 3 3 ~ 3 3 ~ 3 ] 3 3 ~ 3 ~ 3 3 3 ~ 3 3 3 3 3 ~ 3 ~ 3 ~ 3 ~ 3 3 3 ~ 3 3 3 3 ~ 3 3 ~ 3 | ) ~ 3 3 3 ~ 2 ~

I ~ 3 3 ~ 3 $ ~ 3 i ~ $ ~ 3 ~ ] ~ 3 ~ 3 ~ 3 ~ $ 3 ~ 3 ~ 3 ~ 3 ~ 2 ~ $ ~ 2 ~ 1 ' 1 " 1 ~ 1 1 3 3 3 3 3 3 1 3 3 3 3 3 1 3 3 1 3 3 1 1 3 1 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 1 3 1 3 1 1 3 3 1 1 3 3 3 3 3 3 1 1 3 3 ~ 1 ~ 3 1 3 1 1 3 1 3 1 3 1 ~ 33313~13113122~1

~ 3 ~ 3 3 3 ~ 3 3 ~ 3 3 3 3 ~ 3 3 ~ 3 ~ 3 3 3 3 3 3 ~ 3 ~ 3 ~ 3 3 ~ 3 | 3 3 ~ 3 ~ 3 ~ 3 ~ 3 3 3 ] ~ 3 3 ~ 3 ~ 3 3 ~ 3 ~ 3 ~ 2 2 ~ [ ~ z ~ 3 ~ 3 ~ 3 3 3 ~ 3 ~ $ ~ 3 ~ 3 ~ ~ ~ 3 ~ $ ~ 3 ~ 3 3 ~ 3 ~ 3 ~ z z ~ 2 ~ T [ ~ 3 3 ~ 3 3 ~ 3 ~ 3 ~ ] ~ 3 ~ $ ~ ~ ~ 3 ~ ~

[ 2 ] ~ 3 3 ~ ) 3 ~ 3 3 3 3 3 ~ 3 3 3 3 ~ 3 ~ 3 3 3 ~ 3 3 ~ 3 3 3 ~ 3 3 ~ 3 3 ~ 3 ] ~ 3 3 ~ $ ~ 3 ~ 3 $ 3 ~ 3 3 ~ 3 ~ ] ; 3 3 3 ~ ] ~ ] 3 3 ~ $ ] ~ ~ . 4 ` ~ ~ $ ~ ] ~ ~ ] ~ ] ~ 3 ~ 1 ~ 3 ~ 3 ~ 3 ~ 3 3 ~ 3 3 ~ | | ~

~ 2 ~ 3 ~ 3 3 ~ 3 3 3 3 3 3 3 3 ~ 3 ~ 3 3 3 $ ~ 3 ] 3 3 3 3 ~ 3 3 3 ~ 3 ] 3 ~ $ 3 ~ 3 ~ ] ~ 3 ] 3 3 $ ~ 3 $ ~ 3 3 3 | 3 ~ 3 3 3 $ 3 ~ 2 ~ | ~ ~ 3 ~ 3 ~ 3 3 ~ $ 3 3 3 3 3 3 3 3 ~ 3 3 ~ 3 ~ 3 ~ 3 ~ 3 3 3 ~ $ ~ 3 ~ 3 ~ 3 ~ ] 3 3 ~ 3 ] ] 3 ~ 3 3 3 3 ~ 3 ~ 2 ~ ~ 2 ~ 3 ~ 3 ~ 3 ~ 3 3 ] ~ $ 3 ~ 3 3 $ ~ 3 ~ ] 3 ~ 3 ] 3 ~ 3 ~ 3 3 ~ 3 $ ~ 3 ~ ] ~ ] 3 ] ~ 3 ] ] 3 3 ~ 3 ] ] ~ 3 ~ 3 ~ 3 ~

| . 1 , ~ 2 ~ 3 ~ | ~ 3 ~ ~ ] 3 ~ $ ~ 3 3 ] ~ 3 3 3 3 ~ $ ~ | ~ 3 ~ z ~ 2 2 ~ ~ 2 2 2 ~ 3 ~ 3 3 ~ 3 ~ 3 3 3 ~ 3 $ 3 3 ~ 3 3 3 ~ 3 ~ 3 ~ ] 3 3 3 ~ 3 3 3 ~ 3 3 3 3 ~ ] 3 ~ 3 ~ ] ~ 3 3 3 ~ 3 3 3 ~ ] ~ 3 3 ~ 3 3 ~ | ~ 2 ~ ~222 f333~3333~333333333333~3333~333333~3333~333~$~3~3333~333333333]333~333~33322~2z222~ ~ 2 2 2 3 3 3 ~ 3 ~ 3 3 3 3 ~ 3 3 ~ 3 3 ~ 3 ] 3 ~ ] 3 3 3 ] 3 ~ 3 3 ~ 2 ~ 3 3 3 3 3 ~ 3 ~ 3 3 3 3 3 3 3 3 3 3 ~ 3 ~ 3 | 3 3 3 3 3 $ 3 ~ 2 ~ 2 ~ 2 2 ~ 2 ~ ~ 2 2 2 ~ 3 ~ 3 3 3 3 ~ 3 3 3 3 3 ~ 3 3 3 3 ~ 3 3 ~ 3 ~ 3 3 3 3 3 ~ 3 2 3 3 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 3 ~ 3 3 3 3 3 3 ~ 3 3 ~ ] 3 3 3 3 ~ 3 3 2 f 2 2 ~ 2 ~ 2 2 2 ~ [ 2 z z 2 2 2 3 3 3 3 3 ~ 3 3 3 3 ~ 3 ~ 3 3 3 3 3 3 ~ 3 3 3 ~ 3 ~ 3 3 ~ 3 3 3 2 ~ 3 ~ 3 3 3 3 3 ~ 3 ~ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ~ 3 3 ~ $ ~ 3 3 2 ~ 2 2 2 2 2 z ~ 2 ~

~ . ~ 222~ 22~2~333~3333333~333333333~33333~2~333~3~3~]3~333333333]~33~333~3333~22~2 |222222~2~ ~ 2 2 2 2 ~ Z 2 2 3 ~ 3 3 3 3 3 3 ~ 3 3 3 ~ 3 3 3 3 3 3 3 3 ~ 3 3 ] 3 3 3 ~ 2 ~ 2 3 3 ~ 3 3 3 3 ~ 3 3 3 3 ~ 3 3 3 3 3 3 ] 3 ~ 3 3 ~ 3 3 ~ 3 ~ 2 2 z 2 2 ~ 2 2 z z ~ 2 2 ~ 2 ~ ~ 2 2 ~ 2 2 2 ~ 2 ~ 2 2 3 3 3 3 3 3 3 3 3 ~ 3 ~ 3 3 3 ~ 3 ~ 3 3 3 3 ~ 3 ~ 2 ~ 2 ~ 2 3 3 3 3 3 ~ 3 3 3 3 3 3 3 $ ~ 3 3 3 3 ~ 3 3 3 3 3 2 2 2 ~ 2 2 2 ~ 2 2 ~ 2 2 2 z 2 z ~ ~ 2 ~ 2 2 2 2 2 2 2 2 ~ 2 2 ~ 2 2 3 3 3 3 ~ 3 3 ~ 3 ~ 3 3 3 ~ 2 2 ~ 2 2 2 2 2 ~ 2 3 3 ~ 3 3 3 3 ~ 3 3 3 ~ 3 3 3 2 ~ 2 ~ Z 2 ~ 2 2 Z 2 2 2 ~ 2 2 2 ~ t 2 z 2 2 2 2 2 2 ~ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ~ 2 ~ 2 2 2 z 2 ~ 2 ~ 2 2 ? 2 2 2 ? 2 2 2 2 2 2 ~ 2 2 2 Z Z 2 2 2 2 2 2 ~ 2 ~ 2 ~ 2 2 2 2 ~ 2 z 2 2 2 2 2 ~ Z Z 2 2 z 2 ~

I . J i ~ 2 2 2 ~ 2 2 2 ~ 2 ~ 2 2 2 ~ 2 ~ 2 2 2 ~ 2 2 2 2 ~ 2 2 ~ 2 2 ~ 2 2 2 2 2 2 ~ 2 2 2 2 2 2 ~ 2 2 ~ 2 2 2 2 ~ 2 2 2 2 ~ 2 ~ 2 ~ 2 2 z 2 2 2 2 ~ Z ~ 2 2 2 ? 2 2 ~ ~ 2 2 2 2 ~ 2 2 Z Z 2 2 2 ~ 2 2 2 2 2 2 ~ 2 2 2 2 2 2 ~ 2 2 2 2 2 2 2 2 2 2 Z 2 ~ 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 ~ 2 2 2 2 ~ 2 ~ z 2 2 ~ 2 2 z 2 ? 2 2 z 2 2 2 2 2 2 ~ 2 2 2 2 2 ~ ~ 2 2 ~ 2 2 2 2 2 2 ~ 2 2 2 2 2 2 2 2 2 2 2 2 2 ~ 2 Z ~ 2 2 2 2 2 2 2 2 2 ~ | 2 2 2 2 2 ~ 2 2 2 2 2 2 2 7 ~ 2 ~ 2 2 2 2 2 2 2 2 2 2 z 2 2 2 2 2 ~ 2 2 ~ 2 2 2 2 2 2 2 2 2 2 Z ~ ~ 2 ~ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ~ 2 Z 2 2 2 2 ~ 2 2 2 2 2 ~ 2 ~ 2 2 2 2 ~ 2 2 2 2 2 2 2 2 2 2 ~ 2 ~ 2 2 2 ~ 2 2 2 ~ 2 2 2 2 2 2 2 2 2 2 2 2 2 ~ 2 ~ z 2 2 2 ~ 2 2 Z 2 2 ~ 2 2 2 ~ ~ 2 ? 2 2 2 2 2 2 ~ 2 2 2 2 ~ 2 ~ 2 ~ 2 ~ 2 ~ Z ~ Z 2 2 2 z ~ 2 2 2 ~ ? 2 2 2 2 ~ 2 2 2 2 2 2 2 2 2 2 2 2 Z ~ 2 2 ~ ? ~ 2 2 2 2 ~ 2 ~ 2 2 2 2 ~ 2 z 2 z 2 2 2 2 2 2 ~

3e 66 g o 12e ~ e l e o

MEAN ANOMALY,H <OEG>

Fig. 4.16a Number of iterations needed to converge to within 0.00001 rad by Laguerre's method using the starting value ofEo = M.

Before we discuss Fig. 4.17 in detail, we must understand the following. First, for any given algorithm, the associated computing time will vary with the com- puter used to perform the calculation. Second, the computational efficiency will depend also on the manner in which the algorithm is implemented, that is, coded. For these reasons, the traditional approach is to break down the algorithm by its mathematical operations and then compare the number of operations from algo- rithm to algorithm. For example, an algorithm can be broken down to 5 additions, 3 subtractions, 4 multiplications, 2 divisions, 1 square root, and so on. Needless to say, the number of iterations that are needed must be considered, and it is the total number of operations that is of concern for each of the specified e-M values. This is all well and fine, but the true difference may not be seen until the total number of operations is ultimately translated into a single quantity, namely, computing time.

Figure 4.17 then shows the computing times that are needed if the solutions are sought via the IBM PC-XT system. The coding is done in the APL language in the most straightforward manner possible. Special testing and branching (such as for M = 0) have been deliberately avoided. The computing units, where 4660.874753 units are equal to 1 s of time, are unique to the IBM PC-XT, but this should be of no concern to us at the moment. So long as the computations are done on the same computer, the comparisons are all valid. Since, on any computer, multiplications

