+ All Categories
Home > Documents > Output Impedance of an Inverting Operational Amplifier

Output Impedance of an Inverting Operational Amplifier

Date post: 02-Jun-2018
Category:
Upload: mac87658
View: 230 times
Download: 0 times
Share this document with a friend

of 16

Transcript
  • 8/11/2019 Output Impedance of an Inverting Operational Amplifier

    1/16

    Introduction:

    Thepurposeofthisexperimentwastomeasuretheoutputimpedanceofaninvertingoperational

    amplifier.Theoperationalamplifier(orop-amp)isawidelyusedcomponentinelectroniccircuits;oneof

    themainreasonsforthisisthatithasextremelylowoutputimpedancewhenusedinanegative

    feedbackconfiguration.Havinglowoutputimpedanceallowstheop-amptoachieveextremelyhigh

    gains.However,becausetheoutputimpedanceissosmall,itisalsoverydifficulttomeasure.

    Figure

    1:

    generic

    inverting

    op-

    amp

    circuit.

    Therearetwomainruleswhichgovernthebehaviorofop-amps:theop-ampcurrentrule(OACR)and

    theop-ampvoltagerule(OAVR).TheOACRsaysthatthecurrentintoeachop-ampinputterminalis

    approximatelyzero(1 =2),andtheOAVRsaysthatthevoltagedifferencebetweenthetwoop-ampinputterminalsisapproximatelyzero(+ = 0).Usingtheserulesonthecaseoftheinvertingamplifierandassumingthat1 (1+ 2)resultsinthefollowingexpression:

    = 1 + 11+ 21 + 21

  • 8/11/2019 Output Impedance of an Inverting Operational Amplifier

    2/16

    whereistheopenloopgain,isthevoltagegain,isthecharacteristicoutputimpedanceofthebareop-amp,isthequantitywearelookingfor(theoutputimpedance),and1and2areasdefinedaboveinFigure1.Thisexpressioncanbefoundinmanytextbooksand generallyacceptedas

    theequationfortheoutputimpedanceofaninvertingop-amp.However,thisrelationshipcantbeused

    tomeasuresinceandarebothunknownsanddifferentforeachop-amp.

    Themethodchosenfordeterminingtheoutputimpedanceofanop-ampinvolvedtakingadvantage

    ofthefactthatrealop-ampsarenotideal(seeFig.2).Theideaisthatbecausetheop-ampisnon-ideal

    andhasanoutputimpedance,Kirchhoffsvoltagelawrequiresthatiftheloadresistanceischanged,the

    voltagedropacrossmustalsochange,therebychangingtheoutputvoltage.Thenbymeasuringtheoutputvoltagesformultiplevaluesof,theoutputimpedancecanbedetermined.

    Figure2:theoreticalrepresentationofarealop-ampwithidealoutputvoltageandrealoutputvoltage.

  • 8/11/2019 Output Impedance of an Inverting Operational Amplifier

    3/16

    Procedure:

    Thefirstpartoftheprojectinvolvedthedesignandconstructionofanop-ampcircuitfromwhichthe

    outputimpedanceoftheop-ampcouldthenbedetermined.Thecircuit(showninFig.3)usedtwoop-

    amps:thefirstonewithagainofapproximately1

    1000andthesecondhavingagainofabout -1000.The

    purposeofthefirstop-ampwasmerelytodecreasetheinputvoltageforthesecondop-amptokeep

    theoutputofthesecondop-ampwithinits12vrange.A100 resistorinserieswitha1M variable

    resistorwasusedfortheloadonthesecondop-amp.Theinputvoltageforthefirstop-ampwassetto

    5VDCandmeasurementsweremadeoftheloadresistanceandtheoutputvoltagefromthesecondop-

    ampacrosstherangeofthe1M variableresistor.Thisinitialtestingcircuitwas alsousedwithagainof

    -100, -20,and -10.However,thevariationsofthesmallergainop-ampsoutputvoltageswerenearor

    beyondthelimitofthedigitalmulti-meterbeingused,soonlytheresultsfromthe -100and -1000gain

    configurationswerekept.

