+ All Categories

Outline

Date post: 12-Jan-2016
Category:
Upload: alyssa
View: 37 times
Download: 0 times
Share this document with a friend
Description:
Outline. Stokes Vectors, Jones Calculus and Mueller Calculus Optics of Crystals: Birefringence Common polarization devices for the laboratory and for astronomical instruments Principles of Polarimetry: Modulation and Analysis. Absolute and Relative Polarimetry - PowerPoint PPT Presentation
Popular Tags:
109
Outline 1. Stokes Vectors, Jones Calculus and Mueller Calculus 2. Optics of Crystals: Birefringence 3. Common polarization devices for the laboratory and for astronomical instruments 4. Principles of Polarimetry: Modulation and Analysis. Absolute and Relative Polarimetry 5. Principles of Polarimetry: Spatial modulation, Temporal modulation, Spectral modulation 6. Principles of Polarimetry: Noise and errors 7. Spurious sources of polarization
Transcript
Page 1: Outline

Outline

1. Stokes Vectors, Jones Calculus and Mueller Calculus

2. Optics of Crystals: Birefringence3. Common polarization devices for the

laboratory and for astronomical instruments4. Principles of Polarimetry: Modulation and

Analysis. Absolute and Relative Polarimetry5. Principles of Polarimetry: Spatial modulation,

Temporal modulation, Spectral modulation6. Principles of Polarimetry: Noise and errors7. Spurious sources of polarization

Page 2: Outline

Stokes Vector, Jones Calculus,

Mueller Calculus

playing around with matrices

A. López Ariste

Page 3: Outline

)( tkzii

y

x

y

x eeA

A

E

E

Assumptions:

•A plane transverse electromagnetic wave•Quasi-monochromatic•Propagating in a well defined direction z

Page 4: Outline

)( tkzii

y

x

y

x eeA

A

E

E

Jones Vector

Page 5: Outline

)( tkzii

y

x

y

x eeA

A

E

E

Jones Vector:

It is actually a complex vector with 3 free parametersIt transforms under the Pauli matrices.It is a spinor

y

x

y

x

y

x

E

EC

E

E

dc

ba

E

E

3,0i

iiaC

Page 6: Outline

3,0i

iiaC

10

010

10

011

01

102

0

03 i

i

The Jones matrix of an optical device

In group theory: SL(2,C)

Page 7: Outline

)( tkzii

y

x

y

x eeA

A

E

E

From the quantum-mechanical point of view, the wave function cannot be measured directly.

Observables are made of quadratic forms of the wave function:

EEJ

J is a density matrix : The coherence matrix

Page 8: Outline

**

**

yyxy

yxxx

EEEE

EEEEJ

3210 VUQIJ

Like Jones matrices, J also belongs to the SL(2,C) group, and can be decomposed in the basis of the Pauli matrices.

V

U

Q

I

Is the Stokes Vector

Page 9: Outline

3210 VUQIJ

V

U

Q

I

I

The Stokes vector is the quadractic form of a spinor. It is a bi-spinor, or also a 4-vector

)(

JTrI

Page 10: Outline

V

U

Q

I

02222 VUQI

02

0

02

3,2,1

4-vectors live in a Minkowsky space with metric (+,-,-,-)

)(

JTrI

Page 11: Outline

The Minkowski space

I

VQ

Partially polarized light

Fully polarizedlight

Cone of (fully polarized) light

2222 VUQI

2222 VUQI

Page 12: Outline
Page 13: Outline

y

x

y

x

y

x

E

EC

E

E

dc

ba

E

E

CJCCEECEE

E

EJ yx

y

x

IMICCTrCJCTrJTrI

)()()(

M is the Mueller matrix of the transformation

)( CCTrM

Page 14: Outline

)( CCTrM

From group theory, the Mueller matrix belongs to a group of transformations which is the square of SL(2,C)

Actually a subgroup of this general group called O+(3,1) or Lorentz group

),2(),2( CSLCSL

Page 15: Outline

The cone of (fully polarized) light

I

VQ

Lorentz boost = de/polarizer, attenuators, dichroism

Page 16: Outline

The cone of (fully polarized) light

I

VQ

3-d rotation = retardance, optical rotation

Page 17: Outline

Mueller Calculus

• Any macroscopic optical device that transforms one input Stokes vector to an output Stokes vector can be written as a Mueller matrix

• Lorentz group is a group under matrix multiplication: A sequence of optical devices has as Mueller matrix the product of the individual matrices