Page 16: Orbital Mechanic: 4. Position and Velocity as a Function of Time

50 ORBITAL MECHANICS

I +

l . e

ir

(2 , , . , c

T

I ~ e . ~

I T y e ,i

^

E l , 3 v

[ ] 3 ] 2 z / z 2 z z 2 z z z ~ l ~ I 2 z z z ~ 2 ~ z ~ 2 z z 2 2 2 z z ~ 2 2 2 / 2 z z 2 2 z z z ~ 2 ~ | 2 | 2 2 2 z Z / 2 z 1 z / 2 2 z 2 2 z z 2 2 1 z z 2 2 Z 2 2 z z 2 2 t ] 3 z z z ~ z 2 ~ a 2 Z a z ~ t t ~ t ~ z 2 1 2 z 1 z z z Z ~ 1 ~ Z z z z 2 2 1 z ~ 2 z 1 z z z z 1 z z 2 z ~ z z 1 ~ 2 z 2 z ~ z 1 ~ 1 z 2 2 ~ z ~ 2 ~ 1 z 1 1 2 ~ z ~ ] ~ ] ~ z ~ 2 1 ~ 1 z 1 1 ~ 2 1 ~ 1 1 ~ 1 Z Z ] z ~ 1 ~ 1 ~ ] ~ 1 1 2 ~ 1 1 ~ z 1 ~ z ~ 1 1 Z 1 ~ 1 1 ~ Z 1 ~ 1 1 ~ 1 1 2 ~ 1 1 1 ~ ~ ] ~ 1 1 ~ z 1 ~ ] ] 1 ~ ] ~ | ~ 1 1 1 2 1 ~ 1 1 1 1 1 ~ 1 1 1 ~ 1 ~ 1 ~ 1 ~ 1 1 1 ~ 1 ~ 1 1 ~ 1 l ~ 2 1 ~ 1 1 ~ 1 ~ 1 1 ~ 1 1 1 ~ 1 ~ 1 1 1 1 ~ 1 ~ •••••••••1••1•1•••••••••••••••1Z••l•••••|•|1••1••••1••1Z11Z|••••••1••11•1•1••1••••••11•••• •••|••••2•••••2•1•••••••••••z••2••••|•••|•••••••••••••]••••••••••••••••••••••••••••Z2•••]• ~ 2 ~ 2 2 ~ 2 ~ 2 z 2 ~ Z ~ 2 ~ Z ~ Z ~ 2 ~ 2 ~ 2 ~ 2 Z ~ ~ Z ~ Z 1 ~ 1 ~ 1 ••|••2•••••••••••••••••••••••••••••••|•••••••••••••••••••|•••••••••••••••1•••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••|•|•••••••••••|•••••••••••••••••••|•••••••••••• •)••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••1••••••|•••••••••••••••••••••••••2••••••••••••••Z••••••••••|•••• ~ z ~ 1 z ~ 2 ~ 2 ~ z ~ ~ 2 ~ ] ~ z ~ z ~ ~ z Z ~ z 2 ~ | ~ ~ z ~ : ~ 3 ~ 2 2 ~ 2 1 Z ~ 2 1 2 ~ z ~ 2 ~ z ~ 2 z z ~ 1 ~ 1 2 ~ z ~ 2 ~ ~ Z 2 ~ z 1 ~ ~ 1 ~ 2 ~ 2 ~ 2 ~ ~ ~ 2 ~ | ~ 2 ~ 1 ~ | ~ 1 ~ z ~ 2 ~ 2 ) ~ ] ~ z ~ | ~ 2 ~ 2 ~ 2 ~ | z ~ 2 ~ 2 z 2 ~ 2 ~ z 2 ~ z ~ | z z ~ z z z z z ~ z ~ | 2 2 ~ z ~ 1 ~ 1 ~ 1 ~ z | ~ 2 2 ~ 1 ~ z ~ 2 ~ 1 1 ~ ~ ; ~ Z ~ 2 ~ 2 2 ~ Z ~ | ~ 2 2 ~ 2 z Z ~ 2 ~ 2 ~ 2 ~ ~ z ~ 1 ~ Z ~ 2 ~ ~ ~ z ~ z ] ~ 1 ] 2 2 1 ~ ] ~ z ~ 2 ~ | ~ 1 2 z ~ 2 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 3 ~ Z ~ z ~ | ~ 1 ~ 1 ~ 1 1 ~ 1 ~ 1 ~ 1 ~ Z ~ 1 1 ~ 1 ~ ~ ] ~ 2 2 ~ 2 ~ z ~ 2 ~ z 2 ~ 1 ~ 2 ~ z ~ Z ~ 2 ~ 2 2 z ~ 2 ~ 1 ~ 2 ~ 2 ~ z 1 ~ 2 ~ 2 ~ ~ z ~ Z ~ 2 ~ Z ~ 2 2 ~ Z ~ 2 ~ ~ Z Z ~ 2 ~ Z ~ ~ Z ~ z Z ~ ~ 2 z ~ Z 2 ~ 2 2 ~ Z ~ ~ 2 ~ 1 ~ 2 ~ 2 1 ~ 1 ~ Z ~ 2 Z ~ Z ~ 2 ~ 1 ~ 1 ~ Z ~ •••••••••••••••••••2••Z•••••••••••••••••••••••••••••1•••••••••••••••1•••••••••1••••••••••• ••••••••••••••••••••••••••••••••1••2•••••••••••••••••••••••1•••••••••••••••••••••••••••••• ••••••••••••|•••I•••|•|•••••••••••••••••1••••••••••••••••••••••••||•••|••••••••••••••|•••• • • • | • • •1 • | |1 • • • • • • • • • • • • • • | • • • • • • •2 • • | • •1 • • • • • | • • • • l • • ]1 • • | •1 • • • • • • •111• • • • • • • • • • • •1 •2• •21 ~ 2 ~ 2 Z ~ 1 ~ ~ 1 ~ 2 1 ~ Z ~ Z Z | ~ 2 ~ ~ 2 ~ 2 ~ 1 2 ~ 1 ~ 1 ~ 1 ~ •••••z••••••••1••••••••••••••••••••••••••••|•2z••••••••••••••|•••••Z]11•1••••|•••••••••••• ~ Z Z ~ ~ 1 ~ 1 ~ | ~ ~ 1 ~ z ~ | ~ Z ~ ~ ~ ~ 2 z ~ 2 ~ 2 ~ 1 ~ 2 | ~ 2 z 1 ~ z ~ 2 ~ 2 ~ ] ~ 2 | ~ | ~ 1 ~ 1 ~ 1 ~ ~ 2 ~ ] ] ~ 2 ~ 2 ~ 1 ~ ~ 1 2 ~ ] ~ | ~ 1 ~ | ~ ~ ~ Z z ~ 2 ] ~ z 2 z 1 2 z 2 ~ z Z ~ z ~ z Z z | Z 1 1 1 ~ 2 ~ | z ~ 1 ~ 2 1 Z ~ 1 z z ~ 2 1 1 ~ 2 z z Z ~ z 2 z ~ | ~ 2 ~ z ~ z 1 2 1 z z z 1 z ~ z ~ 2 ~ 1 z ~ z 1 ~ z ~ Z 1 z ~ 1 ~ z 1 1 ~ 2 1 ~ | 1 1 ~ z ~ 2 z z z ~ z | ~ ~ z ~ z z ~ t • z • z 1 2 2 z • Z • 2 | • • • z Z z Z • • • z z Z 2 1 Z Z ? 1 2 • • • • i Z z 1 z 2 2 Z z 2 2 | 2 z 1 • Z • 1 1 2 z 2 Z Z 2 2 • z • z • Z • • z z 2 1 • 1 • z • 2 z z 1 z Z 1 z z ~ 1 ~ 2 ~ 2 1 ~ 2 ~ 1 z ~ Z ] Z z 1 Z z 2 z 1 ~ 1 z ] l z 1 1 ~ 1 2 1 1 1 ~ 1 ~ 2 1 2 1 1 1 z 1 z 1 z z ~ Z ~ 2 1 ~ Z ~ z 1 z 1 1 ~ 1 ~ 1 1 ~ z 1 Z ~ 1 Z z | z ~ z z Z ~ 2 z 2 z z ~ 1 z 2 ~ z 2 2 z z 2 ~ 1 ~ z z z 1 2 ~ Z z ~ z ~ 2 2 2 2 z z z ~ 2 1 Z 1 z ~ z Z z 1 ~ z ~ z 2 ~ 2 z z 1 ~ 1 z ~ 1 ~ 1 1 ~ 1 2 ~ z ~ z ~ 2 z Z ~ z ~ 1 1 Z ~ z 2 | 2 ~ 1 Z Z 2 ~ z z 1 ~ 1 1 ~ z ~ Z 1 Z 2 1 1 1 z Z 2 ~ ] 1 ~ 2 Z ~ 1 1 1 ~ 1 2 1 1 ~ 1 ~ 2 1 2 1 1 ~ 1 1 1 Z z ~ • 2 z 2 2 z z 2 2 Z z z Z z z 1 2 z z 2 z z Z • • 1 z 2 2 z Z z 2 | z • • • • • • 1 z z Z • 1 z z 2 2 2 z 1 z 2 • z z z z Z z 1 1 Z z | z 1 • Z Z 1 Z • 2 1 1 • • Z Z 2 2 2 Z Z z 2 ~ Z Z z 1 ~ Z ~ Z 1 ~ 1 2 Z z 2 1 z 1 1 ~ 1 ~ 1 1 Z Z 1 ~ 2 z z 1 ~ z 1 ~ 1 1 ~ 1 1 2 1 ~ 2 1 1 1 ~ 2 z 1 z ~ z 1 Z Z z z Z 1 ~ 1 1 ~ 1 ~ 2 ~ 1 1 z z ~ 1 | ~ l ~ z Z • z z 2 z • z z • Z 1 2 z z z 2 1 • z z 1 z • z • z • z 2 z 2 2 z 2 1 2 • • • • • • Z 2 z • z Z z • • • 2 z 1 • • 2 1 2 2 z z z • Z Z z 1 • z z z • z z 1 • 1 1 1 z 1 1 2 1 z • 1 z ~ z ] ~ 1 z 1 1 z 1 ~ Z Z ~ 1 z ] ~ 1 z ~ 1 1 1 z ~ z 1 2 1 z ~ Z ~ z ~ z 1 z | t ~ 1 z ~ 1 Z Z ~ z z 1 z ~ 1 ~ 1 z z ~ z 1 ~ z ~ l ~ | ~ 1 z ~ ~ z 1 Z ~ Z z 2 2 z z Z z z z ~ Z 2 ~ z z Z 2 z z 2 z ~ 2 z z ~ z | z 1 t ~ $ ~ z ~ z z Z ~ Z ~ z ~ 2 1 ~ Z z z z Z 2 ~ z ~ z z z ~ 1 z z Z ~ z Z z Z ~ z ~ Z Z ~ ~ z ~ z ] ~ 2 2 z 1 ~ z z Z Z ~ z ~ z 2 2 2 ~ ] ~ z ~ z ~ 1 z ~ z z ~ 2 ~ z z z 2 Z Z Z ~ z ~ z z Z ~ Z Z ~ 2 ~ z 1 | ~ 1 | z 1 z z z 2 ~ z z ~ 2 ] 2 ~ z ~ ~ z z Z ~ | Z 2 z z z z Z 2 2 z z 2 z z | z z | 2 1 ~ 2 2 z 2 Z z z z 1 1 ~ 1 ~ 1 ~ L ~ Z z 2 z 2 1 z 1 z ~ z ~ 2 z 1 2 z z | | z z 1 | z 1 z z 1 | z 1 1 2 z 2 z z 2 ~ 2 ~ z Z ~ ~ z z z z ~ z ] z z z 1 ~ z 1 1 z 1 1 z 1 1 z z Z z Z 1 ~ 1 Z ~ Z 1 ~ 1 | 1 z 1 2 ~ 1 Z 1 1 1 | l z z z Z ~ 2 ~ Z 1 1 z 1 1 1 z 1 1 1 1 1 z 1 1 z 1 z 1 Z ~ ~ z Z ~ 2 ~ 1 ] ~ 2 1 1 1 ~ ] ~ 1 ~ 2 1 1 2 z z 1 Z 1 2 ~ 1 ~ 1 ~ Z 2 z ~ z z 1 ~ z 1 2 z 2 ~ 1 z ~ z ~ 1 z z 2 ~ 1 1 1 1 1 z 1 1 1 1 1 ~ ~ 1 ~ 1 ~ z 1 1 z 1 1 1 1 ~ 2 1 z ~ 1 | 1 ~ l 1 z 1 1 1 1 z ~ 1 Z ~ I ~ 2 1 1 1 z 1 1 1 ~ ] 1 1 1 z ~ 2 1 1 ~ 1 1 ~ 1 1 1 ~ Z 1 z 1 1 ~ 1 [ 1 ~ z ~ z ~

~ 1 2 z z z 1 z ~ z ~ 2 1 2 1 z ~ 1 z 1 z z 1 1 1 1 z z 2 1 | ~ z ~ 1 ~ ~ 1 z 1 z 1 1 2 2 ~ ] z z ~ z ] z z 1 z z 1 ~ 2 1 ~ ] 1 z z ~ z 1 Z ~ z 1 z ~ • z z 2 2 z 2 z • ] z 2 z z 2 z z 2 ] 2 z • 1 1 • 2 Z z z 2 • z 2 Z Z • • | • | • • • i • • • • • • • • • 2 2 z Z 2 1 2 Z z z z 1 Z Z 1 1 t 1 z • z ? 1 1 1 • 1 1 2 z 1 z z 1 1 1 1 • ~ z z z z 1 Z z 2 Z z l ] 1 Z Z 1 1 z 1 z ~ 1 Z ~ z Z z 1 1 r 1 z ~ ~ t ~ 2 ~ z z z z 1 Z z Z z 2 Z 1 1 z 1 2 1 t 1 1 Z z ~ 1 1 1 1 1 1 ~ l ~ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••/••••••••••••••••••••••••

3W ~1 ~ l I Z l I ~ 1 1 1 1

HERN RNOHRLY,H <DEG>

Fig. 4.16b Number of iterations needed to converge to within 0.00001 rad by Laguerre's method using the starting value of Eqs. (4.29) and (4.30).

and divisions take relatively longer to accomplish than additions and subtractions, transcendental functions take longer than multiplications and divisions, and so on, so that, in a sense, the general nature of Fig. 4.17 is applicable to other computing systems as well. Strictly speaking, however, a computing timing study, whose results we will discuss shortly, must be performed for the specific computer on which the algorithm is to be implemented.

