+ All Categories
Home > Documents > organologam lengkap

organologam lengkap

Date post: 02-Jun-2018
Category:
Upload: ikalailatul
View: 249 times
Download: 0 times
Share this document with a friend

of 70

Transcript
  • 8/10/2019 organologam lengkap

    1/70

    Outl ine

    1. Review on coordination chemistry2. The 18-electron rule

    3. Limitations of 18-electron rule

    4. Oxidation number

    5. Coordination number and geometry

    6. Effect of complexation

    7. Differences between metals

    Chapter 1. General properties of organometallic

    complexes

    1. The Organometallic Chemistry of the Transition Metals, Robert H. Crabtree,

    3rd Edition, 2001, Chapter 1-2.

    2. Organotransition Metal Chemistry, Akio Yamamoto, 1986. Chapter 1-4.

    3. Organometallic Chemistry, G. O. Spessard, G. L. Miessler, Prentice-Hall:

    New Jersey, 1997, Chapter 13.

    References

  • 8/10/2019 organologam lengkap

    2/70

    1. Review on coordination chemistry

    Complexesor coordination compoundsare compounds composed

    of a metal and ligandswhich donate electrons to the metal, e.g.

    H3N: Co :NH3

    H3N:

    :NH3H3N Co NH3

    H3N

    NH3

    NH3

    NH3

    ..

    ..

    3+

    or

    3+NH3

    NH3

    Ligands: a molecule or ion that has at least one electron pair that can be

    donated.

    The electron pair can be: lone pair, p-bonding electron pair, or

    s-bonding electron pair.

  • 8/10/2019 organologam lengkap

    3/70

    M M M

    H H

    M

    H SiR 3

    M

    lone pairs, e.g.

    pbonding e- pairs, e.g.

    sbonding e- pairs, e.g.

    H3N: H3N: M H2O: H2O: M.. ..

    Classi f ic at ion of l igands

    A). Based on nature of the donating electron pairs, ligands may be

    classified as Lone pair donor, p-bonding electron pair donors, s-bonding

    electron pair donors.

  • 8/10/2019 organologam lengkap

    4/70

    1) Lone pair donors

    M L

    NH2-CH2-CH2-NH2(en).. ..

    R-O-..

    ..: L : :-

    In terms of bonding:

    ..

    L

    ..

    L

    filledempty

    Lor

    H3N: :PR3:CO

    M

    Cl

    M M

    Note:

    Ligands that donate

    electron pairs to form M-L

    sbond are also called s

    donors.

    MO description of Metal-Ligand interactions

    L ligand

    M

    M L ligand

    M L ligand

    Bonding

    Antibonding

  • 8/10/2019 organologam lengkap

    5/70

    e.g. OR-

    R-O..

    .. :- M+(a)

    R-O..

    .. M

    R-O

    -:

    M+(b)

    MR-O

    M

    M M

    filled

    M

    empty

    orOR- OR- OR

    -

    OR-

    (a)

    Note: although ligands

    such as OR-can form

    pbond with a metal,

    we usually don't

    indicate suchinteraction in writing

    the structures.

    Ligands that donate electrons to metal to form pbond are called donor

    How manyp

    bonds can an OR form with a transition metal ion?

    M ORM OR

    M OR

    Some lone pair donor ligands may have orbitals to form

    M-L pbonds. ===> pdonor, pacceptor.

  • 8/10/2019 organologam lengkap

    6/70

    :C O: C O: C O:

    C O: C O:

    +(a)

    +

    (b)

    empty

    M M

    M

    M

    accept e-to form pbond (dpppback bonding)

    CO is not only a sdonor, but also a pacceptor.

    How many pbonds can a CO form with a transition metal ion?

    Ligands that accepting electrons from metal to form p bond are calledacceptor.

