+ All Categories
Home > Documents > Organic Electronics - Technische Universität München · 2 Organic Light Emitting Diodes ... from...

Organic Electronics - Technische Universität München · 2 Organic Light Emitting Diodes ... from...

Date post: 31-Mar-2018
Category:
Upload: dangquynh
View: 216 times
Download: 2 times
Share this document with a friend
36
Introduction OLEDs OTFTs OPVC Summary Organic Electronics Felix Buth Walter Schottky Institut, TU München Joint Advanced Student School 2008 Organic Electronics Walter Schottky Institut, TU München
Transcript

Introduction OLEDs OTFTs OPVC Summary

Organic Electronics

Felix Buth

Walter Schottky Institut, TU München

Joint Advanced Student School 2008

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Outline1 Introduction

Difference organic/inorganic semiconductorsFrom molecular orbitals to the molecular crystal

2 Organic Light Emitting DiodesBasic PrincipalsMultilayer OLEDs

3 Organic Thin Film TransistorsOTFT StructureTransport in organic semiconductors

4 Organic Photovoltaic CellsDifferences to inorganic solar cells

5 Summary

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

What is organic electronics?Electronics with carbon-based materialsTwo different groups:

Small-molecular materials

Pentacene Anthracene

mainly prepared by thermal evaporation

Polymers

Polythiophene (PT) Polyphenylen-vinylene (PPV)

prepared by solution processing (spin-coating, inkjet printing)

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Organic vs inorganic Semiconductors

Advantages of organic semiconductors

Light weightMechanical flexibilityChemical modificationspossibleEasy and cheapprocessing (e.g. ink-jetprinting, spin coating)

Readius from Polymer Vision

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Organic vs inorganic Semiconductors

Disadvantages of organic materials

Poor cristallinityLow mobility =⇒ low speedof devicesPossible degradation underenvironmental influences

Dark spots on a ITO/α-NPD/Alq3/Al OLED from: Kim et al.

Appl. Phys. Lett. 89, 132108 (2006)

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Electrical Properties

Molecular Orbitals

Interaction between the atomic orbitals leads to bonding andanti-bonding molecular orbitalsSplitting determined by the interaction between the atoms

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Electrical Properties

Physical Dimers

Special arrangement of two molecules close to one another,without the formation of chemical bondsDescribed by the following Hamiltonian: H = H1 + H2 + V12where H1 and H2 are the Hamiltonians of the isolated moleculesand V12 describes their interaction

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Electrical Properties

Ground States of a Physical Dimer

Approximation of the ground state wavefunction as the product of thetwo molecular states:

Dimer Ground StateΨg = Ψ1Ψ2

The resulting energy of the ground state is the sum of the twomolecular states, but shifted by the coulombic binding energy W :

Ground State EnergyEg = E1 + E2 +< Ψ1Ψ2|V12|Ψ1Ψ2 >︸ ︷︷ ︸

W

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Electrical Properties

Excited States of a Physical DimerFirst Excited State (case of identical molecules)

ΨE = 1√2

(Ψ∗1Ψ2 ±Ψ1Ψ∗2)

Excited State EnergyE± = E∗1 + E2 +< Ψ∗1Ψ2|V12|Ψ∗1Ψ2 >︸ ︷︷ ︸

W ′

±< Ψ∗1Ψ2|V12|Ψ1Ψ∗2 >︸ ︷︷ ︸β

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Electrical Properties

Linear Molecular CrystalFor not only two molecules buta linear array of N benzenerings, one gets the followingenergy levels:

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Electrical Properties

Excitons

Binding energy in inorganic semiconductors: 1-40 meVin organic materials: 100-300 meV (→ stable at 300K)

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Electrical Properties

Comparison Germanium and Anthracene

Germanium AnthraceneMelting point[C] 937 217Intrinsic conductivity @ 300K [ 1

Ωcm ] 0.02 ≈ 10−22

Electron mobility @ 300K [ cm2

Vs ] 4500 1.06Hole mobility @ 300K [ cm2

Vs ] 3500 1.31

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Basic Principals

Organic Light Emitting Diodes (OLEDs)

Principal of OLEDs first demonstrated in 1963 by Pope inanthraceneFirst comparably efficient OLED by Tang and van Slyke in 1987using Alq3

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Basic Principals

Charge Carrier Injection

from N.Koch, ChemPhysChem 2007, 8, 1438 – 1455

Charge carriers need to overcome a potential barrier in order to getinto the semiconductor→ Metal with high workfunction (Φ1) for hole injection and one withlow workfunction (Φ2) for electron injection

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Basic Principals

Level Alignment of some Organic Materials and Metals

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Multilayer OLEDs

Multilayer OLEDs

Hole and electron transferlayers to decrease the injectionbarriers

Tranparent anode needed(here: ITO)