In Fig. 4.17, the short dashed line shows the computing time of Laguerre's method where E0 = M is used as a starting value. The long dashed line is also for Laguerre's method, but with a starting value as calculated by Eqs. (4.29) and (4.30). The difference in time of the two lines is clearly the added time needed to calculate Eqs. (4.29) and (4.30). Interestingly, the steepness of the slope of these lines is such that the value of the upper line at any n iterations is less than the value of the lower line at n + 1 iterations. In other words, if the introduction of Eqs. (4.29) and (4.30) reduces the number of iterations by one or more, a saving in computing time is achieved. That a saving is achieved in most instances can be seen by comparing Figs. 4.8 and 4.11 or by glancing at Fig. 4.18, where the e-M region with shorter computing times is shaded with asterisks. Following the style of the previous figures, a similar asterisk plot is shown in Fig. 4.19 for the high-e/low-M region.

Page 17: Orbital Mechanic: 4. Position and Velocity as a Function of Time

E C 8 7

C E Ne~ T R I

I T y | m

^

E l , 3 v

POSITION AND VELOCITY AS A FUNCTION OF TIME 51

~ 4 4 3 ~ ; 3 ~ | z ~ t 2 z z ~ 2 ~ Z ~ ] 3 3 3 ~ 3 ] ~ ] 3 3 ) ~ 3 ] 3 ] ~ J ) ~ 3 ] 3 3 ~ 3 ~ ] ~ 3 ~ ] ] ~ ] ~ 3 ~ ] ] ; ; ~ 2 ~ ~ 4 ~ 3 ~ t ~ 2 | Z ~ | ~ z ~ Z | 2 ~ 2 ~ 3 ~ 3 ; ~ | ~ 3 ~ 3 ~ 3 ~ $ ~ 3 ~ | z 2 ~ I I 4 3 3 ) ~ 3 ~ ~ Z ~ 2 ~ 3 3 ~ 3 3 3 3 ~ 3 3 ~ ] 3 3 ~ ) 3 3 ~ 3 3 3 ] 3 3 3 3 ~ 3 3 3 ) ~ | ~ 3 3 Z ~ Z 2 ~ ~ 3 ~ ) 3 2 2 ~ 2 ~ ~ z ~ | ~ 2 ~ Z ~ Z 2 ~ 3 3 3 ~ 3 3 ~ 3 3 ~ 3 3 ~ 3 3 3 ~ 3 ] ~ 3 3 3 ~ 3 3 J ~ 3 ] 3 ~ 3 3 3 ) 3 ~ 3 ~ ) z z ~ Z z 1 ~ 3 | ~ 3 ~ Z ~ 2 ~ 2 z ~ Z 2 ~ Z ~ 2 ~ 2 ~ 2 ~ 2 ~ 3 ~ 3 3 3 ~ 3 ~ 3 3 ) 3 3 3 3 3 ~ 3 3 ~ 3 3 3 ~ ) ~ ) 3 ~ 3 ~ 3 ) 3 ~ 3 ~ Z Z ~ 1 ~ ~ 2 2 ~ 2 ~ 2 2 ~ Z ~ z 2 2 Z ~ 2 ~ 3 ~ 3 3 ~ $ ~ 3 ~ 3 ~ 3 3 3 3 3 ~ 3 ~ 3 ~ 3 3 ~ 3 3 ; 3 3 ~ ) ] ~ 2 2 z ~ " ~ 3 ~ ) ] ~ 2 z ~ z z ~ 2 ~ Z ~ 2 2 z ~ 2 ~ Z ~ z ~ 3 3 3 ~ 3 3 ~ 3 ~ 3 ~ ) 3 3 ~ 3 ~ 3 ~ 3 ~ ) 3 3 3 $ 3 ~ 3 ~ 3 ~ 3 ~ 3 3 3 z ~ J ~ 3 ~ 3 ~ 3 2 z 2 ~ z | ~ 2 ~ t ~ 2 Z 2 Z ~ Z ~ 2 2 ~ 2 ~ 3 ~ 3 ~ ) ~ 3 3 3 3 3 ~ 3 ~ 3 ~ ] ~ 3 ~ 3 ~ 3 ] 3 3 3 $ ~ $ 3 ] ] ~ 3 3 3 ~ Z ~ ~ x 3 3 3 3 3 3 ~ 3 ~ 2 z | ~ Z ~ z 2 z 2 ~ 2 Z 2 ~ z Z ~ 3 | 3 ~ 3 $ ~ 3 ~ ] 3 ~ 3 ~ ] ~ 3 3 ] 3 3 3 ~ 3 3 $ ~ 3 $ ~ ] 3 ~ 3 ~ 3 3 ~ Z ~ 1 ; $ ~ 3 3 3 ~ 3 3 ~ 2 ~ z ~ 2 ; ~ Z ~ 2 ~ Z ~ Z ~ 2 Z 3 3 3 ~ ] ~ 3 ~ 3 3 ~ 3 ~ 3 3 3 3 3 3 ~ 3 3 3 3 ~ 3 3 ~ 3 ~ 3 3 ~ ] ] 3 3 ~ 3 3 ~ 2 ~ ; 3 ] ~ 3 3 3 3 3 3 3 ~ 2 ~ I ~ 2 ~ Z 2 ~ 3 3 3 ~ ) 3 3 ~ 3 3 3 3 3 3 3 3 3 ] 3 3 3 3 3 3 3 ) 3 3 3 ~ 3 ~ ) 3 ~ z ~ 2 2 ~ ~ 3 ) 3 ~ 3 ~ 3 ~ 2 2 ~ 2 ~ z ~ 2 ~ 2 2 2 ~ 2 ~ 2 ~ 3 ~ 3 ~ 3 3 3 ~ 3 3 3 ~ 3 ~ 3 3 3 3 ~ 3 3 3 3 3 ~ 3 3 ) ~ 3 ~ J ~ 3 2 2 Z ~ ~ 3 ) 3 ~ ) 3 ~ 3 3 3 2 2 2 ~ 2 2 2 ~ 2 ~ Z ~ 2 Z 2 2 ~ 2 ~ 2 2 2 ~ | ~ 3 ~ 3 3 3 3 3 3 3 ~ ) 3 3 ~ 3 ~ 3 3 ~ 3 3 3 3 3 ) 3 ) ~ ) 3 3 3 ~ 3 ~ | 2 ~ 2 ~ t ~ 3 ~ 3 3 ~ $ ~ 3 3 2 ~ 2 2 ~ 2 ~ 2 2 ~ 2 ~ 2 2 2 Z 2 ~ 2 ~ 2 t 2 ~ 3 ~ 3 ~ 3 ~ ) ~ 3 ~ 3 3 3 ) ~ 3 3 ~ $ ~ 3 ~ 3 3 ~ 3 3 ~ 3 ) 3 ) 3 3 3 3 ~ | 2 z 2 ~ t ~ ) ~ 3 3 3 3 3 ) 3 3 ~ 2 ~ 2 ~ 2 2 ~ 2 2 ~ 2 ~ 2 2 2 3 ~ 3 ~ 3 3 ~ 3 3 ~ 3 ~ 3 3 ) ~ 3 ~ 3 ~ 3 ~ ) $ 3 ~ 3 3 3 3 3 3 ] 3 ~ Z Z 2 ~ i ~ 3 ~ 3 ~ ] ~ 3 ~ 3 ~ 2 ~ Z ~ 1 ~ Z ~ 2 ~ 2 2 2 2 ~ 2 ~ 2 ~ 3 3 ~ 3 ~ 3 ) 3 3 ~ 3 3 3 3 3 3 ~ 3 3 3 3 ~ 3 3 3 3 ~ 3 ) ~ Z Z 2 ~ ~ 3 ~ ] ] ~ ] ~ ] 3 3 ~ Z 2 z 2 ~ z ~ z Z ~ 2 ~ z ~ 2 2 z 2 ~ ) ~ 3 3 3 ] ~ 3 3 ~ ] ~ 3 ~ 3 3 ~ ) ~ ] 3 ~ 3 | 3 $ ) 3 ~ 3 3 ~ 2 2 2 z ~ z 5 ~ 3 ) ] ; 3 ~ 3 ~ 3 ~ 2 ~ z ~ 2 2 ~ 1 ~ 2 ~ Z ~ Z ~ 3 3 ~ 3 ~ 3 ~ 3 I ] 3 ~ 3 3 ~ 3 ~ 3 ~ 3 ~ 3 ~ 3 3 ~ 3 ~ Z 1 ~ 3 ~ j 3 3 3 ~ ) 3 3 3 3 ~ 3 2 2 2 z 2 ~ 2 Z Z ~ 2 2 2 2 ~ 2 2 z Z ~ Z ~ Z 3 3 3 ~ 3 ~ 3 ~ 3 ~ 3 ~ 3 ~ 3 3 3 3 3 | 3 ~ 3 3 3 3 3 3 3 ~ 3 3 ] 2 ~ 2 ~ ~ 3 ~ 3 3 ~ 3 ~ 3 3 3 ~ 3 3 ~ 3 ~ 2 ~ 1 2 ~ 2 ~ z ~ ; ~ 2 ~ 2 ? 2 ~ 2 ~ 2 1 ~ 2 2 ~ ; ) 3 3 3 3 3 3 ) 3 ~ 3 3 3 3 3 ~ $ ] 3 3 ~ 3 3 3 3 3 3 ~ 3 z 2 2 2 2 Z ~ ~ 3 ~ ) 3 ) 3 3 3 ~ 3 3 3 3 3 ~ 2 ~ 2 2 2 ~ 2 ~ 2 ~ 2 z ~ 2 Z ~ Z ~ 2 ~ 2 ~ 3 3 3 ~ 3 ~ 3 ~ ) 3 ~ 3 3 3 ) 3 ~ 3 ~ 3 ~ 3 3 3 3 3 3 2 ~ Z 2 2 2 ~ 2 ~ ~ 3 3 3 3 ~ 3 3 ~ ) ~ 3 ~ 3 ~ 2 ~ Z ~ Z ~ 2 Z Z ~ 3 ~ 3 3 3 ~ 3 ~ 3 3 ~ 3 3 ~ 3 ~ 3 z 2 2 ~ ~ 3 ~ 3 ~ 3 ~ 3 2 ~ 2 Z 2 ~ Z 2 2 ~ 1 ~ 2 | z ~ 2 ~ z Z ~ 3 ~ 3 3 ~ 3 ~ 3 3 ] 3 ~ 3 ~ 3 ~ 2 ~ 2 2 2 2 ~ 1 ~ 2 3 ~ 3 ) ~ 3 ) ~ 3 ~ 3 ~ 2 2 2 ~ 2 ~ t i 1 s ~ 2 2 ? ~ Z ~ 2 ~ 2 ~ 3 ~ 3 ~ ) ~ 3 ~ 3 ~ 3 ) ~ 3 ~ 2 2 ~ ~ 3 ~ 3 3 3 ~ 3 3 ~ 3 ~ 2 Z 2 2 2 2 2 ~ 2 2 ~ Z ~ 2 ~ 2 ~ 2 ~ 2 2 ~ 2 2 2 ~ 3 ~ 3 ) ~ 3 3 3 ~ 3 ~ ) ~ ) ~ ) ~ 2 2 2 ~ 2 ~ ~ 3 3 ] 3 ~ 3 ~ 3 ~ 3 ~ 2 2 2 ~ 2 ~ 2 2 2 ~ 2 ~ 2 ~ z ~ 2 2 ~ 3 ~ 3 ~ 3 ~ ) ) ) 2 2 2 ~ 2 2 2 ~ ~ 3 ~ 3 3 3 ~ 3 ~ 2 2 2 ~ 1 ~ t 2 2 ~ 2 ~ 2 ~ | 2 ~ 2 ~ z 2 2 ~ 2 ~ 2 2 2 ~ 3 ~ 3 ~ 3 3 ~ 3 3 3 ~ 2 ~ 2 Z z 2 ~ 2 ~ 2 i ~ 2 ~ 3 3 ~ 3 3 3 ~ ] 3 3 3 ~ 3 ~ Z ~ z 2 ~ 2 Z ~ 2 ~ 2 ~ 2 Z ~ 2 2 2 ~ Z ~ 3 3 ~ 3 ~ ] 3 ~ 2 ~ 2 2 ~ Z Z 2 2 2 ~ 1 t 2 2 3 ~ 3 ~ 3 ~ 3 3 3 3 ~ 2 2 2 2 ~ 2 ~ t t ~ z ~ 2 ~ 2 2 ~ z 2 ~ z 2 2 2 ~ 2 ~ 2 ~ ) ~ 3 ~ 2 ~ 2 Z z ~ z ~ z 2 ~ ~ 2 2 2 ~ 3 3 ~ 3 ~ ) ] ] ~ 2 ~ 2 Z ~ z ~ ) ~ 2 2 ~ 2 ? 2 Z ~ 2 ~ 2 ~ 2 2 2 ~ 2 | 2 ~ 2 ~ z Z ~ 2 2 2 2 z ~ 2 ~ Z ~ 2 2 ~ Z ~ 1 ~ 2 ~ 3 3 ] 3 ~ 3 3 3 ~ | ~ | ~ Z ~ Z ~ 2 2 ~ 2 ~ 1 ~ 2 2 2 2 ~ 2 2 ~ 2 ~ | 2 ~ Z ~ 2 2 2 ~ 2 ~ 2 2 1 ~ 2 | 2 2 ~ z 2 ~ I Z Z Z Z ) ) 3 ) ] ) ~ 3 3 ~ I Z Z Z Z Z ~ I Z l Z 2 Z Z Z ~ i I t I I I Z Z Z Z ~ Z ~ 3 3 3 1 3 Z ~ Z t Z I Z Z I Z I 2 | Z Z Z ~ Z Z t I I I 1 2 2 Z Z ~ Z Z Z 2 Z Z Z Z ~ Z Z Z Z Z 2 Z Z Z Z Z | Z Z 2 Z Z 2 2 1 I J t t Z Z Z Z 2 Z 2 2 Z 2 ~ Z Z Z Z Z 2 2 2 2 2 2 Z Z 2 Z Z 2 2 2 Z Z Z Z i l l t Z 2 Z Z Z Z Z Z 2 Z Z Z Z Z Z Z Z ~ Z Z Z Z 2 Z Z Z Z 2 2 ~ Z Z Z Z t l l t Z 2 ~ Z Z Z 2 2 2 2 Z 2 Z ~ 2 2 2 2 Z 2 Z Z 2 ~ Z Z Z Z Z Z Z Z Z 2 2 1 1 1 2 2 2 2 2 2 2 2 Z 2 2 2 Z 2 2 2 2 z z 1 2 2 2 2 Z z z 2 2 2 Z z Z Z Z l ; t Z 2 2 2 2 2 Z Z Z 2 Z Z Z 2 2 2 2 Z Z Z 2 | 2 2 ~ 2 2 2 ~ Z Z 2 2 2 ~ l ~ 1 2 2 ~ Z 2 2 Z Z 2 Z 2 2 2 ~ 2 2 2 2 Z 2 2 2 Z Z 2 ~ Z Z Z 2 2 2 Z 2 2 Z t 1 2 2 Z Z Z 2 Z Z Z ~ Z ~ Z Z Z Z Z Z Z Z Z Z Z 2 ~ Z ~ Z Z 2 Z Z Z Z Z Z t 1 2 ~ Z Z Z Z / 2 2 2 Z Z 2 Z Z ~ Z 2 2 2 2 Z Z Z Z Z E 2 Z Z Z Z 2 Z Z 2 1 i Z 2 Z Z Z Z Z 2 2 Z Z Z Z Z Z Z Z Z Z Z Z Z 2 2 2 Z 2 Z Z Z Z Z 2 Z 2 2 1 ] 2 2 2 2 2 2 2 Z Z Z Z ~ Z Z 2 Z 2 2 2 2 2 Z Z Z 2 Z Z 2 2 2 Z Z Z Z ~ Z I 1 2 Z Z 2 Z Z Z Z Z 2 2 2 Z Z 2 Z Z 2 | Z 2 2 Z Z 2 2 2 Z Z Z Z 2 2 Z 2 Z I 1 2 Z 2 2 2 2 2 Z Z 2 2 2 2 2 Z Z Z 2 2 2 Z Z 2 2 Z Z Z 2 2 Z Z 2 2 2 Z 2 t ~ 2 2 2 2 ~ 2 2 2 2 2 2 Z 2 ~ 2 2 2 2 Z Z Z Z Z 2 Z Z Z 2 Z Z 2 Z 2 2 2 1 t 1 2 2 Z Z Z Z Z 2 2 ~ 2 Z ~ Z 2 2 2 Z Z 2 Z 2 ~ Z Z 2 7 2 2 2 2 Z t t t l l I i i l l i t i l i l i l l l l l t l I i l l l l t t l l ; I t i t l l l I

