+ All Categories
Home > Documents > Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf ·...

Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf ·...

Date post: 08-Jun-2018
Category:
Upload: halien
View: 226 times
Download: 0 times
Share this document with a friend
35
current members: Lauriane Chomaz, Laura Corman, Tom Bienaimé, Jean-Loup Ville, Raphaël de Saint-Jalm former members: R. Desbuquois, C. Weitenberg, D. Perconte, K. Kleinklein, A. Invernizzi permanent members: Sylvain Nascimbene, Jérôme Beugnon, Jean Dalibard References : Phys. Rev. Lett. 103:135302 (2014) & Nat. Comm. 6:6162 (2015) Outofequilibrium physics with Bose gases in 2D geometries 1
Transcript
Page 1: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

current members: Lauriane Chomaz, Laura Corman, Tom Bienaimé, Jean-Loup Ville, Raphaël de Saint-Jalmformer members: R. Desbuquois, C. Weitenberg, D. Perconte, K. Kleinklein, A. Invernizzipermanent members: Sylvain Nascimbene, Jérôme Beugnon, Jean Dalibard

References : Phys. Rev. Lett. 103:135302 (2014) & Nat. Comm. 6:6162 (2015)

Out‐of‐equilibrium physics with Bose gases in 2D geometries 

1

Page 2: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Zurek’s experiment

Zurek Nature 317, 505 – 508 (1985)

Quench cooling of helium confined in a ring should lead to the creation of superfluid currents

phase domains

Typical size 

See del Campo, A. & Zurek, W. H. Int. J. Mod. Phys. A 29, 1430018 (2014)) Kibble, T. Physics Today 60(9), 47 (2007)

KZ mechanism is used to described many different experiments :Cosmology, liquid helium, squids, ferroelectrics, liquid crystals, ion chains, quantum gases, ….

Page 3: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

3

Zurek’s experiment

Zurek Nature 317, 505 – 508 (1985)

Quench cooling of helium confined in a ring should lead to the creation of superfluid currents

Kibble‐Zurek mechanism predicts :  

Thermalization timeCorrelation length

Experiments in the Cambridge team 3D BEC : Navon et al. Science 347, 167 (2015)

Page 4: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

4

Zurek’s experimentSuperfluid current are generated stochastically during the merging of the phase domains

Number of phase domains : Ring perimeter

Phase winding

Phase winding

Zurek J. Phys.: Condens. Matter 25, 404209 (2013)

Examples :

Page 5: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

How to trap an ultracold gas in a ring ?

How to detect the superfluid current ?

Which phase transition are we crossing ?

5

Page 6: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Single blue detuned laser beam with a central node (Hermite‐Gauss)

z

laser intensity

view from the side

Vertical confinement               2D cloud

104 to 105 atoms

Temperature controlled by evaporation:  10 to 250 nK

How to trap an ultracold gas in a ring ?Start from a standard 3D  87Rb cloud

6

Page 7: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Single blue detuned laser beam with a central node (Hermite‐Gauss)

z

laser intensity

view from the side

Vertical confinement               2D cloud

104 to 105 atoms

mask

atom plane

Image a mask on the atom plane

z

View from above

g

Temperature controlled by evaporation:  10 to 250 nK

Start from a standard 3D  87Rb BECHorizontal confinement               flat‐bottom         

7

How to trap an ultracold gas in a ring ?

Page 8: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

8

How to trap an ultracold gas in a ring …

… or anything else

Page 9: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Rapid cooling (~ 50 ms     2s ) via lowering the trap depthHold time (500 ms       2s)2D expansion in plane (7 ms)

Quantized circulation of superfluid currents

In situ Phase patterns

After expansion

9Similar experiments at NIST Eckel et al. Phys. Rev. X 4, 031052 (2014)

How to detect superfluid currents ?

Page 10: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

10

How to detect superfluid currents ?Stochatisc origine : 

No imbalance between positive and negative winding

Incompatible with thermal excitation

Typical lifetime : 7s : comparable with the sample lifetime.

Page 11: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Bulk vortices in a square trapRapid cooling (~ 50 ms     2s ) via lowering the trap depthHold time (500 ms       2s)Short  3D time‐of‐flight (4 ms)

Clear signature of high contrast quantum vortices

11

Lamporesi et al. Nature Physics 9,656–660 (2013) Donadello et al. Phys. Rev. Lett. 113, 065302 (2014)

Related work in Trento (solitonic vortices in a 3D harmonic trap):

Page 12: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

For an ideal infinite uniform system no Bose‐Einstein condensation at non zero temperature

For a ideal finite system Bose‐Einstein condensation is possible for 

For an interacting Bose gas a superfluid (BKT) phase appears a low temperature

For our parameters, BEC and BKT appears for a 2D phase‐space density  

Thermal Quasi‐condensate BEC/Superfluid

12

Which phase transition are we crossing ?

2D phase diagram

Page 13: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

13

Which phase transition are we crossing ?

Vertical confinement

non degenerate 3D cloud

Page 14: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

14

Which phase transition are we crossing ?