Page 18: Outline

Mueller Calculus: 3 basic operations

• Absorption of one component• Retardance of one component

respect to the other• Rotation of the reference system

Page 19: Outline

Mueller Calculus: 3 basic operations

• Absorption of one component

C

10200

0

aaC

0000

0000

0011

0011

2

aM

Page 20: Outline

Mueller Calculus: 3 basic operations

• Absorption of one component• Retardance of one component

respect to the other

10 110

01

ii

i eee

C

cossin00

sincos00

0010

0001

M

Page 21: Outline
Page 22: Outline

Mueller Calculus: 3 basic operations

• Absorption of one component• Retardance of one component

respect to the other• Rotation of the reference system

30 sincoscossin

sincos

C

1000

02cos2sin0

02sin2cos0

0001

M

Page 23: Outline
Page 24: Outline

Optics of Crystals: Birefringence

A. López Ariste

Page 25: Outline
Page 26: Outline

Chapter XIV, Born & Wolf

Page 27: Outline
Page 28: Outline
Page 29: Outline
Page 30: Outline
Page 31: Outline

Ellipsoïd

Page 32: Outline

Ellipsoïd

Page 33: Outline

Three types of crystals

A spherical wavefront

Page 34: Outline

Three types of crystals

Two apparent waves propagating at different speeds:•An ordinary wave, with a spherical wavefront propagating •at ordinary speed vo

•An extraordinary wave with an elliptical wavefront, its speed •depends on direction with characteristic values vo and ve

Page 35: Outline
Page 36: Outline
Page 37: Outline

Three types of crystals

Page 38: Outline
Page 39: Outline
Page 40: Outline

zs

De

Do

The ellipsoïd of D in uniaxial crystals

The two propagating waves are linearly polarized and orthogonal one to each other

Page 41: Outline
Page 42: Outline

Typical birefringences

•Quartz +0.009

•Calcite -0.172

•Rutile +0.287

•Lithium Niobate -0.085

Page 43: Outline

Common polarization devices for the laboratory and for

astronomical instruments

A. López Ariste

Page 44: Outline

Linear Polarizer

0000

0000

005.05.0

005.05.0

M

0000

02sin2cos2sin2sin

02sin2cos2cos2cos

02sin2cos1

5.0)(

0000

0000

005.05.0

005.05.0

)( 2

21

RRM

Page 45: Outline

Retarder

cossin00

sincos00

0010

0001

M

?)(

cossin00

sincos00

0010

0001

)( 1

RRM

Page 46: Outline
Page 47: Outline

Savart Plate

Page 48: Outline

Glan-Taylor Polarizer

Glan-Taylor.jpg

Page 49: Outline

Glan-Thompson Polarizing Beam-Splitter

Page 50: Outline

Rochon Polarizing Beamsplitter

Page 51: Outline

Polaroid

Page 52: Outline

Dunn Solar Tower. New Mexico

Page 53: Outline

dnne 0

Zero-order waveplates

Multiple-order waveplates

Typical birefringences

•Quartz +0.009

•Calcite -0.172

•Rutile +0.287

•Lithium Niobate -0.085

Page 54: Outline

Waveplates

Page 55: Outline
Page 56: Outline

Principles of PolarimetryModulation

Absolute and Relative Polarimetry

A. López Ariste

Page 57: Outline

Measure # 1 : I + Q

Measure # 2 : I - Q

Subtraction: 0.5 (M1 – M2 ) = Q

Addition: 0.5 (M1 + M2 ) = I

How to switch from Measure # 1 to Measure # 2?

MODULATION

Page 58: Outline

Measure # 1 : I + Q

Measure # 2 : I - Q

Subtraction: 0.5 (M1 – M2 ) = Q

Addition: 0.5 (M1 + M2 ) = I

Principle of Polarimetry

Everything should be the same EXCEPT for the sign

Page 59: Outline

MODULATION

Njj

njn

Njjj

ScM

ScM

,1

,1

11

VS

US

QS

IS

4

3

2

1

Page 60: Outline

MODULATION

Njj

njn

Njjj

ScM

ScM

,1

,1

11

VS

US

QS

IS

4

3

2

1

ii

i

cc

c

14,3,2

1 0

Page 61: Outline

MODULATION

Njj

njn

Njjj

ScM

ScM

,1

,1

11

ii

i

cc

c

14,3,2

1 0

IOM

O is the Modulation Matrix

Page 62: Outline

MODULATION

VIM

VIM

UIM

UIM

QIM

QIM

6

5

4

3

2

1

1001

1001

0101

0101

0011

0011

O

Conceptually, it is the easiest thingIs it so instrumentally?

Is it efficient respect to photon collection, noise and errors?