~ Z Z Z Z Z Z Z Z Z Z ~ Z Z 2 Z Z Z 2 Z Z 2 Z Z Z Z Z Z l Z Z Z Z Z Z 2 Z Z ~ Z Z Z Z Z Z Z Z Z Z ~ Z Z J 2 2 2 Z 2 Z 2 2 Z Z Z ~ Z 2 2 2 ~ 2 2 2 2 2 ~ 2 ~ Z Z Z I 2 Z 2 2 Z Z ~ Z Z 2 2 2 2 Z Z 2 2 Z 2 2 2 2 t I Z 2 2 2 Z Z Z Z 2 2 2 2 2 Z ~ 2 2 2 2 Z Z Z Z Z Z 2 2 2 Z 2 2 Z 2 Z Z 2 Z Z Z Z Z 2 2 2 Z ~ 2 Z 2 2 Z I

i 1 2 Z ~ Z Z Z 2 2 [ | ~ Z Z Z Z Z Z Z Z 2 2 Z 2 Z Z 2 2 2 Z Z 2 ~ Z Z Z ~ 2 Z Z 2 Z [ [ Z Z ~ 2 ~ I 1 1 2 ~ Z 2 2 2 Z Z Z 2 Z Z Z Z Z ~ Z 2 ~ Z 2 2 2 2 2 2 Z Z Z Z Z Z Z Z Z Z Z Z Z 2 Z Z Z 2 Z Z 2 ~ Z ~ I t I ~ 2 2 2 ~ 2 2 Z 2 2 Z 2 2 2 2 ~ 2 2 2 2 Z 2 2 2 2 2 2 2 2 ~ Z 2 Z Z Z Z 2 Z Z 2 2 ~ Z Z ~ 2 1 i I l 1 2 2 Z ~ Z 2 Z ~ Z 2 Z 2 2 2 Z ~ Z ~ Z Z ~ 2 Z 2 Z ~ Z ~ Z ~ Z Z Z 2 ~ Z Z Z Z [ ~ Z Z Z Z 2 1 i t l l I Z Z Z Z Z Z Z Z Z 2 Z 2 Z Z 2 Z ~ 2 Z 2 Z 2 2 2 Z Z I Z Z Z Z Z Z Z 2 Z 2 Z Z Z ~ 2 2 2 Z Z t I I I I I 2 2 2 Z 2 Z Z Z Z 2 Z Z 2 Z Z 2 Z Z 2 2 Z Z 2 Z Z 2 ~ Z Z ~ Z Z Z ~ Z Z 2 2 Z Z 2 Z 2 Z Z I l I I I t I ~ Z Z Z Z Z ~ 2 Z I Z Z Z ~ Z Z ~ Z Z Z Z ~ Z Z ~ Z ~ Z Z Z Z ~ Z Z Z ~ Z [ I l t i l t I ~ Z Z Z ~ 2 Z 2 Z Z Z ~ Z ~ Z 2 ~ Z I 2 [ 2 Z Z Z ~ Z Z ~ Z Z 2 2 2 Z Z Z Z Z ~ Z [ Z I

I l I I I I I I I Z Z Z ~ 2 Z Z Z Z Z Z Z 2 2 ~ [ Z 2 Z Z Z ~ Z Z Z Z Z Z Z Z 2 Z Z 2 Z Z 2 ~ 2 Z Z Z I I I I | [ I l I I t l Z 2 2 Z 2 2 2 Z Z Z 2 2 Z 2 Z Z ~ Z Z Z ~ Z Z Z Z Z Z Z ~ Z 2 Z Z 2 Z 2 Z Z Z Z 2 1

I I I I I I I l I l I I I l I I I I I Z 2 Z a Z Z 2 2 Z Z Z 2 2 ~ t ~ 2 ~ Z Z Z Z Z 2 2 2 2 2 2 2 2 2 t I t l l t [ l I l l l ~ l l l | l i l t i t l f l l t i i l l l ] i l l l i % t t l l ] % l l l J l i I l [

MEAN ANOM~LY,H <DEG>

Fig. 4.16c Number of iterations needed to converge to within 0.00001 rad by Newton's method using the starting value of Eqs. (4.29) and (4.30).

We can carry this analysis one step further by plotting the computing time of Newton's method with starting values of Eqs. (4.29) and (4.30). This is shown as the dot-dash line in Fig. 4.17. Newton's method with E0 = M is also shown (as a solid line) but is not considered in this analysis because of the diverging behavior observed in Figs. 4.6 and 4.7.

In comparing Laguerre's (long-dash line) and Newton's (dot-dash line) methods, we see that 3 iterations by Newton's method require less computing time than 2 iterations by Laguerre's method. For 3 iterations by Laguerre's method, 4 or 5 iterations by Newton's method are computafionally faster. For 4 iterations by Laguerre, 5, 6, or 7 iterations by Newton are faster, and so on. A comparison of Figs. 4.10 and 4.14 can identify the e-M region where Newton's method, with Eqs. (4.29) and (4.30) as starting values, is computationally faster than Laguerre's method, with similar starting values. Again, for ease of comparison, Figs. 4.20 and 4.21 are provided, where the shaded (asterisk) region identifies faster convergence by Newton's method over Laguerre's method.

After these figures are examined, it seems reasonable to adopt Newton's method, with starting values of Eqs. (4.29) and (4.30) for all e-Mvalues except for the region of e > 0.99, and M < 4 deg, where Laguerre's method, with similar starting values, can be applied.

Page 18: Orbital Mechanic: 4. Position and Velocity as a Function of Time

5 2 O R B I T A L M E C H A N I C S

CONPUTING UNITS VS NUHBER OF ITERRTIONS

i / . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . t . . . . . . . . . . . . . . . . . . . . . . . t . . - - . T Z . . . . . . . . . . . ILACU[ '~RE'S ~ E r M 0 ~ :: / /

- - - - I L A C U [ R e E *S e [ r N O 0 / : /

!~T. ( : to. ,~ z,) / :: Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

/ / '

...................................... L / "

/ .............................. : .... . . . . . . . . . . . . . . . . . . . . . . 7 - . . . . . . . . . . / . . /

/ , / 1 i / ;

......../ 'z"~'""T ............. ,----:~'- ............. ~ .............

/ / / J

..... i 7 = ............

./" /

J

- - ~ E U T O # , S M[~HOD U I T H I ~ I r l A L E = N

f . J "

1

NO. OF ITERATIONS

Fig. 4.17 Computing times to solve Kepler's equation.

Now that we know how to solve Kepler 's equation analytically (albeit in an iterative fashion), is that all there is to it? Unfortunately, the answer is no. What we have just solved is the situation in which the orbit of concern is elliptical. If the orbit is hyperbolic, we must use Kepler 's equation in the form of

M = e sinh F - F (4.32)

If the orbit is parabolic, there is yet another form of Kepler 's equation, which we will not pursue at this moment.

In the hyperbolic case, it is not enough to change Kepler 's equation; the expres- sions relating the eccentric and true anomalies must also be changed as follows. Equations (4.1-4.3) are changed to

- 1 sin 0 sinh F -- (4.33)

1 + cos 0

cos 0 + e cosh F -- - - (4.34)

1 + cos 0

sinh F F = tanh -1 \ c o s h F J (4.35)

Page 19: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 53

~ x ~ ' x ~ I ~ x ~ t ~ I ~ t ~ ' z ~ l z t z t z z m 1 r z ~ z ' z x ~ i ~ z x x z x x z z ~ x ~ z ~ E t ~ x l ~ z I z ~ z l ~ z s z ~ l ~ z z

I ' ' ' X ' Z ' ' Z ~ I ~ X ~ t ~ H H Z l t ~ I X ~ Z l Z ~ X ~ Z H ~ Z t Z Z Z Z X Z Z H t X H H , H t I ~ X X l X ~ Z X ~ t l Z Z ~ i Z Z X ~ i l r I ' I X X Z ~ i " I I H Z t | X l I H Z X Z X X l I I Z t t X Z Z ~ X l Z X I ~ , i S l X ~ I I ~ I ~ Z Z H ~ H H ~ S t X t Z I ~ X i l X ~

Z I • t I . ~ I S I z l ~ l z z x l i z z i z z l l t x l ~ l l r z i z ~ l l z l z l l i l x l x l z l l ~ • I l l ~ z l l I z ~ x z l l z z l l l x x z l z z l l l

z Z • • • ~ • • i l l • 1 I I I • l i t • z z l r x x i z z x • I x • z • • • 1 • • z I i x • z l l • • • x l l l z • 1 I x • Z • • • 1 • z x z z • X l l • I *

I J • • • • • • • • z • • I z l • x z z l l z • t x l l l • • i • x r l • z l l r I • • z x x z • z l z x z l • i t • | • • 1 1 • ~ 1 • • 1 • • • • • l z z z x ! 1

• • • • • • • • • Z • •

• • • • • • • X

^

• • • x • H H ~ • • • X • • • H • • Z • • •

e , Z ~

• Z ~ • • • • ~ , • • • Z Z • • • Z • Z • X ~ • Z ~ Z • • Z • • Z • Z • • • Z • X • • • • r • • Z Z • Z Z • ~ • • , Z • • Z • • Z • • H • • Z • • • Z ~ Z Z • l

MEaN RNONRLY,M <DEG~

Fig. 4.18 Region (shaded) where Laguerre's method, with starting values of Eqs. (4.29) and (4.30), is computationally faster than the same method with E0 = M.