  • 8/10/2019 organologam lengkap

    7/70

    :C O: C O: C O:

    C O: C O:

    +(a)

    +

    empty

    M M

    M M

    C O:+

    empty

    M C O:M

    C OM C OM C OM

    Can CO function as ap

    donor?

    TWO

  • 8/10/2019 organologam lengkap

    8/70

    Types of lone pair donor ligands

    strongpacceptor

    weakpbonding

    strongpdonor

    lone pairdonor

    CO, PF3 NH3, H-

    CH3-

    Cl-, OR-

    s

    p

  • 8/10/2019 organologam lengkap

    9/70

    MoOC

    OC CO

    CH3

    2.38 1.99 a)

    b) IR, (CO)

    :C O

    2149 cm-1

    C OH3B

    2178 cm-1

    OC Cr

    CO

    CO

    CO

    COOC

    2000 cm-1

    Evidences for dp

    -pp

    interactions.

    * Take M-CO complexes as an example forp

    accepter

    Explanation?:C O :C OM C OM

    C OM C OM

    C OM C OM

    -+

    1s

    1p

    3s

    2p

    4s

    2s

    C O

    2p

    3s

    1p

    CC 2s

    C O

    C O

    (anti-bonding)

  • 8/10/2019 organologam lengkap

    10/70

    *Take M-OR complexes as an example forp

    donor.

    Mo Mo

    O O

    O

    O

    OO OO t-But-But-But-Bu

    120o O

    Nb

    O

    Tp

    Tp

    Tp = trypticyl

    180o

    In H2O, O atom has sp3

    hybridization, leading to the A-O-B anglebeing about 104.5. However, in the above two complexes the angles

    are 120and 180, respectively. Why ?

  • 8/10/2019 organologam lengkap

    11/70

    2). p-bonding electron pair donors

    C O

    M

    H2C CH2

    M

    HC CH

    M M M

    How can these ligands interact with M ?

    Take CH2=CH2as an example.

    M

    1. e - from (C2H4) --->s(M)

    M

    2. e - from d(M) --->p

    (C2H4)

    HH

    H H

    C

    C

    p

    C

    C

    p

    C

    C

    C

    C

    HH

    H H

    M

    Is CH2=CH2a pdonor or a pacceptor?

  • 8/10/2019 organologam lengkap

    12/70

    Hapticity of ligands:

    A ligand may have more than one way to bond to a metal center, e.g.

    M M

    or

    M

    CHCH2

    CH2

    H

    H

    HH

    H

    (Cp)

    H

    H

    HH

    H

    M H

    H

    HH

    H

    M

    M

    In describing the number of atoms (n) attached to a metal, a short

    hand hnis used. e.g.

    M

    (h1-C3H5)M

    MH

    H M

    CH2

    CH2

    (h-H2)M (h-C2H4)M

    MAg+ M

    (h-C6H6)M (h-C6H6)Ag

    + (h-C6H6)M

  • 8/10/2019 organologam lengkap

    13/70

    O

    CH3

    Fe(CO)3

    Ru

    Fe(CO)3

    MeO +

    Exercise. Give the hapticity of ligands in following complex

  • 8/10/2019 organologam lengkap

    14/70

  • 8/10/2019 organologam lengkap

    15/70

    3).s

    -bonding electron pair donors

    Relatively fewer stable complexes are known.

    Typical examples:

    MH

    Hh-H2 OC W

    OC

    COPR3

    PR3

    H

    H

    h-H-SiR3 MH

    SiR3Mn

    OCOC

    H

    R3Si

    agostic C-H Me2P Ti

    Me2P

    CH2Cl

    Cl

    MH

    C Cl

    CH2Hor M

    H

    C

  • 8/10/2019 organologam lengkap

    16/70

    How can these ligands interact with M? Take H2as an example.

    M

    H

    H

    H

    H

    M

    s-bonding p-bonding

    Further Notes:

    * Relative basicity of electron pairs:

    lone pairs > pbonding electron pairs > sbonding electron pairs

    * Therefore usual order of binding ability:

    lone pair donor > pbonding electron pair donor > sbonding electron pair donor.