    Theequationsfortheinitialtestingcircuitweremanipulatedwiththegoalofmakingtheslope

    of

    the

    equation

    for

    a

    line.

    This

    resulted

    in

    the

    equation = +

    wherethevariablesareasinFig.2withastheidealoutputvoltageandastherealoutputvoltage.Usingthisequationasaguide,aplotwasmadeoftheoutputvoltageversusnegativeonetimes

    theoutputvoltage/loadresistanceforthetwogains.Thenbyusingtheleastsquaresmethod,the

    equationforatrendlinewasobtainedalongwiththevalueoftheoutputimpedance.

    Whileusingtheinitialtestingcircuit(Fig.3),itwasnoticedthatthevirtualgroundofthesecondop-

    ampvarieddependingonthesetupofthecircuitandwasinfactnot0V.Dr.Braunsteinsuggestedtrying

    tousethisfacttofindanewmethodtomeasure.Byconsideringtherealop-amptobea

  • 8/11/2019 Output Impedance of an Inverting Operational Amplifier

    4/16

    combinationofanidealop-ampwithabuiltinresistorasdescribedpreviouslyandsolvingtheresultingequationsgave

    = (+ ( )

    21)

    whereisthevoltageoftheinvertinginputoftheop-amp.Tomakeuseofthisequation,anewcircuitwasbuilt(Fig.4).Unlikethecircuitforthepreviousattempt,theinputvoltagewasa44.7kHzsinewave

    fromafunctiongeneratorattenuatedbyavoltagedividerandonlyoneop-ampwasused.Also,this

    timetheloadresistancewaskeptataconstant366k andthegainoftheop-ampcircuitwas -2.Forthis

    circuit,thefrequencyoftheinputsignal,invertinginputvoltage(

    ),outputvoltage(

    ),input

    voltage(intheequationand inthediagram),andtheloadresistance()weremeasured.Thevariableforthesemeasurementswastheinputvoltage.

    Basedonthelackofclearresultsfromthepreviousattemptsandthehighnoise-to-signalratio

    involved,Dr.Braunsteinsuggestedusingalock-inamplifier.Dr.Braunsteinhadpreviouslydesignedand

    constructedacircuitwithadataanalysisLabVIEWprogramwhichheprovidedtoreducesetuptime.The

    diagramofthecircuitisFig.5andthelayoutoftheLabVIEWprogramcanbefoundinfigures6 -8.The

    circuitusedtwoop-amps:oneusedasthecontrolop-amp(ofwhichtheoutputimpedancewastobe

    measured),andanothertoproduceasinewaveofcontrolledamplitudeandDCoffsettouseasinput

    forthecontrolop-amp.Thecircuitalsousedaresistornetworkfortheloadofthecontrolop-ampwhich

    wasusedtocalibratetheoutputsignalfromthelock-inamplifier.TheinputdatafortheLabVIEW

    programwastheoutputsignalfromthelock-inamplifierfortwodifferentconfigurations:one

    configurationformeasuringtheoutputvoltageofthecontrolop-amp(),andtheotherformeasuringthecalibrationvoltagefromtheresistornetwork().Theseconfigurationshadtobedoneseparatelyforeachofthedifferentgains.TheLabVIEWprogramalsorequiredthevaluesofthe

    calibrationnetworkresistorsandtheiruncertaintiesasinput.TheoutputfromtheLabVIEWprogram

  • 8/11/2019 Output Impedance of an Inverting Operational Amplifier

    5/16

    wasthevalueoftheoutputimpedanceofthecontrolop-ampandtheuncertaintyoftheoutput

    impedance.Theprogramwasrunformultiplecases,witheachcasehavingadifferentgainforthe

    controlop-ampcircuit.Thegainofthecontrolop-ampcircuitwasadjustedbychangingoutthe

    feedbackresistor().