E C "

C° E N' T'

I e ~P94

C I ' 9,3

Y , . , l

I I . p ~

E

Fig. 4.19

~,d~

Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z z z z z z z z z z z z z z z z z z z z z z z z z z z z z Z z z z z Z Z Z Z Z Z Z Z Z Z Z l Z Z Z Z Z Z ~ Z Z Z ~ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z X Z Z Z Z Z Z Z Z Z E Z Z Z Z Z l Z Z Z Z Z Z Z Z E ~ Z z z z z Z Z Z Z Z Z Z Z Z Z Z ~ Z z z Z z z z z z Z z z z z z z z z z Z Z Z Z Z z Z Z Z Z Z Z Z Z Z Z z z z l z z z l Z Z Z Z Z Z Z Z Z Z Z Z Z : : Z Z Z Z Z Z Z Z Z Z Z Z Z Z X Z Z Z Z Z Z Z Z J Z Z Z r Z Z Z Z Z Z Z Z Z Z Z ~ I Z Z Z l Z Z Z Z Z Z Z Z Z Z Z Z z z Z z z z Z Z z Z z z z z z z z z z z Z Z Z Z Z Z Z Z z z Z z Z Z Z Z z z Z Z Z Z Z Z Z l g Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z E Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z g Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z ~ Z Z ~ Z Z Z Z Z ~ Z Z Z Z Z Z Z Z I Z Z Z Z Z ~ Z Z Z Z Z Z Z Z ~ I Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z E Z Z Z Z Z Z Z Z K Z Z l Z Z Z Z Z Z l Z Z Z Z Z ~ Z Z Z Z Z Z Z t Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z ~ Z Z Z X Z Z t Z Z Z Z Z Z Z Z Z Z ~ Z Z Z Z Z Z Z Z Z Z Z Z Z g Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z R Z Z Z ~ Z Z ~ Z ~ Z Z Z Z Z Z r Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z ~ Z Z Z Z Z ~ Z Z Z Z Z g Z Z Z Z Z ~ g Z Z Z Z Z ~ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z l Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z S Z Z Z t Z Z Z Z Z Z Z Z Z Z Z ~ Z Z Z Z Z Z Z Z Z Z Z Z ~ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z ~ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z ~ Z Z Z Z Z : Z Z Z Z Z ~ Z Z Z Z : Z X Z Z Z Z Z Z Z Z Z Z Z Z Z Z * Z : : Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z : 7 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z , Z Z Z Z Z t Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z t Z Z Z Z Z Z Z Z ~ Z Z I Z Z Z Z Z Z ~ Z Z Z Z Z X Z Z Z Z Z Z Z t Z Z Z Z Z ~ Z Z K Z Z Z Z Z Z Z Z Z Z Z Z Z Z X Z Z Z Z Z Z Z Z Z 1 3 Z Z T Z Z Z Z Z Z Z Z Z Z Z Z Z z z z z Z Z z Z Z Z Z z Z Z Z Z Z Z Z Z Z Z Z z z z z Z Z Z Z Z Z z Z Z Z Z Z Z z z z z Z Z Z Z Z Z Z . . . . . . . . . . . . . . . Z Z g Z Z Z Z Z Z Z Z Z Z Z , , . . . . . ~ Z Z . . . . . , z 2 Z ~ Z . . . . , Z Z t Z Z

z z z z z t z r z z z z z z z z t z z z z z z z z z z z r z z z z z z z z z z z z z z z z z z z z l z z z z z

1 0 2 8 30 40 ~0 £0

MERN RNOMRLY,M <BEG>

High-e/low-M region (shaded) where Laguerre's method, with starting values of Eqs. (4.29) and (4.30), is computationally faster than the same method with Eo =M.

Page 20: Orbital Mechanic: 4. Position and Velocity as a Function of Time

54 ORBITAL MECHANICS

:iii!i!!!!!iiiii!iiiiiiiii!!!!!iiiiiiiiiii!iiiii!i!iiii!!iii!!iii!iiiiiiii!!iiiiii!iiii!!! .., iiiiiiii•iiiiiiiiiiiii•iiiiiiiiiiiiiiiiiiii•iiiiiiii•iiii•iiiiii••iiiiiiiiEEiiiiii•ii

~ z ~ z ~ x ~ x x ~ x ~ 8 ~ H z x ~ n ~ x z ~ 1 z ~ z H ~ z z H z x ~ z z ~ z ~ t H H H z n l z ~ H ~ x z ~ H ~ t ~

...Eiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii! ••••••i••••••••••••••••••••••••••••••••i••••••••••••••••••••••••i•••••••••••••••••i•••••••i

, , : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : E : Z ~ H H ~ X Z ~ Z Z ~ H H Z Z Z ~ Z Z X Z Z Z Z H Z X n ~ . ~ Z X Z X Z ~ t ~ Z Z H ~ X X Z Z ~ t t ~ Z Z ~ ~ X ~ H Z X ~ t

T ~ z 1 z z ~ z I z z z z ' ' 1 I I ~ w ' l x x ' z z z x z t ~ ' I I z ~ z ~ x s t z I z I z ~ z ' z I z ~ I x z z z ~ z ' z t z ~ x t ' z l ~ z z 1 z Z t ~ z ~ I t t z ' z z ~ z x * ~ z ~ x I z z l z z z i z z z ~ z x z 1 z z ~ z t ~ z l f I ~ z z R ' x z E t ~ 1 z ~ I x z ~ z ~ z z ~ ' ' z t I z ~ x 1 ~ * I ~ z ~ s c z l z ~ x z z z i t ~

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

z : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : T : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

^ : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : . . . . . . . . . . . . . . . . . . . . . . . . . . ! . . . . . . . . . . . . . . . . . . . . . : , , : . . . . . . . . . . . . . . . . . . . . . . . . : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

v ~ 1 z ~ x z z z ~ z ~ z z t ~ z z ~ z z z z x z z z z ~ z z ~ z ~ z z ~ x z ~ z ~ t ~ x ~ z z ~ z ~ x ~ t s z s ~ z ~ x x x s s ~ x ~ x z s | ~ z t x z ~ ~ z z ~ z ~ z z ~ z ~ 1 ~ t ~ z 1 | z ~ s ~ z z s ~ 1 z z ~ z x ~ t z ~ z ~ z ~ x t x ~ z z t ~ x z x s s ~ z ~ z z ~ z x z ~

]1 ( i 91 121 l~l i l l

MERN RNOMRLY,M <0EG>

Fig. 4.20 Region (shaded) where Newton's method, with Eqs. (4.29) and (4.30), is eomputationally faster than Laguerre's method, with Eqs. (4.29) and (4.30).

E ~ . ~ g Z Z Z Z~[ z Z z Z Z z z ~ Z z z Z Z Z Z z z ~ Z Z Z z T z Z z z Z Z Z Z z g Z ~ [ ~ [ Z Z Z Z z z z z Z~ z z z ~ Z ~

E I ' ~

I

]" • . ~ 3

Y | . P P l

0 . ~ $

E

g g g [ g z X g g g g g g g g X g g g g g ~ [ X g g Z [ g l g g z Z g g t [ g g l [

. . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . : : : : : : = : : : : : : : : ~ ~ z Z Z z z E z z z z z z z z Z z z z g z L Z ~ X Z z Z Z Z z Z Z Z Z Z ~ Z Z Z Z

Z Z Z z x z z Z Z Z Z g ~ z Z Z Z z Z z Z Z Z Z z z z z z z z z Z Z Z Z Z Z Z Z Z ~ Z Z Z Z Z z Z g Z X X Z ~ Z ~

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Z Z g Z Z ~ Z z z t z z g ~ z z Z Z Z Z Z Z Z Z Z Z Z Z z ~ z z Z Z Z g Z z z z z Z Z Z Z Z Z Z l Z Z Z z z z z g Z X Z g E Z z Z Z Z Z Z z z z z z Z Z g Z Z Z Z Z g z z z z Z Z Z Z Z Z Z Z Z Z z z z z Z Z Z Z Z z z g z z ~

Z Z Z Z Z z z x z Z Z Z g Z Z Z Z g z Z z Z Z Z z z z z Z Z Z Z ~ Z g X Z Z Z Z X Z Z Z I ~ Z Z z Z Z Z Z Z Z X Z Z ~ Z Z Z Z Z Z Z Z Z Z Z Z Z Z z Z z z z z Z z z Z Z z z z z z z z Z Z Z Z Z Z g Z z Z z x ~ z Z Z g Z Z Z Z

~ z z Z Z Z g X Z Z t g Z K ~ Z Z t Z I T Z X Z ~ Z Z Z [ Z g [ S Z 2 X Z ~ Z X Z j ~ Z Z Z X Z

| 1 21 31 41 3 1 & l

Fig. 4.21 High-e/low-M region (shaded) where Newton's method, with Eqs. (4.29) and (4.30), is computationally faster than the Laguerre's method with Eqs. (4.29) and (4.30).

Page 21: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 55

and Eqs. (4.10--4.12) are changed to

- 1 sinh F sin 0 = (4.36)

e cosh F - 1

e - cosh F cos 0 = (4.37)

e cosh F - 1

sin 0 0 = tan -1 \c---o-~s 0 / (4.38)

Since we do not know ahead of t ime whether the orbit is elliptic or hyperbolic, we must alter the equations to fit the case at the time of calculation. For a computer program, both sets of equations must be programmed, and a test is made to branch to the appropriate set of equations whenever Kepler 's solution is called for. And this is not the only problem. The method we have been following does not work very well for near-parabolic orbits. We have already seen these difficulties when we examined the region where e is nearly 1 and M very small. As we shall see in the next section, these problems are circumvented by the introduction of new auxiliary variables that are different from the eccentric anomaly.

4.3 A Universal Approach A change of variable known as the "Sundman transformation" was first proposed

in 1912. Recently, many authors have used this technique to develop formulas for computing the so-called time of flight via generalized or "universal" variables. In our discussion, we will use the formulation derived by Ba te ] Since the referenced text goes into considerable details, we will, for practical reasons, confine our discussion to the change of variables introduced, the results of this introduction, and a summarized outline on how the results are used to solve our problem.

We start with the energy equation of

1 /z Energy = ¼ V 2 - - - (4.39)

r 2a Z

Resolving V into its radial and transverse components gives

~t ;2 -t- ~(rO) 2 /z _ /z (4.40) r 2a

Noting that

h = r20 = ~ (4.41)

we have

~ 2 _ 2/z /z _ _ / z p + _ _ _ _ (4.42) r 2 r a

Page 22: Orbital Mechanic: 4. Position and Velocity as a Function of Time

56 ORBITAL MECHANICS

Bate now introduces a new independent variable X, which is defined as

2 = ~ (4.43) r

Note that the X defined here and Z, which will be introduced shortly, are not to be confused with the x, y, and z normally used to describe the rectangular Cartesian coordinate system. Rather than introducing new symbols, we retain, for consistency, the symbols used in Bate's text.

Dividing the square of Eq. (4.43) into the preceding Eq. (4.42) and separating the variables yield

dr dX = (4.44)

x / - p ÷ 2r - r2/a

For e ~ 1, we can integrate Eq. (4.44) to obtain

where Co is the constant of integration. Solving for r, and recalling that p = a(1 - e2),

(4.45)

X + C 0 ] r = a l + e s i n ~ - - - ] (4.46)

Substituting Eq. (4.46) into the definition of the universal variable, Eq. (4.43), and integrating give

~/-~t = a X - a e 4 r d cos ~ - c o s (4.47)

where we assume that X = 0 at t = 0. Let us take stock in what we have so far. We have developed two equations for

r and t in terms of X. In doing so, a constant of integration was introduced but not as yet evaluated.

We will now restate our problem, namely, Kepler's problem, and apply what we have developed to this problem.

In Kepler 's problem, we have at some initial time, say to, the state of the orbit in terms of position and velocity, i.e., r0 and V0. Given this, we wish to find the state, i.e., position and velocity, r and V, at some other time t.

First, we have assumed that X = 0 at t = 0. Thus, from Eq. (4.46),

Co ro - - -- 1 (4.48) e sin ~ a

Next, differentiate Eq. (4.46) with respect to time to get

( X + C o ) = e#- C°Sr \ (4.49)

Page 23: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 57

At the initial condition, we have X = 0 and, since rk = ro • V0, Eq. (4.49) becomes

Co ro • Vo ecos -- ~ (4.50)

~/iza

Substituting Eqs. (4.48) and (4.50) into Eqs. (4.47) and (4.46) yields

v r - f i t = a ( X - v C d s i n - - ~ )

+----~---ar°'V° ( l _ c o s . _ _ ~ a ) + r o v / S s i n X

r,0 vo sin ~a - (1 - -~) cos ~ ] r = a + a [ v/-fi- d

And the constant of integration Co is eliminated. Now, Bate 7 introduces another variable, which is defined as

(4.51)

(4.52)

S 2 Z = - - (4.53)

a

o r

S 2

Z

Removing a by this new variable from Eqs. (4.51) and (4.52) yields

(4.54)

= ~ (--z)k k=O (2k + 2)!

(4.57)

~/-~t - ~ - sin ~ X3 Z3/2

ro . Vo 1 - cos V ~ X2 sin ~ _ q- - j Z q- r 0 ~ - - - X (4.55)

1 - cos V ' Z x e r0 . Vo sin v/-Z X r - + - - - - + r 0 c o s ~ / ~ (4.56)

z 4~ , /2

Both these equations are indeterminate when Z = 0. To remove this dilemma, two very useful functions are introduced.

1 - cos c ( z ) -

Z

1 Z Z 2 Z 3 . . . . + _ _ _ _ _ + . . .

2! 4! 6! 8!

Page 24: Orbital Mechanic: 4. Position and Velocity as a Function of Time

58 ORBITAL MECHANICS

- sin s ( z ) - Z3/2

1 Z Z 2 Z 3 + - - - - - + . . .

3! 5! 7! 9!