    Consequence:

    MH

    HM

    CH2

    CH2

    M PR3

    CH2

    CH2

    CH2

    CH

    H

    H

    :PR3

    Is H2a pdonor or a pacceptor?

  • 8/10/2019 organologam lengkap

    17/70

  • 8/10/2019 organologam lengkap

    18/70

    B) based on the nature of bonding interaction, ligands may be

    classified as soft or hard.

    Hard ligands: have low polarizability, especially those containing

    period 2 donor atoms N, O, F, e.g. O2H, NH3, F-

    Soft ligands: have high polarizability, they include:

    a). Those with period three or subsequent donor atoms,

    e.g.Cl, Br, S, P.

    b). p-acceptors, e.g.CO, CS (carbon sulfide), H2, CN- (cyanide)

    c). Those containing p-electrons, e.g.

    C C C C

  • 8/10/2019 organologam lengkap

    19/70

    Importance of the concepts of soft and hard ligands:

    * Hard ligands tend to form stable complexes with hard metal ions,

    (usually those at high oxidation state, e.g. Al3+, Fe3+, Cu2+, Ti4+, Pt(IV)).

    * Soft ligands tend to form stable complexes with soft metal ions,

    (usually those at low oxidation state, e.g. Mn(I), Co(I), Fe(II), Pt(II),

    Pt(0) .......)

    Examples:

    AlF63-, Ti(OR)4are very stable complexes, but Pt(0)--F, Pt(0)--OR,

    W(0)--F are very rare.

    Cl Pt

    Cl

    Cl

    -

    stable

    Pt(IV)

    very rare

    (Olefins are soft

    base; Pt(II) is soft

    but Pt(IV) is hard)

  • 8/10/2019 organologam lengkap

    20/70

    Exercise. explain the following facts based on the concept of Soft-Hard

    Acid-Base.

    1) W(CO)6

    is air stable, but W(NH3

    )6

    has never been observed.

    2).

    3). Low oxidation state complexes (most organometallic compounds) are

    often air-sensitive, but are rarely water sensitive.

    NH2

    (NH3)5OsII

    2+

    - e- NH2

    (NH3)5OsIII

    3+

    NH2(NH3)5OsIII

    3+

    slow

  • 8/10/2019 organologam lengkap

    21/70

  • 8/10/2019 organologam lengkap

    22/70

    Further notes on ligands

    Chelation: Ligand attached through more than one atom usually separated

    by one or more atoms. Chelating ligands are sometimes classified as beingbidentate(2 points of attachment), tridentate(three points of attachment), or

    tetradentate(4 points of attachment).

    Kappa convention (): The kappa convention is sometimes used toindicate the coordinating atoms of a polydentate ligand.

  • 8/10/2019 organologam lengkap

    23/70

    2. The 18 electron rule

    1)Thermodynamically stable transition metal organometallic

    compounds are formed when the sum of the metal d electrons plus

    the electrons supplied by the ligands equals 18.

    In this way, the metal formally attains the electronic

    configuration of the next noble gas.

    Ni

    CO

    COOC

    OCFe CO

    OC

    OC

    CO

    CO

    Cr COOC

    OC

    CO

    CO

    CO

    The 18 electron rule = 18 VE rule = inert gas rule = effective

    atomic number rule (EAN rule). e.g.

    Saturated complexes: 18 VE complexes

    Unsaturated complexes:

  • 8/10/2019 organologam lengkap

    24/70

    2) Ways to count valence electrons (VE)

    # VE = valence e-of M (or Mn+) + e-from ligands

    Two Models: covalent modeland ionic model

    Covalent model: Both M and L are considered as neutral

    # VE = valence e-of M + e-from ligands + charge

    e.g.