Vertical confinement

Vertical confinement

Superfluid 2D cloud

measurement

Page 15: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

15

What phase transition are we crossing ?

Vertical confinement

Vertical confinement

Superfluid 2D cloud

measurement

non degenerate 3D cloud

Transverse condensation : All atoms accumulate in the groundstate of the motion along the vertical direction : fast increase ofEquivalent to 3D BEC transition 

Thermal Quasi‐condensate BEC/Superfluid

15

2D phase diagram

Page 16: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Results

Square box

16

Page 17: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Square box Annulus

17

Results

Page 18: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Comparison with Kibble‐Zurek prediction

Thermalization time

Correlation length

Theory

18

Page 19: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Comparison with Kibble‐Zurek prediction

Thermalization time

Correlation length

Theory

Results

19

(Corrected slope for small number of vortices)

Page 20: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Comparison with Kibble‐Zurek prediction

Thermalization time

Correlation length

Theory

Results

20

Difficulties :‐ Few defects (large statistics required)‐ Limited range for quench time‐ Small value for the exponent‐ Complex behaviour after the quench

Page 21: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Transverse condensationFor an anisotropic system : two‐step condensation is possible :

‐ condense in the vertical direction to get a 2D system‐ fully condense in 3D

Surface density in the transverse excited states is bounded :

21

already observed in 1D systems : Phys. Rev. Lett. 111, 093601 (2013)Phys. Rev. A 83 (2), 021605 (2011)

BEC

transverse BEC

At this point coherence is created in plane :                                        with

Page 22: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Emergence of coherence

Study the coherence of the gas at equilibrium around the transverse condensation crossover

momentum distribution via Time‐of‐flight measurements

in situ

time‐of‐flight

22

Page 23: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Emergence of coherence

Study the coherence of the gas at equilibrium around the transverse condensation crossover

momentum distribution via Time‐of‐flight measurements

ρ (μm-2)

N1

N2

bimodality parameter : 23

in situ

Page 24: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Emergence of coherence

Study the coherence of the gas at equilibrium around the transverse condensation crossover

momentum distribution via interference measurementsafter in plane expansion (16ms)

in situ

2D in‐plane expansion

is a good signature for the emergence of coherence

T = 185 – 200 nK

NFit along a horizontal line by : 

24

Page 25: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Mapping the transition

Slope =1.4 (3)

Critical point for the emergence of coherence

25

Regime for the quench experiments

Page 26: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Mapping the transition

Slope =1.4 (3)

critical point for the emergence of coherence

Usual 2D gas. Coherence before BKT/BEC transition : Quasi‐condensate

26

Regime for the quench experiments

Page 27: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Results summary and outlookflat bottom potentials with various shapes

future : Spatial light modulator

Measurements of critical exponents

future : improved statistics, coarse graining dynamics after the quench, quench through BKT transition

Characterization of the coherence in quasi 2D geometry

future : direct measurements of correlationfunctions in BEC, BKT phases.

Page 28: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

New experiment

2 microscope objectiveswith NA=0.45

Resolution ~ 1 µm

atomic cloud imaging

direct imaging of a Digital Micromirror Device (DMD)

Page 29: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

New experiment

Resolution ~ 1 µm

Atomic clouds in custom flat‐bottom potentials

Page 30: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

current members: Lauriane Chomaz, Laura Corman, Tom Bienaimé, Jean-Loup Ville, Raphaël de Saint-Jalmformer members: R. Desbuquois, C. Weitenberg, D. Perconte, K. Kleinklein, A. Invernizzipermanent members: Sylvain Nascimbène, Jérôme Beugnon, Jean Dalibard

References : Phys. Rev. Lett. 103:135302 (2014) & Nat. Comm. 6:6162 (2015)

Out‐of‐equilibrium physics with Bose gases in 2D geometries 

30

Page 31: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

31

Characterizing the fringe contrast  

1D Fourier transform

✤Look for extended coherence:

✤1‐Body corr. on complex fringe contrast:

31

Page 32: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

32

Transverse condensation

Page 33: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

33

Hole Nature:= single vortices

≠ phonons 

≠ pairs of vor ces

similar properties at a given τ+ high contrast 

constant contrast and increasing size with τ

Dynamical orgin:✤ Equilibrium expectation at final PSD (>100) = vanishingly small mean vortex number Nv. Experimentally Nv≈ 0.6✤ BKT theory at final PSD = vortices must be tightly paired.✤ Dissipative dynamic (variation of Nv ) with a varying hold  me ≠ equilibrium.

τ = 4.5 ms

33

Vortices 

Page 34: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

34

Page 35: Out of equilibrium physics with Bose gases in 2D geometriesdalibard/CdF/2015/Workshop_Jerome.pdf · Zurek’s experiment Zurek Nature 317, 505 – 508 (1985) Quench cooling of helium

Where is the vortex located?

Experimental observation: we never observe a density hole in the small central disk, even after 3D time‐of‐flight 

Energetic argument: what is the energy required for creating a vortex in one of the two parts of the “target”?

59

15 m

vortex in the outer ring vortex in the inner disk

<energetically favoured

The energy of a vortex is essentially kinetic 


Recommended