=£ ( - z ) k

k=o ( 2 k + 3 ) ! (4.58)

Also, by differentiating Eqs. (4.57), (4.58), and (4.53), we note that

dC 1 -- 2 ";(1L - S Z - 2 C ) (4.59)

dZ

dS 1 ( C - 3S) (4.60)

dZ - 2Z

dZ 2X - - ( 4 . 6 1 )

dX a

Using the two functions of Eqs. (4.57) and (4.58),we can writeEqs. (4.55) and (4.56) as

~/-~t = SX 3 + C r° "V°X2 +r0(1 - SZ)X 4~

(4.62)

r -- r0__~?( 1 .V~ _ SZ)X + r0(1 - CZ) + C X 2 41z

(4.63)

Now, the solution to Kepler's problem is sought by first finding X corresponding to time t and then by finding r and V corresponding to X.

In Eqs. (4.62) and (4.63), Z can be removed by Z = XZ/a since a is known from r0 and V0 and the vis-viva equation. But still X cannot be solved for directly because the equations are transcendental in C and S. This suggests the use of a Newton-Raphson iteration method or, better yet,the Laguerre's method that was discussed in solving the original Kepler's equation.

In order to apply Laguerre's method, we must first rewrite Eq. (4.62) as follows:

f ( X ) = ( 1 - ~ ) S X 3 + r ° ' V ° c x e + r o X - v / - ~ t (4.64) 4~

Then, by differentiating and making use of Eqs. (4.59), (4.60), and (4.61),

f ' (X) = CX 2 + r ° - ~ - (1 - SZ)X + r0(1 - CZ) (4.65) 41z

_ - (1_ + 466) \ a / 41z

Page 25: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 59

Now we may apply these three equations to

5 f ( X i ) Xi+l = Xi - (4.67)

f ' ( X i ) 4- 2 x / 1 4 [ f ' ( S i ) ] 2 - 5 f (X i ) f ' ( X i ) ]

where the sign in the denominator is chosen so that [Xi+l - Xi l is as small as possible for each iteration.

Note that the t in Eq. (4.64) is, in reality, At = t -- to. Our choice of to = 0 was arbitrary in formulating a solution using the universal variables. Since, in general, to ~ 0, a correct At must be calculated for the rightmost term of Eq. (4.64). Finally, to start the iterative process, the following initial X value is suggested:

t - t 0 X0 = ~ - - (4.68)

lal

I f the orbit is elliptic, the term t - to in the numerator should be reduced by the largest integer multiple of P, where P = 2na3/2/~/-ff . Other initial approximations may speed the convergence of the solution but seem unnecessary with Laguerre 's method of iteration.

4.4 Expressions with fand g Once X corresponding to t is determined, we must now find r and V in terms of

X, r0 and V0. Since Keplerian motion is confined to a plane, the four vectors r, V, r0, and V0

are all coplanar. Thus, we can write

r = f r o + gVo (4.69)

and differentiating

V = f r o + gVo (4.70)

where f , g, f and g are time-dependent scalars. One interesting property of the f and g terms is seen by crossing r and V as

follows:

r × V = h = (f~, - f g ) h (4.71)

from which

1 = f g - j~g (4.72)

This relationship states that f, g f , and g are not independent and, if we know any three, we can determine the fourth from this identity.

Now, the approach taken to develop these fand g expressions is 1) to write Eqs. (4.69) and (4.70) in terms of a perifocal coordinate system, 2) relate Eq. (4.46) to the conic equation and find expressions of the perifocal components in terms of X, 3) substitute the results of step 2 into the results of step 1, and 4) introduce the

Page 26: Orbital Mechanic: 4. Position and Velocity as a Function of Time

60 ORBITAL MECHANICS

definit ions of Z, S(Z), and C(Z). We shall omi t the details of these steps, but the results of such an endeavor are

X 2 f = 1 - - - C (4.73)

ro

X 3 g = t - - - (4.74)

f = v / - ~ X ( Z S - t ) (4.75) rF0

X2C = 1 - - - (4.76)

F

4.5 Summary of the Universal Approach As a sum m ary of the universa l approach d iscussed so far, we wil l outline the

entire p rocedure and per t inent equat ions as fol lows: Given: ro and Vo at to and t

ro = Irol (4.77)

Wo = IWol (4.78)

1 _ 2#/ro - V 2 (4.79) a /z

A t = t - to (4.80)

If 1 - < 0, skip to Eq. (4.83). Otherwise , a

a3/2 P = 2 7 r - -

A t = A t - [ s i g n ( A t ) ] i n t [ ~ ] p

(4.81)

(4.82)

where int I~[ denotes the integer part of ~.

A t Xo= (4.83)

Start with n = 0, and calculate

Zn - X2 a

1 z . C. = 2--~ - 4 ~- . + 6-~-. - 8-~- . . . .

(4.84)

(4.85)

Page 27: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 61

1 z° z$ s . - + + . . .

3! 5! 7! 9!

t o " Vo t" X 2 f ( S n ) = ( 1 - ~ ) S n S 3 - [ - ~4/-~ ~n n - [ - r o X n - - ~ r ~ t

f t (Xn) = Cn X2 -]- r 0 - ~ ( 1 __ S n Z n ) X n -]- F0(I -- C n Z n )

f" (X. ) = ( 1 - r--°a ) ( 1 - S .Z . )X. + r° "-~V~ ( 1 - CnZ.)

3n = 2X/4[f'(Xn)] 2 -- 5 f (Xn) f"(Xn)

5f(Xn) A X n =

i f (X,) + [sign f'(X,,)]6n

Xn__ 1 = X n -- A X n

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

Repeat Eqs. (4.84-4.92) for n = 1, 2, 3 . . until

(4.93)

where e = 10 -8.

X 2 f = l - - - C

ro

X 3 g = t ~¢~S

3 ~ = ~ ( S Z - 1 ) X rro

X 2 g = l - - - C

r

r = fro + gVo

v = f ro + gV0

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)

(4.99)

4.6 The Classical Element Set

Let us pause for the moment and examine the coordinate frames we have used so far. When we first described Kepler's problem, we started with an element set that consisted of the following: a, e, i, f2, oa, and 0. This is a modified form of the classical element set in which the sixth element is 0 (true anomaly). Sometimes, M (mean anomaly) is used instead of 0. Rarely is E (eccentric anomaly) used. The true classical element set consists of a, e, i, f2, w, and r, where the sixth term, r, is the time of perifocal passage or, more exactly, the time of the last previous

Page 28: Orbital Mechanic: 4. Position and Velocity as a Function of Time

62 ORBITAL MECHANICS

perifocal passage as measured from a specified reference time (usually midnight of Greenwich mean time of an epoch date). It is because of the difficulty encountered in handling this sixth term that practical considerations have led to the use of 0 and M in its place.

4.7 The Rectangular Coordinate System

When we discussed the universal variables, the initial and final orbit states were expressed by two quantities, position and velocity, in their vector form. Position and velocity as vectors can be resolved into a variety of components. Most common are those expressed in a rectangular Cartesian coordinate frame, in which case the components are x, y, z, 2, 3?, and ~. Often, this coordinate frame is referred to as the Earth-centered inertial (ECI) frame.

Since it is apparent that we need to change from one coordinate frame to another, this is a good time to see how we transform from the modified classical element set to the rectangular Cartesian set and vice versa.

4.8 Modified Classical to Cartesian Transformation

This transformation is accomplished in two steps. First, the classical set is expressed in a perifocal coordinate frame. Second, the perifocal coordinate frame is converted to a Cartesian frame through a series of rotations of the axes.

Looking at Fig. 4.22, we can immediately write

r = r cos 015 + r sin 0{) (4.100)

r sin 0 - - - ~ P

Fig. 4.22 Position and velocity in a perifocal coordinate system.

Page 29: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 63

where the magnitude of r is determined from the equation of the conic

P r -- (4. lOOa) 1 + ecosO

p being equal to the semilatus rectum of the orbit, which is a(1 - e2). Differenti- ating and simplifying the preceding two equations yields

V = ~ / -~[ ( - sin 0)/5 -q- (e + cos0) 0] (4.101)

In differentiating, note that P = Q = 0 since the perifocal coordinate frame is "inertial" in space. Also, t ~ = ( ~ ) e sin 0 and r0 = (4'(-~-P) (1 + e cos 0) from Eq. (4.41) and Eq. (4.100a) and its derivative.

Now, from Fig. 4.23, we see that the IJK axes can become the PQW axes by three successive rotations as follows: 1) rotation about the ~ axis by +f2, 2) rotation about the ~ axis by +i , and 3) rotation about the ~ axis by +~o. The first transformation is accomplished by

y' = - s g2 cosf2

Z I 0 IJK

(4.102)

A A Z , k

Orbit7

f ~ ! "°

Fig. 4.23 The relationship between the IJK and PQW systems.

Page 30: Orbital Mechanic: 4. Position and Velocity as a Function of Time

64 ORBITAL MECHANICS

The second transformation is accomplished by

x l [ io Y"/= cos/

z" J - sin i

0][x] sin i y'

cos i z'

(4.103)

and the third transformation by

[coso sin° i]Fx ' y" : -sinw cosw Y'l

L z" .J PQW 0 0 L z" d

(4.104)

Actually, we need to change the PQW axes to the IJK axes. That is, instead of Eq. (4.102), we need

ix] = [T1] y'

IJK Zt

(4.105)

where [7"1 ] is the inverse of the transformation matrix given in Eq. (4.102). Simi- larly, we need

~'] F~"l F~"l U'l y' =tT=J/j' / and/y,,/=tT311y,, , / z' L z" l L z" l L z'" -J pQw

(4.106)

where [T2] and [T3] are the inverses of the transformation matrices given in Eqs. (4.103) and (4.104). The inverses are obtained simply by changing the sign to the sine terms of the matrices. Thus, we have

Fcos~2 -sin~2 i l

[T1] = LSio~ cos~ 0 (4.107)

[T2] =

[i ° ° cos i - sin i

sin i cos i

( 4 . 1 0 8 )

and

[T3] = COS 0.) si~w 0 (4.109)

Page 31: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 65

The complete transformation is then accomplished by three successive transfor- mations

= [ T d [ T 2 ] E T 3 ]

IJK PQW

Combining the three transformation matrices into one then gives

[il rrcoso --ERlLrSo° j and

Fil = [R]

- V / ~ sin 0

~t-~(e ~ cos 0)

where

[R] = I Rll R12 R131

R21 R22 R23 /

R31 R 3 2 R33A

and

R l l = c o s ~ c o s o9 - s i n g2 s i n co c o s i

R 1 2 = - - COS ~ sin o9 -- sin f2 cos o9 cos i

R13 = sin f2 sin i

R21 = sin f2 cos o9 + cos ~2 sin o9 cos i

R 2 2 ~- - sin f2 sin o9 + cos f2 cos o) cos i

R23 = - c o s ~ sin i

R3~ = sin o9 sin i

R32 = c o s o9 sin i

R33 = cos i

(4.110)

(4.111)

(4.112)

(4.113)

(4.114)

Page 32: Orbital Mechanic: 4. Position and Velocity as a Function of Time

66 ORBITAL MECHANICS

4.9 Rectangular to Modified Classical Elements Transformation

In this transformation, we start with r (x , y, z) and V(2, ~, ~) and seek to change these into the set of (a, e, i, f2, co and 0). The computat ional steps for this trans- formation are as follows:

r = ~/x 2 + y 2 + z 2 (4.115)

V = ~/k 2 + ~2 + k2 (4.116)

V 2 2 1 - - ~ a (4 .117)

# r a

1~ ¢ _ r x V (4 .118) Ir x Vl

(4.119)

(4.120)

c o s / = W ./~ --+ i

1[( r ) e = - V 2 - l ~ r - ( r lz

d c - Ik x ¢¢1

• V ) V ] --+ e

(4.121)

cos f2 = / ' . )V (4.122)

sin f2 = (I x N ) . k (4.123)

( s i n f2 ] f2 = tan -1 \ ~ ] (4.124)

]V.e cos co -- (4.125)

lel

/ ~ x e sinco -- - - • ~ ' (4.126)

lel

co = tan -1 ( sin co ) \COS CO/

e . r cos 0 -

ferlrl

(4.127)

(4.128)

sin 0 "] 0 = tan -1 \ c - ~ s O J (4.130)

e x r sin0 = - - • 1}" (4.129)

lellrl

Page 33: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 67

4.10 The Spherical (ADBARV) Coordinate System Another often used and practical coordinate system is the spherical coordinate

system. In this system, the position and velocity are expressed in terms of the following six quantities:

= right ascension = declination

/3 = flight-path angle A = azimuth r = radius V = velocity

All of these are scalar quantities and, because of the symbols used, the coordinate system is often referred to as the ADBARV system. The first two quantities reflect the fact that the spherical system is similar to the celestial (right ascension- declination) system used in astronomy.

Figure 4.24 is a pictorial representation of the ADBARV components in the rectangular x, y, z coordinate system.

In the Fig. 4.24, or, 8, and the magnitudes of r and V are self-evident. The flight-path angle/3 is the angle between the radius and velocity vectors. At

either perigee or apogee, the velocity vector is perpendicular to the radius vector, and/3 = 90 deg. On half of the orbit from perigee to apogee,/3 is less than 90 deg. On the other half, from apogee to perigee,/3 is greater than 90 deg. Depending

i /

V

'

Fig. 4.24 The spherical coordinate system.