    Fe Cr

    H

    CO

    COCO

    OC

    OC

    2 2 x 5e

    Fe 8e

    18e

    5 CO 5 x2e

    H 1e

    Cr 6e1- 1e

    18e

    C5H5

    For TM, valence e-of M = group number

  • 8/10/2019 organologam lengkap

    25/70

    For TM, valence e-of M = group number.

    e.g. Fe, 8; Pt, 10

  • 8/10/2019 organologam lengkap

    26/70

    Ionic model: Metal complexes are formed from Mn++ L + X-

    # VE = valence e- of Mn++ e- from ligands

    Fe Cr

    H

    CO

    CO

    CO

    OCOC

    2 2 x 6e

    Fe2+ 6e

    18e

    5 CO 5 x 2e

    H- 2e

    Cr 6e

    18e

    C5H5-

  • 8/10/2019 organologam lengkap

    27/70

  • 8/10/2019 organologam lengkap

    28/70

    Rh

    Cl

    Rh

    Cl

    Rh

    Cl

    Rh

    Cl

    OCH3

    Fe(CO)3 +

    OCH3

    Fe(CO)3

  • 8/10/2019 organologam lengkap

    29/70

  • 8/10/2019 organologam lengkap

    30/70

    Fe

    OCOC

    Mn

    COOC

    OC

    CO

    COW

  • 8/10/2019 organologam lengkap

    31/70

    Rh Rh

    OC

    CO

    (CO)3(PPh3)Fe Ir(CO)2(PPh3)

    Ph2P

    Co CoN

    N

    O

    O

  • 8/10/2019 organologam lengkap

    32/70

    Do the following complexes follow the 18e rule?

    ReH7(PPh3)2

    -

    Cr

    CO

    COCO

    H

    OC

    OCCr

    CO

    CO

    CO

    CO

    OCRh

    H

    H

    H

    +

  • 8/10/2019 organologam lengkap

    33/70

    R3P Ru

    H

    H

    H

    R3P

    PR3

    B H

    H

    R3P Ru

    H

    H

    H

    R3P

    PR3

    B NMe3

    H

    Additional exercise

  • 8/10/2019 organologam lengkap

    34/70

    Additional exercise

    Ir

    N

    COOC

    Ir

    OC CO

    BPh3

    Ir

    OC CO

    PPh3

  • 8/10/2019 organologam lengkap

    35/70

  • 8/10/2019 organologam lengkap

    36/70

    U

    U: 7s25f36d1

    2x8+6 = 22e

    Lu Me

    Lu: 6s24f146d1

    2x5+1+17 = 28e

    2).F-block metals do not follow 18e rule. e.g.

    Why? because electrons can go to (n-2)f orbitals)

  • 8/10/2019 organologam lengkap

    37/70

    3).Transition metal complexes ===> three classes

    Class number of valence electrons 18e rule

    I ....16, 17, 18, 19, 20 not obey

    II ....16, 17, 18 not obey

    III 18 obey

  • 8/10/2019 organologam lengkap

    38/70

  • 8/10/2019 organologam lengkap

    39/70

    Class II: 4d and 5d metals with weak-field ligands

    Class II n(VE) 18n(d) n(VE)

    ZrF62- 0 12

    WCl6 0 12

    WCl6

    - 1 13

    WCl62- 2 14

    TcF62- 3 15

    OsCl62- 4 16

    PtF6 4 16

    PtF6- 5 17

    PtF62- 6 18

    PtCl42- 8 16

    Metals in relativelyHigh oxidation state

  • 8/10/2019 organologam lengkap

    40/70

    Class III: Complexes with pgood acceptors

    Class III n(VE) = 18

    n(d) n(VE)

    V(CO)6

    - 6 18

    CpMn(CO)3 7 18

    Fe(CN)64- 6 18

    Fe(CO)42- 10 18

  • 8/10/2019 organologam lengkap

    41/70

    Explanation:

    L M L

    L

    L

    L

    L

    Take Oh as an example

    MO levels in the absence of pacceptors.