Page 63: Outline

MODULATION

IOM

MDMOI

1

nj

ijVUQIi D,1

2,,,

Del Toro Iniesta & Collados (2000)Asensio Ramos & Collados (2008)

nj

ijVUQIi Dn,1

2,,,

Page 64: Outline

MODULATION

MDMOI

1

Del Toro Iniesta & Collados (2000)

nj

ijVUQIi Dn,1

2,,,

VUQii

I

,,

2 1

1

Del Toro Iniesta & Collados (2000)Asensio Ramos & Collados (2008)

Page 65: Outline

MODULATION

VIM

VIM

UIM

UIM

QIM

QIM

6

5

4

3

2

1

1001

1001

0101

0101

0011

0011

O

3

1

1

,,

VUQ

I

Page 66: Outline

Design of a Polarimeter

•Specify an efficient modulation scheme: The answer is constrained by our instrumental choices

Page 67: Outline

Absolute vs. Relative Polarimetry

nj

ijVUQIi Dn,1

2,,,

VUQii

I

,,

2 1

1

Efficiency in Q,U and V limited by efficiency in I

What limits efficiency in I?

Page 68: Outline

Absolute vs. Relative Polarimetry

What limits efficiency in I?

Measure # 1 : I + Q

Measure # 2 : I - Q

Subtraction: 0.5 (M1 – M2 ) = Q

Addition: 0.5 (M1 + M2 ) = I

Principle of Polarimetry

Everything should be the same EXCEPT for the sign

Page 69: Outline

Absolute vs. Relative Polarimetry

What limits efficiency in I?

Measure # 1 : I + Q

Measure # 2 : I - Q

Subtraction: 0.5 (M1 – M2 ) = Q

Addition: 0.5 (M1 + M2 ) = I

Principle of Polarimetry

Everything should be the same EXCEPT for the sign

Usual photometry of present astronomical detectors is around 10-3

Page 70: Outline

Absolute vs. Relative Polarimetry

What limits efficiency in I?

You cannot do polarimetry better than photometry

Usual photometry of present astronomical detectors is around 10-3

Page 71: Outline

Absolute vs. Relative Polarimetry

What limits efficiency in I?

You cannot do ABSOLUTE polarimetry better than photometry

Usual photometry of present astronomical detectors is around 10-3

Page 72: Outline

Absolute vs. Relative Polarimetry

I

Q

I

QIQIM

I

Q

I

QIQIM

11

11

2

1

QI

I

Q

I

I

QI

I

QI

I

QI

21

2

)()2(

)(1)(1

Absolute error : 10-3 IRelative error : 10-3 Q

Page 73: Outline

Absolute vs. Relative Polarimetry

I

Q

I

QIQIM

I

Q

I

QIQIM

11

11

2

1

QI

I

Q

I

I

QI

I

QI

I

QI

21

2

)()2(

)(1)(1

Absolute error : 10-3 IRelative error : 10-3 Q

Li 6708

Page 74: Outline
Page 75: Outline

D2 D1

D2

Phase de 45 deg

Phase de 102 deg

Page 76: Outline

Design of a Polarimeter

•Specify an efficient modulation scheme: The answer is constrained by our instrumental choices

•Define a measurement that depends on relative polarimetry, if a good sensitivity is required

Page 77: Outline

Principles of Polarimetry Spatial modulation, Temporal

modulation, Spectral modulation

A. López Ariste

Page 78: Outline

Measure # 1 : I + Q

Measure # 2 : I - Q

Subtraction: 0.5 (M1 – M2 ) = Q

Addition: 0.5 (M1 + M2 ) = I

How to switch from Measure # 1 to Measure # 2?

MODULATION

Page 79: Outline

How to switch from Measure # 1 to Measure # n?

VIM

VIM

UIM

UIM

QIM

QIM

6

5

4

3

2

1

Page 80: Outline

Analyser: Calcite beamsplitter

V

U

Q

I

M

0

0

QI

QI

0

0

QI

QI

Page 81: Outline

Analyser: Rotating Polariser

0

2sin2cos2sin2sin

2sin2cos2cos2cos

2sin2cos

0000

02sin2cos2sin2sin

02sin2cos2cos2cos

02sin2cos1

2

2

2

2

UQI

UQI

UQI

V

U

Q

I

0

0

QI

QI

0

0

0

QI

QI

2

Page 82: Outline

Analyser: Rotating Polariser

Analyser: Calcite beamsplitter

2 beams ≡2 images Spatial modulation

2 angles ≡ 2 exposuresTemporal modulation

Page 83: Outline

Modulator:

V

U

Q

I

M Analyzer

0

0

QI

QI

What about U and V?