Page 34: Orbital Mechanic: 4. Position and Velocity as a Function of Time

68 ORBITAL MECHANICS

on the discipline to which one belongs (control, guidance, etc.), sometimes the flight-path angle is measured relative to the instantaneous geocentric horizontal rather than the vertical. In this case, F = 90 deg - f l , and the flight-path angle y is zero at perigee and apogee. It is positive when approaching apogee from perigee and negative when approaching perigee from apogee. You may also hear the term "pitch angle" used to describe the flight-path angle y. Here, nose up and nose down are equivalent to the positive and negative sense of the angle, F.

The azimuth A is measured in the instantaneous geocentric horizontal plane at the point in question. It is the angle between the northerly direction and the projec- tion of the velocity vector onto this plane. Typically, it is positive when measured clockwise from due north when viewed down along the radius vector toward the center of the Earth. Care should be taken in noting the positive/negative sense of this component since some disciplines define the counterclockwise direction as being the positive direction of this angle.

In referring to the instantaneous horizontal, the term "geocentric" has been introduced. This means that the horizontal line or plane is perpendicular to the geocentric radius at that instant. There is also a "geodetic" horizontal, which should not be confused with the geocentric. More on this topic is discussed in Sec. 4.14.

4.11 Rectangular to Spherical Transformation Now, let us see how we can transform to the spherical (ADBARV) coordinate

frame from the rectangular Cartesian coordinate system. The computational steps a r e

r = ~//X 2 q- y2 -t- Z 2 (4.131)

V = v/22 + 92 + i 2 (4.132)

Y sin u -- (4.133) x / ~ + y 2

x cos ~ -- (4.134)

x / ~ - + y2

( s i n u ~ u = tan 1 (4.135)

\COS 0 t /

8 = s i n - ' ( z ) (4.136)

r . V fl ---- cos- I (~_-_-_-~) (4.137)

t~ ¢ _ r x V (4.138) Ir × VI

_ 1~ z x r (4.139) Iw ×d

Page 35: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 69

/5 _ (r x k) x r (4.140)

I(r x~)×r I ^ ^

cos A = A • P (4.141)

s i n a = A x / 5 . r__ (4.142) Irl

sin A A = tan -1 \ c o s A] (4.143)

4.12 Spherical to Rectangular Transformation The inverse transformation from spherical to rectangular is very similar to the

procedure used in the transformation from the modified classical element set to the rectangular set. Using Fig. 4.24 as a guide, we see that a rotation of the axes first about the ~ axis by + ~ and then about the.~ axis by - 8 will cause the ~ axis to become colinear with the radius vector. By inspection, then, we can write the inverse transformation of the position vector as follows:

[i] = [c°i si sin cos0 !lr ° -sin'-,sin, 0' cos,° (4.144)

By completing the matrix multiplications, we have

x = r cos ~ c o s a (4.145)

y = r cos ~ s ina (4.146)

z = r sin ~ (4.147)

The inverse transformation of the velocity vector is slightly more complicated but only in that we must go through four rotations instead of two. These rotations are: 1) about the ~ axis by + a , 2) about the ~ axis by - 8 , 3) about the ~2 axis by - A , and 4) about the.~ axis by - f t . When these four rotations are completed, we find the ~2 axis aligned along the direction of the velocity vector. Again, by inspection, we can write

= T~T2T3T4 (4.148)

where

F cos c~ - sin o~ ! ]

T 1 : [ s i n a cos~

Lo 0 (4.149)

Page 36: Orbital Mechanic: 4. Position and Velocity as a Function of Time

70 ORBITAL MECHANICS

V o, 0 s:,] T2 = 1 (4.150)

Lsin6 0 cos6 J

0 01 T3 = cosA sinA (4.151) - sin A cos A

FCo 0 T4 = 1 (4.152)

ksinfl 0 cosfl J

And by completing the matrix multiplications we have

= V [ c o s o t ( - c o s A s i n # s i n S + c o s # c o s S ) - s i n A s i n # s i n c ~ ] (4.153)

= V [ s i n u ( - cosA sin# sin3 + cos# cos3) + sinA sin# cosa] (4.154)

= V(cos A cos 3 sin/3 + cos # sin 8) (4.155)

4.13 The Earth-Relative Spherical (LDBARV) Coordinate System Another very useful coordinate system, especially when the orbit must be

referenced to various positions on the Earth, is a modified form of the spherical coordinate system. This Earth-relative system is identical to the spherical system except that the first term, right ascension, is replaced by the geographic longitude, usually denoted by the symbol )~. Because of the symbols used in describing this system, it is often referred to as the LDBARV system. In map coordinates, longitude spans 0 to 180 deg both east and west. In astrodynamics, we often consider the longitude to span 0 to 360 deg, with the positive direction coinciding with the easterly direction. Again, care must be exercised since some disciplines consider west as being the positive direction rather than east.

The relationship between longitude and right ascension is

)~ = Ot - - O/g (4.156)

where otg is the right ascension of Greenwich at time t. The right ascension of Greenwich is tabulated for different days in the American Ephemeris and Nautical Almanac. It may be more expedient, however, to calculate this value from a set of equations such as the following:

~g@midnight = [100.46061838 + d(0.7700537 + 3.88 x 10 -4 x d)

+360 x fractional part{lOOd}]mod 360 deg (4.157)

where

MJD - 51,544.5 d = (4.158)

36,525

Page 37: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 71

and

YR = year (e.g., 1989)

MO = month (1 for Jan., 2 for Feb., etc)

DY = day (day of the month)

Y = Y R - D

where

D = 0 , i f M O > 3

= 1, i f M O < 3

A = integer part {Y/100}

B = 2 + integer part {A/4} - A (4.159)

M = M O + 1 2 x D

MJD = B + D Y + integer part {30.6001(M + 1)}

+integer part {365.25Y} - 679,006

Note that MJD, which stands for "Modified Julian Date," is introduced to reduce the number of significant digits that must be carried in the computation without loss of precision or the need to invoke double precision operations. MJD is related to Julian date (JD) by the following:

MJD = JD - 2,400,000.5 (4.160)

Note also that a Julian day is reckoned from noon to noon of the following day. A modified Julian day is from midnight to midnight of the following day.

The fight ascension of Greenwich at any time during the day is then found from

lYg ~--- O/g@midnight + 09et (4.161)

where

t = time from midnight

o) e ---- rotational rate of the Earth

= 0.2506844537 deg/min

4.14 Geodetic and Geocentric Altitudes

In Sec. 4.10, the term "geodetic horizontal" was introduced. This term, which is intimately related to the vertical direction, is synonymous with the term "geodetic vertical." Geodetic vertical, in turn, raises the question of what con- stitutes an altitude of an object above an Earth that is not a sphere but an oblate spheroid.

Page 38: Orbital Mechanic: 4. Position and Velocity as a Function of Time

72 ORBITAL MECHANICS

Object

Fig. 4.25 A three-dimensional view of geocentric and geodetic altitudes.

Figure 4.25 gives a three-dimensional view of what we mean by altitude. The distance from C to the object is the geocentric altitude measured along the geocen- tric radius of the object. The distance from D to the object is the geodetic altitude measured along the vertical line that passes through the object and is also perpen- dicular to the Earth's surface. Because the Earth is not a sphere, C and D are not colocated. This is more clearly illustrated in the two-dimensional representation of Fig. 4.26, where the meridian containing the two altitudes is viewed from the side.

Ironically, because the coordinate system we use is Earth-centered, it is more direct and easier to calculate the geocentric altitude. Yet, when we say altitude, we really mean geodetic altitude. And this geodetic altitude, if calculated formally, is obtained not directly but by an iterative process. This is not an attractive propo- sition. When we generate an ephemeris of, say, 10,000 time points and ask the question of altitude at each of these points, this implies introducing an iterative scheme, such as the one we studied in Sec. 4.2 to solve Kepler's equation, at every one of these 10,000 points after we have determined their positions.

Fortunately, we can rely on an approximate but very effective closed-form procedure s to determine the geodetic sublatitude and altitude of an object in space. The errors introduced by using this approximate method are only 5 parts in 100 million for latitude and 8 parts in 100 million for altitude.

Referring to Fig. 4.26, we first calculate the radius and declination of the object as follows:

r = ~/X 2 Jr- y2 + Z 2 (4.162)

= sin -1 (z/r) (4.163)

Page 39: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 73

North Position P o l e (x,y,z)

x- Earth Equa tor Center

Fig. 4.26 A two-dimensional view of geocentric and geodetic altitudes.

Once these two quantities are determined, the following two equations are used directly.

where

and

h = r - ae 1 - f sin 2 3 - -~- sin 2 23 -

h = geodetic altitude

ae = equatorial radius of the Earth

f = flattening of the Earth

(4.164)

s'n '):a E'sin2'+r '2sin4'l )l 4165) From Eq. (4.165), then,

~b = 3 + sin -1 [sin(q5 - 3)] (4.166)

where q5 = geodetic latitude of the sublatitude point

The longitude )~ of the object is calculated by first determining the right ascen- sion of the position (x, y, z) and then relating it to an Earth-relative frame whose x axis is in the plane of the Greenwich meridian. Figures 4.27 and 4.28 describe the geometry relating to calculating the longitude.

First, from Fig. 4.27,

oL = tan-1 ( y ) (4.167)

Page 40: Orbital Mechanic: 4. Position and Velocity as a Function of Time

74 ORBITAL MECHANICS

~p

C~

l

Position (x,y,z)

r

~ / - . . . . . . . . . .

Fig. 4.27 The posit ion in spher ical coordinates .

A :-~ X,¢O

Fig. 4.28 Iner t ia l and Ear th- re la t ive angles: c~g 0 = r igh t ascension of Greenwich at epoch; C~g = r igh t ascension of Greenwich at (t - epoch); c~ = r ight ascension of the vehicle a t (t - epoch).

Page 41: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 75

And, from Fig. 4.28,

o r

X = O/-o/g (4.168)

)~ = {0/ - - [O/g 0 q- COe(t - t o ) ] }mo d 360 deg,

where

0 < ~ < 360deg

we = the rotational rate of the Earth

to = the epoch or the reference time

O/g0 = the right ascension of Greenwich at to

(4.169)

By letting to occur at midnight, O/g0 = O/g@midnight, which can be calculated as shown in Sec. 4.13.

To complete this topic, we will also examine the inverse process, namely, to convert geodetic sublatitude, longitude, and geodetic altitude to the equivalent (x, y, z) position. Unlike earlier conversions, this process is direct and exact and does not use any approximate formulas.

First, as an intermediate step, the geocentric latitude and the geocentric radius of the sublatitude point are determined. Referring to Fig. 4.29, we obtain

¢, = tan-l[(1 _ f)2 tan¢], - 9 0 deg < ¢ < +90 deg (4.170)

a e ( 1 - f ) r e = (4.171)

v/1 - f ( 2 - f ) cos 2 ¢'

Position

~or~h (x,y,z)

~ h . l a t i t u d e

Earth / Center

Fig. 4.29 Geometry for converting h to r.

Equator

Page 42: Orbital Mechanic: 4. Position and Velocity as a Function of Time

76 ORBITAL MECHANICS

where ~ ' and rE are the geocentric latitude and radius of the sublatitude point, respectwely.

Then

x ' = rE cos q~' + h cos ~b (4.172)

y ' = 0 (4.173)

z' = re sin ~b' + h sinq~ (4.174)

and r = x'2v/~U~z '2 (4.175)

(4.176) 8 = s in-I ( ~ )

Now, from Eq. (4.169),

Ol = [~. "J- Olg o -'1- O ) e ( t - - / 0 ) ] m od 360 deg, 0 < a < 360 deg (4.177)

where, again, by letting to to be at midnight, ag o = O/g@midnight , which can be calculated as shown in Sec. 4.13.

Finally,

X ~ X t COS (4.178)

y = x ' s in~ (4.179)

z = z' (4.180)

4.15 Converting from Perigee/Apogee Radii to Perigee/Apogee Altitudes

An interesting variation on what has been described so far is the process to con- vert a set of perigee/apogee radii to its equivalent set of perigee/apogee altitudes. To be more specific, we have as initial quantities the values for rp (perigee radius), rA (apogee radius), and 6p (declination of the perigee). Inherent in this statement is the assumption that perigee and apogee lie on a straight line that passes through the center of the Earth (i.e., they are 180 deg apart in Earth-centered angle). It follows then that the declination of the apogee is equal in magnitude to the declination of perigee except for its sign, which is opposite. What may not be obvious is that the geodetic sublatitude at perigee is not the same in magnitude as the sublatitude at apogee. Figure 4.30 illustrates this point.

Since rp and rA lie on a straight line, 1@[ = [~A[. But, because rp < rA, the subapsidal points do not occur at the same latitude (magnitudewise) as shown in the Fig. 4.30. Thus, kbp[ 5 ~ [~ba[. Needless to say, this affects the values ofhp and ha.

Mathematically, we solve this problem by first using rp and 8p in Eqs. (4.164- 4.166)

h p = r p - ae 1 - f sin 2 ~p 2 sin2 2~p - - (4.181)

C k P = S p + s i n - 1 { a ~ [ f s i n 2 @ + (4.182)

Page 43: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 77

North Pole

Perigee

hp

• -E(

th Apogee Pole

Fig. 4.30 Differences in sublatitudes between perigee and apogee.