    * If is small, eg* can be

    occupied.( < pairing energy)

    ===>

    eg* (antibonding): 0 - 4e

    t2g(nonbonding): 06e

    a1g

    , t1u

    , eg(bonding): 12e

    Total e-:

    Minimum # of e-:

    Maximum # of e-:

    3d metal complexes with weak field ligands e.g.H2O, NH3and

    Cl-belong to this class (class I).

    metal

    orbitals

    (n-1)d

    ns

    np

    Ligand

    orbitals

    (a1g+eg+t1u)

    (a1g+eg+t1u)

    t1u*

    a1g*

    eg*

    t2g

    D

  • 8/10/2019 organologam lengkap

    42/70

    MO levels in the absence of pacceptors.

    * If is large, eg* can be occupied.

    ( > pairing energy)

    ===>

    eg* (antibonding): 0 e

    t2g(nonbonding): 06e

    a1g, t1u, eg(bonding): 12e

    Total e-:

    Minimum # of e-:

    Maximum # of e-:

    Complexes of 4d and 5d metals in high oxidation state belong to

    this class (class II).

    metal

    orbitals

    (n-1)d

    ns

    np

    Ligandorbitals

    (a1g+eg+t1u)

    (a1g+eg+t1u)

    t1u*

    a1g*

    eg*

    t2g

    D

  • 8/10/2019 organologam lengkap

    43/70

  • 8/10/2019 organologam lengkap

    44/70

  • 8/10/2019 organologam lengkap

    45/70

    d0metals:The high-valent d0complexes often have lower

    electron counts than 18.

    Complexes with bulky ligands:Sterically demanding

    ligands will often result in lower than expected electron

    counts.

  • 8/10/2019 organologam lengkap

    46/70

    > 18 electron complexes: Complexes with formally 19 or 20

    electrons are known, but they are usually unstable, or

    adopt alternate configurations.

  • 8/10/2019 organologam lengkap

    47/70

    The 18 Electron Rule Is Empirically Justified

    The rule is

    particularly useful for

    Groups 6-8

    16 e-Compounds 14 e-Compounds

  • 8/10/2019 organologam lengkap

    48/70

    The oxidation stateof a metal in a complex is simply the charge thatthe metal would have on the ionic model.

    4. Oxidation number of metals and d electron count

    e.g.What is the oxidation number of metals in the following complexes?

    Fe

    H

    PR3

    PR3

    R3PHOs

    PPh3

    PPh3

    ClCl

    OCOCWMe6 H

    H

    d electron count: # of d electrons in the valence shell

    = group # - oxidation state.

  • 8/10/2019 organologam lengkap

    49/70

  • 8/10/2019 organologam lengkap

    50/70

    Consider complexes W(CO)6and WH6(PMe3)3.

    Which one would you expect to have a higher positive charge on W?

    b) charge density and formal oxidation states

    There is no strict correlation between charge density and

    formal oxidation states!Oxidation states in organometallic complexes

    are merely formalisms that may bear little resemblance to the actual positivecharge on the metal.

    Another example

    Any Uses of formal oxidation states?

  • 8/10/2019 organologam lengkap

    51/70

    Oxidat ion number usual ly can no t be higher than

    group member!

    ==> predict if a compound/intermediate is possible

    ==> Help to formulate the structure of a compound.

    e.g.

    (1) Are the following species possible?WMe6 TiMe6 VH7(PMe3)2

    (2) WH6(PMe3)3+ HBF4------> [WH7(PMe3)3] BF4Which of the following is unlikely the structure for [WH7(PMe3)3]

    +?