Figures from N.Koch, ChemPhysChem 2007, 8, 1438 – 1455

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Multilayer OLEDs

Exciton RecombinationFluorescence vs. Phosphorescence

fast process ≈ 1ns relatively slow process > 1ns

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Multilayer OLEDs

White Organic Light Emitting Diodes

from Sun et al., NATURE 2006, Vol 440, 908-912

Use of triplet excitons for non-blue light emission

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Multilayer OLEDs

OLED Performance

from Shaw and Seidler,"Organic Electronics: Introduction", IBM J. RES. & DEV.,Vol. 45

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

OTFT Structure

Organic Thin Film Transistors

Possible use in active matrix flat panel displays, "electronicpaper" displays, sensors or radio-frequency identification (RFID)tagsIn competition with a:Si:H which is normally used in active matrixdisplays

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

OTFT Structure

OTFT Structure

Low conductivity in thechannel without any gatevoltageFormation of positive(negative) accumulationlayer at thesemiconductor-insulatorinterface upon applicationof a negative (positive) gatevoltageHigh crystallinity needed toobtain high mobilities→use of SAMs

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

OTFT Structure

Typical Transistor Characteristic

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

OTFT Structure

Combining OLED and OTFT

The Organic Light Emitting Transistor

from

Muccini, nature materials, Vol. 5 (2006), p. 605-613

Useful for example in activematrix displays. No separateOLEDs and OTFTS needed→thinner and less complicatedarrangement

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

OTFT Structure

Charge Carrier Mobility

Mobility measurable with the help of TFTs: IDS,sat = W2L Cµ (VG − VT )2

Hole mobilityElectron mobility

Three orders of magnitude lower than in inorganic semiconductors

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Transport in organic semiconductors

Why is the mobility so low?Weak inter-molecular coupling leads to high effective massAmorphous material→ thermally activated hopping transport, noband transportPolycrystalline material→ scattering at grain boundaries"Self-trapping" of charge carriers - the polaron

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Transport in organic semiconductors

Hopping TransportIn amorphous solids (also a-Si:H) the charge carriers are highlylocalised due to disorderPhonon assisted transport→ mobility increases with risingtemperature µ ∝ exp(−E/kT )

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Transport in organic semiconductors

Polycrystalline Pentacene

When diffusing from one grainto another, charge carriers getscattered at the defectsintroduced by the grainboundaries. These boundarieshence reduce the effectivemobility.

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Transport in organic semiconductors

The Polaron in Ionic Materials

Rearrangement of the latticeunder the influence of the electricfield of the charge carrierResulting potential well hindersthe motion of the charge, thusreducing its mobility

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Transport in organic semiconductors

Polarons in π-conjugated Polymers

Polymer rearranges itself in the presence of a charge carrier(here a hole), in order to be in the state of lowest energy.This configuration change goes in hand with a lattice distortion.

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Transport in organic semiconductors

Polaron Transport

In order to move the charge carrier the deformation needs tomove too→ low mobility of the polaron.Presence of phonons is increasing the mobility of the polaron.

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Transport in organic semiconductors

Polaron-Excitons in OLEDs

Injection of positively and negatively charged polarons at theelectrodes.Migration of the polarons in the external field.When the two oppositely charged polarons meet they form apolaron-exciton, which can eventually recombine.

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Differences to inorganic solar cells

Organic Photovoltaic CellsPhotovoltaic effect in single layer organic molecules firstobserved in the 1970s, later on also for polymersCells consisting of a single material reach only very lowefficiencies→ combination of at least two materials necessary

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Differences to inorganic solar cells

Why two dissimilar materials?

Photon absorption leads to the formation of a neutral exciton,which is stable at room temperatureExciton dissociation is increased at organic-organic interfaceswith proper band alignment

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Differences to inorganic solar cells

Operation Principle of OPVCs

Exciton formation by absorptionof a photonDiffusion of the neutral exciton tothe organic-organic interface(diffusion length up to a few tensof nanometers)Dissociation of the exciton at theinterfaceCollection of the charge carriersat the electrodes

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Differences to inorganic solar cells

OPVC Performance

Organic Electronics Walter Schottky Institut, TU München

Introduction OLEDs OTFTs OPVC Summary

Summary

Organic semiconductors offer a low cost alternative toestablished semiconductors when it comes to large area and lowcost applicationsFirst OLED applications are already on the market. OTFTs andOPVCs will most probably follow.Improvements on the material side are still needed (e.g. bettersolubility of small molecular crystals or doping possibilities)

Organic Electronics Walter Schottky Institut, TU München


Recommended