~uator

This process is then repeated using rA and ~A, where ~A = - -~p

h A = ra - - a e 1 - - f sin 2 3a - ~ - sin 2 28A -- (4.183)

~A=3A+sin-I{a~A [fsin23A+ f2sin4'A(a~A--~)]} (4.184)

4.16 Converting from Perigee/Apogee Altitudes to Perigee/Apogee Radii

The most interesting and perhaps most misused conversion occurs when perigee and apogee altitudes are converted to perigee and apogee radii. This occurs typi- cally when perigee and apogee altitudes are converted to their ECI (Earth-centered inertial) counterparts. Symbolically, this conversion is represented by

Orbital elements hp hA i

4)em Zp/IZp

=~

ECI elements

[i] (4.185)

Page 44: Orbital Mechanic: 4. Position and Velocity as a Function of Time

78 ORBITAL MECHANICS

where

i = inclination

fbpo = geodetic sublatitude of perigee

Zp/Izpl = direction of motion at perigee

(+ 1 for northbound; - 1 for southbound)

)~e = perigee longitude

What is not explicitly stated is that apogee altitude hA is measured above a geodetic latitude whose magnitude is not equal to the magnitude of the latitude of the subperigee point. Whatever the difference in the magnitudes of the geodetic latitudes, apogee altitude ha is placed so that the resulting apogee will lie on a straight line that contains both perigee and the center of the Earth.

Mathematically, the following process is used, provided that hA ~ 0 and hp < ha. First, the perigee radii rp and its declination 6p are determined from

4~ = tan -1 [(1 - f )2 tan~pD] (4.186)

ae(1 -- f ) re = (4.187)

~/1 - f ( 2 - f ) cos 2 q~,

x ' = re cos~@ + hp cos q~pD (4.188)

Z' = re sin~@ + hp sin ~pD (4.189)

rp = ~ + Z '2 (4.190)

8p = sin-1 ( ~ ) (4.191)

Then, the apogee radius ra and declination ~a are calculated from

B + ~ ' - ~ - C rA -= ae (4.192)

2

where

f2 ) hA B = 1 - f sin 2 ~A "~- ~ sin2 2~A ~- - - (4.193)

~5 ae

C = 2 f 2 sin 2 2~A (4.194)

and

~A = --~P (4.195)

Equation (4.192) is derived from Eq. (4.164) by moving h to the right side of the

Page 45: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 79

equation, multiplying by r, and then rearranging the terms to get

f 2 r2 [ae(l sin2,+ sin22,)+h]r+ 2 2 ae f sin 2 23 = 0

2

which is a quadratic equation with solutions in the form of

where

(4.196)

- b 4- ~ - 4ac r = (4.197)

2a

a = 1 (4.198)

f 2 sin2 2 6 ) + h] (4.199) b = - [ a e ( 1 - f s i n 2 6 + - ~ -

2 2 a e f c -- sin 2 28 (4.200)

2

Now, in seeking a solution, Eq. (4.197) must make sense with any value of f , including the case in which f = 0. Take the case in which f = 0, and reduce the equation to

(ae + h) 4- ~ e e + h) 2 r = (4.201)

2

Immediately we see that the sign to the square root term must be + so that r = ae + h, otherwise, we will obtain a solution o f t = 0 that does not make sense.

Accordingly, we can now write Eq. (4.197) as

r B + 4 ' - ~ - C - - = (4.202) ae 2

where

and

f z ) h B = l - f sin 26+-~s in 228 + - - ae

(4.203)

C = 2 f 2 sin 2 28 (4.204)

To continue, the perigee declination determined in Eq. (4.191) must satisfy the following condition; otherwise, there is an inconsistency in the orbital elements, as stated in Eq. (4.185), and the process must be aborted.

16p[ ~ i, if i < 90 deg (4.205)

o r

16PI ~ 1 8 0 - i, if i > 90 deg (4.206)

Page 46: Orbital Mechanic: 4. Position and Velocity as a Function of Time

80 ORBITAL MECHANICS

Next, the right ascension of perigee is calculated from

O/p = [O/g o -~- )~P]mod 360 deg, 0 _< Otp < 360 deg (4.207)

where

%0 = right ascension of Greenwich at epoch (4.208)

Note that, in Eq. (4.207), perigee is assumed to occur at epoch. At this point, we have converted the orbital elements of perigee/apogee altitudes

and perigee longitude to their counterparts of perigee/apogee radii and perigee right ascension. To complete the process, two more conversions are necessary, as shown symbolically as follows. Their mathematical processes are described in the two steps that follow.

Orbital elements Fp

FA

i 3p

~p/l~pl OIp

Classical elements ECI elements

[;] [il (4.209)

[~e[ < i,

[~p[ ~ 180 d e g - i,

I f these are satisfied, then,

Step 1: The first step is to convert from the orbital elements of perigee/apogee radii to the modified classical elements used in Sec. 4.1.

The required conditions are

r A ~ 0 (4.210)

rA >_ rp (4.211)

if i < 90 deg (4.212)

if i > 90deg (4.213)

If i ~ 0 or 180 deg,

re q- rA a -- - - (4.214)

2

r A -- rp e -- - - (4.215)

ra + rp

sin 3e co = sin -1 \ s-q~-n/j

c o = 1 8 0 d e g - c o , if (Z[~pPi) < 0

(4.216)

(4.217)

Page 47: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 81

If i = 0 or 180 deg,

if i ¢ 90 deg,

co = 0 (4.218)

O9 = [o9]mod 360 deg (4.219)

sin o9 cos i ) (4.220) Aot = t a n -1 \ cos o9

If i = 90 deg,

Aot = 0 for (cos o9 > 0) or (cos o9 = 0 and sin o9 > 0) (4.221)

Aot = 180 deg for (cos o9 < 0) or (cos o9 = 0 and sin o9 < 0) (4.222)

~'~ = [ ~ P - - AO~]mod 360deg (4.223)

0 = 0 (4.224)

Step 2: The second step is to convert the modified classical elements to their ECI counterparts as shown symbolical ly here:

Classical elements

[i 7 f,

=:~

The mathematical steps are as follows:

p = a ( 1 - e 2)

P F m 1 + e c o s 0

where/z = gravitational parameter

s i n y = V ~ v s in0

cos y = ~/1 - sin 2 y

ECI elements

[il (4.225)

(4.226)

(4.227)

(4.228)

(4.229)

(4.230)

Page 48: Orbital Mechanic: 4. Position and Velocity as a Function of Time

82 ORBITAL MECHANICS

Then the unit position vector in ECI coordinates is obtained by the following series of rotations:

Lo o1[ o o ]El .~ Fcos f 2 - sin g2 1F 0 1 0 0 cos cosu 0 0 = si f2 cosf2 i - s i n i / / s i n u

0 1 0 sini c o s i ] [ 0 0 1 0

(4.231) where u = ~o + 0.

The unit velocity vector is obtained by the same series of rotations with one additional rotation.

[ilL 1L' [cosg2 - s ing2 0 1 0 0 [-cosu - s i n u 0

= Siof2 cosf2 cosi - s i n i si u cosu 0 sin i cos i d u 0

cos t-sin 01[ 1 l s i n (~0 g ) c o s ( ~ - g ) ~ : (4.232)

By carrying out these matrix multiplications and multiplying by r and V, respec- tively, we obtain

[i]

Ei] .rc°s cosu sin cos/sin:] = [sin f2 cos u ÷ cos f2 cos i sin (4.233)

L sin i sin u

[~siny-cosF(cosf2sinu+sinf2cosicosu) 1 = V siny - cos y(sin g2 sinu - cos f2 cosi cosu) (4.234)

sin F ÷ cos y cos u sin i

and

[il :r [il (4.235)

References

1Pressing, J. E., "Bounds on the Solution to Kepler's Problem," Journal of the Astro- nautical Sciences, Vol. 25, 1977, pp. 123-128.

2Ng, E. W., "A General Algorithm for the Solution of Kepler's Equation for Elliptic Orbits," Celestial Mechanics, Vol. 20, 1979, pp. 243-249.

3Smith, G. R., "A Simple, Efficient Starting Value for the Iterative Solution of Kepler's Equation," Celestial Mechanics, Vol. 19, 1979, pp. 163-166.

4Danby, J. M. A., and Burkhardt, T. M., "The Solution of Kepler's Equation, I," Celestial Mechanics, Vol. 31, 1983, pp. 95-107.

Page 49: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 83

5Brouke, R., "On Kepler's Equation and Strange Attractors," Journal of the Astronautical Sciences, Vol. 28, 1980, pp. 255-265.

6Conway, B. A., "An Improved Algorithm Due to Laguerre for the Solution of Kepler's Equation," Celestial Mechanics, Vol. 39, 1986, pp. 199-211.

7Bate, R. R., Mueller, D. O., and White, J. E., Fundamentals of Astrodynamics, Dover, New York, 1971.

8Gersten, R. H., "Geodetic Sub-latitude and Altitude of a Space Vehicle," Journal of the Astronautical Sciences, Vol. 8, Technical Notes, 1961, pp. 28-29.

Problems 4.1. Using the Newton-Raphson iteration method, solve Kepler's equation to find the eccentric anomaly E in degrees, where the eccentricity e is 0.1 and the mean anomaly M is 90 deg. Carry out the calculation for two iterations only, and remember to work in radians.

a) Use M for the first value of E. b) Use M + e for the first value of E. c) For parts a and b, what are the magnitudes (in degrees) of the errors in E after

two iterations?

4.2. Solve Kepler's equation using the Newton-Raphson iteration method, and find E to three significant figures for M = 5 deg and e = 0.9. Start with E0 = M.

4.3. Repeat Problem 4.2 using the Laguerre-Conway iteration method, where

f ( E ) = E - e s i n E - M

and the correction term is

A E = 5 f ( E )

f ' ( E ) 4- 2x/14tf , (E)] 2 - 5 f ( E ) f " ( E ) ]

so that

Ei+l = Ei - AEi

Note: In calculating AE, the sign before the square root term should be chosen to maximize the absolute value of the denominator.

4.4. A satellite is in a Keplerian orbit with a period P = 270 min and eccentricity e = 0.5. It has passed its perigee and is now at a point at which the orbit intersects the semilatus rectum of the orbit. How much time (in minutes) has elapsed since perigee passage?

4.5. A rocket carrying a payload is launched into a ballistic trajectory. At apogee, the payload separates and, using its own propulsion, proceeds into orbit. The rocket continues on until it impacts with the surface of the Earth. An observer on Earth notes that, at apogee, the rocket is at an altitude of 150 km and is traveling at a

Page 50: Orbital Mechanic: 4. Position and Velocity as a Function of Time

84 ORBITAL MECHANICS

speed of 2.22 km/s. Once launched, the rocket is in free flight until it impacts the Earth.

a) At how many kilometers downrange (measured on the surface of the Earth from the subapogee point) can the rocket be expected to impact the Earth? Assume the Earth to be a sphere, with a radius of 6378.137 km (/z = 398600.5 km3/s2).

b) How long (in seconds) does it take for the rocket to impact the Earth after the payload is separated at apogee?

c) By how many kilometers will the original impact point be missed if the observer reported the apogee velocity incorrectly as 2.23 km/s?

4.6. A spaceship is moving around the Earth in a 200- × 400-km orbit. At apogee, a retrorocket is fired in the direction exactly opposite to the spaceship's velocity vector. The magnitude of the retrorocket A V is such that the spaceship will impact the Earth after traveling an Earth-centered angle of 90 deg (i.e., A0 = 90 deg).

a) How much time At (in minutes) would have elapsed between the retro firing and impact? Assume the Earth to be a sphere, with a radius of 6378.137 km (# = 398600.5 km3/s2).

b) What is the magnitude of the retrorocket A V in kilometers per second?

~.v A [ 4v.__

4

4.7. A spaceship, in a circular orbit about the Earth at an altitude of 200 km, fires a projectile in a direction opposite to the spaceship's motion. After leaving the spaceship, the projectile impacts the Earth at an Earth-centered angle of 120 deg. Assume the Earth to be a sphere, with ae = 6378.137 km (# ----- 398600.5 km3/s2).

a) What is the magnitude of the AV given the projectile in kilometers per second?

b) How long (in minutes) does it take the projectile to reach the Earth? c) At impact, where is the spaceship relative to the impact point (e.g., directly

overhead, before it, or after it)? d) What is the time difference (in seconds) between impact and the spaceship's

direct flyover of the impact point?

Page 51: Orbital Mechanic: 4. Position and Velocity as a Function of Time

POSITION AND VELOCITY AS A FUNCTION OF TIME 85

e) Describe briefly and qualitatively the relative motion of the projectile with respect to the spaceship from firing to impact. Remember:

a(1 - e 2) g 2 r -- and

1 + e c o s 0 /z

Direction of Motion

Firing at Firing

2 1

F a

Path of the Spaceship

4.1. a) 95.7 deg

4.2. 33.3 deg

4.4. 26.39 rain

4.5. a) 409.95 km b) 186.1 s c) 2.01 km

4.6. a) 22.828 min b) 0.172 km/s

4.7. a) 0.08011 km/s b) 29.095 min d) 24.15 s

Selected Solutions


Recommended