    W

    H H+

    H

    H

    H PP

    P

    H

    H

    W

    H H+

    H

    H

    H PP

    P

    H

    H

    W

    H H+

    H

    H

    H PP

    P

    H

    H

    (a) (b) (c)

  • 8/10/2019 organologam lengkap

    52/70

    Co

    Cl

    NH3

    NH3

    Cl

    H3N

    H3N ReH92-

    six-coordinated 9-coordinated

    5. Coordination number (C.N.) and geometry

    a) It is easy to define C.N. for complexes with lone pair donors.

    * Monodentate ligand L :

    C.N. = # of L present = # of atoms bound to metal

    = # of electron pairs involved in M-L sbonds.

    e.g.

    P l d t t li d

  • 8/10/2019 organologam lengkap

    53/70

    Polydentate ligands:

    C.N. = # of atoms bound to metal

    = # of electron pairs involved in M-L sbonds.

    # of L present

    Co

    Cl

    CH3

    PPh2

    Ph2P

    Ir

    Ph2P

    Cl

    PPh3Ph3P

    H

    4-coordinated 6-coordinated

    b)For Organometallic compounds, it is difficult to define C.N. e.g.

  • 8/10/2019 organologam lengkap

    54/70

    Fe Fe

    OC COCO

    # of L

    Fe Fe

    OC

    CO

    CO

    # of M-L

    FeFe

    OCCO

    CO

    # of e pairs in M-L bond

    C.N. = 1

    C.N. = 5

    C.N. = 3

    C.N. = 1

    C.N. = 4

    C.N. = 2

    2 + 3

    2

    2

    + 3

    + 3

    Convention used in this course.

    We normally adopt the e- pairs in M-L bonds as # of C. N..

  • 8/10/2019 organologam lengkap

    55/70

  • 8/10/2019 organologam lengkap

    56/70

  • 8/10/2019 organologam lengkap

    57/70

    Further notes on coordination numbers:

    a).For TM, C.N. 9 , why?

    TM has 9 valence orbitals ((n-1)d, ns, np).

    b).dn C.N. and geometry

    dn

    C.N. geometrical structured6 6 prefer octahedral

    d8 4 prefer square planar

    d0, and d10 4 prefer tetrahedral

    c).Each C.N. is associated with one or more geometries.

  • 8/10/2019 organologam lengkap

    58/70

  • 8/10/2019 organologam lengkap

    59/70

    5 Trigonalbipyramidal M

    Fe(CO)5

    squarepyramidal

    M Co(CNPh)52+

    6 Octahedron M Mo(CO)6

    trigonalprism M

    WMe6

    (benzonitrile)

    d8,,d6

    d6,,d7

    d6,,d3

    d0

    6. Effect of complexation

  • 8/10/2019 organologam lengkap

    60/70

    M-L:

    Complexation of L on M may cause:

    * the change of electron density distribution on L

    * new reactivity of L: unreactive ==> reactive

    Examples:

    a. Change the electron density on L. donation will reduce electron-density of L.

    -accepting will increase electron-density of L.

    H2C CH2

    Fe

    OCOC Fe

    OCOC

    R

    N. R.+ Nu-

    but,

    + + R-

    Complexation reduce electron-density of olefin

    Another example,

  • 8/10/2019 organologam lengkap

    61/70

    Mn

    OC COCO Mn

    OC COCO

    H

    H

    H

    H

    HH

    H

    H H

    H

    HH

    H

    H

    E

    E

    H

    HH

    H

    H

    +

    +E+ - H

    +

    Nu-

    N. R.

    E+

    N. R.

    but, NaBH4

    (H-)

    Complexation reduces the e- density on C6H6.