Page 84: Outline

Modulator:

V

U

Q

I

M Modulator

V

Q

U

I

V

U

Q

I

M Modulator

Q

U

V

I

Page 85: Outline

Modulator:

V

U

Q

I

M Modulator

V

Q

U

I

V

U

Q

I

M Modulator

Q

U

V

I

B

A

UI

UI

V

U

Q

I

MM ModAn

B

A

VI

VI

V

U

Q

I

MM ModAn

Page 86: Outline

Modulator: Rotating λ/4

cossin

sincos

cos0sin0

0100

sin0cos0

0001

VQ

U

VQ

I

V

U

Q

I

Q

U

V

I

2

B

A

VI

VI

V

U

Q

I

MM ModAn

Page 87: Outline

The basic Polarimeter

Modulator Analyzer

V

U

Q

I

3

2

1

S

S

S

I

3

2

1

1

S

S

SI

SI

3

2

1

1

S

S

SI

SI 1S

Page 88: Outline

Examples2 Quarter-Waves + Calcite Beamsplitter

QW1 QW2 Measure

T1 0° 0 ° Q

T2 22.5 ° 22.5 ° U

T3 0 ° -45 ° V

T4 0 ° 45 ° -V

….

Page 89: Outline

LCVR

Calcite

IwavelengthOM

)(

Page 90: Outline

Examples1 Rotating Quarterwave plate + Calcite Beamsplitter2 Photelastic Modulators (PEM) + Linear Polariser

tVttUtQS 2sin2sin2cos2cos21

0

1 QS

2

0 2

11

VSS

4

0

43

2 43

11

2

4

11

USSSS

Page 91: Outline

Spectral ModulationChromatic waveplate: )( f

V

U

Q

I

)(cos0)(sin0

0100

)(sin0)(cos0

0001

Followed by an analyzer )(cos1 QS

Page 92: Outline

Spectral ModulationChromatic waveplate: )( f

V

U

Q

I

)(cos0)(sin0

0100

)(sin0)(cos0

0001

Followed by an analyzer )(cos1 QS

See Video from Frans Snik (Univ. Leiden)

Page 93: Outline

Principles of Polarimetry Noise and errors

A. López Ariste

Page 94: Outline

Sensitivity vs. Accuracy

SENSITIVITY: Smallest detectable polarization signal

related to noise levels in Q/I, U/I, V/I.RELATIVE POLARIMETRY

ACCURACY: The magnitude of detected polarization signal That can be quantifiedParametrized by position of zero point for Q, U, VABSOLUTE POLARIMETRY

Page 95: Outline

Sensitivity vs. Accuracy

SENSITIVITY: Smallest detectable polarization signal

related to noise levels in Q/I, U/I, V/I.RELATIVE POLARIMETRY

MDMOI

1

nj

ijVUQIi Dn,1

2,,,

Gaussian Noise (e.g. Photon Noise, Camera Shot Noise)

Page 96: Outline

Correcting some unknown errorsSpatio-temporal modulation

Goal: to make the measurements symmetric respect to unknown errors in space and time

Exposure 1

I+V

I-V

Det

ecti

n in

dif

fere

nt p

ixel

s

Page 97: Outline

Spatio-temporal modulation

Goal: to make the measurements symmetric respect to unknown errors in space and time

Exposure 1

I+V

I-V

Exposure 2

I-V

I+V

Det

ecti

n in

dif

fere

nt p

ixel

s

Detection at different times

Page 98: Outline

Spatio-temporal modulation

2

2

2

1

1 41

I

Vo

I

V

VI

VI

VI

VI

Exposure 1

I+V

I-V

Exposure 2

I-V

I+V

:IV

Page 99: Outline

Spatio-temporal modulation

2

2

2

1

1 41

I

Vo

I

V

VI

VI

VI

VI

Let’s make it more general

:IV

2

002

2

1

1

I

Io

I

IK

IO

IO

IO

IO

Page 100: Outline

Cross-Talk

B

A

SI

SI

V

U

Q

I

MM ModAn1

1

This is our polarimeter This is what comes from the

outer universe

Is this true?

Page 101: Outline

StarV

U

Q

I

StarV

U

Q

I

?Star

V

U

Q

I

Page 102: Outline

935.0323.000

323.0935.000

0099.0009.0

00009.099.0

M

Page 103: Outline

StarV

U

Q

I

StarV

U

Q

I

Star

Telescope

V

U

Q

I

M

CrossTalk

Page 104: Outline

935.0323.000

323.0935.000

0099.0009.0

00009.099.0

M

Page 105: Outline

Solutions to Crosstalk

1. Avoid it:

2. Measure it

Mirrors with spherical symmetry (M1,M2) introduce no polarizationCassegrain-focus are good places for polarimetersTHEMIS, CFHT-Espadons, AAT-Sempol,TBL-Narval,HARPS-Pol,…

Given find its inverse and apply it to the measurements

It may be dependent on time and wavelengthIt forces you to observe the full Stokes vector

TelescopeM

Page 106: Outline

Dunn Solar Tower. New Mexico

Page 107: Outline
Page 108: Outline

Solutions to Crosstalk

3. Compensate itSeveral procedures:• Introduce elements that compensate the

instrumental polarization• Measure the Stokes vector that carries the

information• Project the Stokes vector into the

Eigenvector of the matrix

Page 109: Outline

Recommended