    Foreachcase,morethan100datapointswerecollectedintheLabVIEWprogramforboththe

    op-ampsignalandthecalibrationsignal.Uponcollectingseveralsetsofdatawiththismethod,Dr.

    Braunsteinnoticedthatbycollecting100datapointstheerrorofthemeasurementwasincreaseddue

    totemperaturedrift.Hesuggestedtakingonly10datapointspersetalongwithadjustingtheoffset

    voltagetozerotheoutputbeforeeachrun.Thismethodwasadoptedandeachcasewasredone.

  • 8/11/2019 Output Impedance of an Inverting Operational Amplifier

    6/16

    Figure3:Circuitdiagramforthefirstattempt:

    1=100,2=100k,3=100,=1M (variable),=5VDC.

  • 8/11/2019 Output Impedance of an Inverting Operational Amplifier

    7/16

    Figure4:circuitforsecondattempt

    1=22k,2=22,3=10,1and2=1M (variable),=.5VAC,=100Hz.=100,=218

  • 8/11/2019 Output Impedance of an Inverting Operational Amplifier

    8/16

    Figure5:diagramoffinalmeasurementcircuit.

    Resistorvalues:

    R1=100

    ,Ra=1M

    ,Rb=1k

  • 8/11/2019 Output Impedance of an Inverting Operational Amplifier

    9/16

    Figure6:LabVIEWblockdiagram

  • 8/11/2019 Output Impedance of an Inverting Operational Amplifier

    10/16

    Figure7:LabVIEWblockdiagramalternatecases

  • 8/11/2019 Output Impedance of an Inverting Operational Amplifier

    11/16

    Figure8:LabVIEWfrontpanel

  • 8/11/2019 Output Impedance of an Inverting Operational Amplifier

    12/16

    Results:

    Figure9:plotsfromthefirstattempt(DCinput)

    = -2.10.1 withagainof -994and= -0.740.07 withagainof -99.9

    y= -2.1356x+4.5286

    R=0.9553

    4.51

    4.52

    4.53

    4.54

    4.55

    4.56

    4.57

    4.58

    -0.021 -0.018 -0.015 -0.012 -0.009 -0.006 -0.003 0

    Vout

    -Vout/RL

    OutputImpedanceofanInvertingOperationalAmplifier

    with

    a

    Gain

    of -

    994

    y= -0.7514x+0.4546

    R=0.9526

    0.4542

    0.4545

    0.4548

    0.4551

    0.4554

    0.4557

    0.456

    0.4563

    0.4566

    -0.0021 -0.0018 -0.0015 -0.0012 -0.0009 -0.0006 -0.0003 0

    Vout

    -Vout/RL

    OutputImpedanceofanInvertingOperationalAmplifier

    withaGainof -99.9

  • 8/11/2019 Output Impedance of an Inverting Operational Amplifier

    13/16

    Theuncertaintiesfortheresultsofthefirstattemptarenottrueuncertaintiesbutmerelythe

    uncertaintybasedontheR2value.Thisisbecauseonlyonemeasurementwasrecordedateachpoint.

    Theresultsfromthesecondattemptwerenotkeptsincetheypredictedanegativevaluefor

    on

    theorderof105.

    Figure10:plotfromthethirdattempt,inputsignalfrequency=13.10.2Hz

    Theuncertaintiesinthisplotwerefoundusingthestandardmethodforpropagationofuncertainty

    andtheequationsforthegainandoutputimpedanceofanop-amp.

    y=3E-05x+0.0067

    R=0.9992

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08

    0 500 1000 1500 2000 2500

    Zout()

    Gain

    OutputImpedanceofanInvertingOperationalAmplifier

    vs.Gain

  • 8/11/2019 Output Impedance of an Inverting Operational Amplifier

    14/16

    Analysis:

    Measuringtheoutputimpedanceofaninvertingop-ampwasmoredifficultthanoriginally

    anticipated.Thefirsttwoattemptstogetavalueforoutputimpedanceresultedinvaluesthatweretoo

    largeinmagnitudeandofthewrongsigncomparedtothetheoreticalvalue,howeverthefirstattempt

    wasmuchclosertotheexpectedvalue.Theuseofthelock-inamplifiergreatlyimprovedtheaccuracyof

    themeasurementsandtheuseoftheLabVIEWdatacollectionandanalysisprogrammademaking

    measurementsquickandpainlessaftertheoffsetvoltageontheop-ampwasadjusted.Also,thelow

    uncertaintiesintheresultsfromthethirdattemptarereassuringintheaccuracyofthemeasurements.

    Theproblemwiththesecondattemptislikelytobeaninvalidassumptionorerrorinthederivation

    oftheequationusedtocalculatethevaluefortheoutputimpedance.Theresultsfromthiscaseare

    likelynotmeaningfulforthepurposeofthisexperiment.However,theresultsfromthefirstcasearea

    bitmoreconcerning,sincethemethodusedtodeterminetheoutputimpedanceinthiscasewasvery

    similartothemethodusedinthethirdcase.Iftheequationusedtofindthevalueofoutputimpedance

    issolvedfor

    ,theresultingequationis

    = 1 .

    Notethattheonlytimethatisnegativeiswhentheidealoutputvoltage()islessthantherealoutputvoltage(),andthisiswhattheplotsshow.Theidealoutputvoltageisthelasttermintheequationforthetrendline,andtakingalookatthevalueforeachofthefirstattemptplotsshowsthat

    themeasuredvoltageswerehigherthantheideal.Thisdoesnothelpresolvetheproblem,butitdoes

    appeartheequationisworking.Unfortunately,theinputvoltagetothesecondop-ampcircuitofthe

    firstattemptwasnotrecorded,sotheactualidealoutputvoltagecannotbecalculatedtoverifythe

  • 8/11/2019 Output Impedance of an Inverting Operational Amplifier

    15/16

    valuesfromtheplots.Itwouldbeworthrepeatingtheexperimenttoseeiftheactualidealoutput

    voltageandthevaluefromtheplotsagree.

    Anothermethodofverifyingtheresultswouldbetocheckthecharacteristicoutputimpedanceofthe

    bareop-amparecomparethistothevaluearrivedatbyusingtheequation

    =

    ThisequationwasusedonthedataforthethirdattemptandtheresultingplotcanisFig.11.

    Figure11:bare(nofeedback)op-ampcharacteristicoutputimpedance

    Overall,thegoaloftheexperiment,tomeasuretheoutputimpedanceofaninvertingop-amp,was

    accomplished.However,therearestillmanyvariables,suchasthefrequencyoftheinputsignal,whose

    connectiontotheoutputimpedancewasnotinvestigated.Muchexperimentationremainstobedone

    onthistopic.

    0

    2

    4

    6

    8

    10

    12

    14

    0 500 1000 1500 2000 2500BareOp-AmpImpedance()

    Gain

    CharacteristicOutputImpedanceofanInverting

    OperationalAmplifiervs.GainAssuminganOpen-LoopGainof210^5

  • 8/11/2019 Output Impedance of an Inverting Operational Amplifier

    16/16

    References

    Floyd, Thomas L. "Ch. 12: Operational Amplifiers." Electronic Devices. 5th ed.

    Upper Saddle River, NJ: Prentice Hall, 1999. N. pag. Print.

    Simpson, Robert E. Introductory Electronics for Scientists and Engineers. 2nd

    ed. Boston: Allyn and Bacon, 1987. Print.

    Tocci, Ronald J. "Ch. 5: The Operational Amplifier." Fundamentals of Pulse and

    Digital Circuits. 3rd ed. Columbus, OH: Merrill, 1983. N. pag. Print.


Recommended