    Reactivity towards Nu-: increase

    Reactivity towards E+: decrease

    Change the electron density distribution on L

  • 8/10/2019 organologam lengkap

    62/70

    g y

    M :N N:

    s-donation

    :N N: :C O:

    = 0 = 0

    unreactive

    M C OM N NUpon complexation

    N N:

    M :C O:

    C O:

    p- backdonation

    C ON N

    M C OM N N

    overallM C OM N N

    + +

    Nu- E+

    Nu- E+

    M M

    MM

    (e-to on both atom)

    (e-to mainly C atom)++

    -- - -

    7. Differences between metals

  • 8/10/2019 organologam lengkap

    63/70

    7. Differences between metals

    1) Electronegativity differences:

    Sc Ti V Cr Mn Fe Co Ni Cu

    1.3 1.5 1.6 1.6 1.6 1.8 1.9 1.9 1.9

    Y Zr Nb Mo Tc Ru Rh Pd Ag

    1.2 1.3 1.6 2.1 1.9 2.2 2.3 2.2 1.9

    La Hf Ta W Re Os Ir Pt Au

    1.1 1.3 1.5 2.3 1.9 2.2 2.2 2.3 2.5

    Moving from left to right, the electronegativity of the elements increases

    substantially.

  • 8/10/2019 organologam lengkap

    64/70

    2). Trend in the stability of high oxidation states.

    From left to right decreaseFrom top to bottom increase

    e.g. Ti(II) unstable Fe(II) stable

    Ti(IV) stable Fe(VIII) not exist

    Hf(IV) very stable Os(VIII) stable

    Stability of high oxidation states

    Early transition metals are electropositive, so they readily lose all their

    electrons to give d0

    centers (e.g. Zr(IV), Ta(V)). Low-valent early transitionmetals, such as Ti(II) and Ta(III), are easily oxidized.

    Late transition metals are more electronegative, thus they prefer lower

    oxidation states (i.e., Rh(I) compared to Rh(III)).

  • 8/10/2019 organologam lengkap

    65/70

    Q ti 2 H ld l i th f ll i t d i th

  • 8/10/2019 organologam lengkap

    66/70

    Question 2. How would you explain the following trend in theIR dada of (C-O) (in cm-1)?

    a). V(CO)6 Fe(CO)5 CO [Ag(CO)]+

    1976 2023 2057 2204

    b) Cr(CO)6 2000W(CO)6 1998

  • 8/10/2019 organologam lengkap

    67/70

    Effects of changing net ionic charge, ligands, and metal on the pbasicity of a metal

    carbonyl, as measured by (CO) values (cm-1) of the highest frequency band in the IR

    spectrum

    Changing Metal

    V(CO)6

    1976

    Cr(CO)6

    2000

    Mn2(CO)10

    2000

    Fe(CO)5

    2023

    Co2(CO)8

    2044

    Ni(CO)4

    2057

    Changing Net Ionic Charge in an Isoelectronic Series

    [Ti(CO)6]2-

    1747

    [V(CO)6]-

    1860

    Cr(CO)6

    2000

    [Mn(CO)6]+

    2090

    [Fe(CO)6]2+

    2204

    Replacing p-Acceptor CO groups by Non-p-Acceptor Amines

    [Mn(CO)6]+

    2090

    [(MeNH2)Mn(CO)5]+

    2043

    [(en)Mn(CO)4]+

    2000

    [(tren)Mn(CO)3]+

    1960

    Question 3. Compounds of the formula MH4P3(M = Fe, Ru and Os, P = PR3)

    k t h th f ll i t t

  • 8/10/2019 organologam lengkap

    68/70

    M

    H

    H

    H

    H

    M

    2. e- from d(M) --->s (H2)1. e - from (H2) --->s(M)

    H

    HM

    s

    (H2)s*(H2)

    Bonding picture of M(H2)

    are known to have the following structure.

    P Fe H

    P

    P

    H

    H H

    P Ru H

    P

    P

    H

    H H

    P Os

    H

    P

    P

    H

    H H

    why not

    P Os HP

    P

    H

    H H

    ?

  • 8/10/2019 organologam lengkap

    69/70

  • 8/10/2019 organologam lengkap

    70/70

    butadiene cyclooctadiene (COT) cyclooctatetraene (COD) cyclopentadienyl

    anion


Recommended